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Chapter 17. Catalytic Carbonylation

17.1 Overview

17.2. Carbonylation to Produce Acetic Acid

17.2.1. Rh-catalyzed carbonylation of MeOH to produce AcOH (Monsanto Process)
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17.2.2. Rh-catalyzed carbonylation of MeOAc to produce Ac2O (Eastman Process)

17.2.3. Ir-catalyzed carbonylation of MeOH to produce AcOH (Cativa Process)
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17.3. Hydroformylation

17.3.1. Overview

17.3.2. HCo(CO)4 catalysis (Oxo process)
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17.3.4. Rh catalysis

70-120 oC
+ CO/H2

Rh(CO)2(acac)

R
(1/1) R

H O

R

O

H
+

10-50 atm

H

H

PPh3 lower pressure
improved l/b
less byproduct
lab-scale application

commercialized in 1970s

R
R

R' R
R'

R''

R

R'

<Mechanism>

Ph3P Rh
CO

CO

H

PPh3

Rh(CO)2(acac)

CO/H2
Ph3P Rh CO

H

PPh3

Rh
OC

Ph3P

H

PPh3

R

CO

Rh

PPh3

Ph3P

R

H

Rh
OC

Ph3P

CO

PPh3
R

H

CO

Rh

PPh3

Ph3P

O

R

H

Rh
H

H PPh3

CO

PPh3

O

R

H

CO

R

CO

H2

O

R

HH

product

rate-determining step

(rate∝ [H2]
0[alkene][Rh][PR3]

-1[CO]-1)

PPh3

<reactivity>

geometrical isomer
is observed by NMR



<Phosphine Effect>
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<Scope>

internal alkene

<Phosphile Ligand>

# high l/b ratio
# faster reaction
# suppressed side reaction
(hydrogenation)

than PAr3

acetal

olefin with EWG gives branched product.

w/ directing
group

<Enantioselective reaction>

branched product should be selectively formed.

simple alkene's directing nature is small.

racemization must be suppressed.

chiral phosphine is far from reaction space.

challenges

successful ligand families

scope with Rh-BINAPHOS

Babin & Whiteker van Leeuwen & Claver

LandisNozaki & Takaya



17.4. Hydroaminomethylation
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challenges
# prevent catalyst deactivation with excess amines
# e-rich cat enough to reduce e-rich enamine not to prevent hydroformylation



17.5. Hydrocarboxylation / Hydroesterification
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17.6. Carbonylation of Epoxides / Aziridines

Co(CO)4 cat.
X

R acid co-cat.

+ CO

R

X

O

(X = O or NR')

Alper's system

(PPN = bis(triphenylphosphine)iminium)

Coates' system (5 = [CrIII(Et8-porphyrinato)(thf)2][Co(CO)4])

double carbonylation

ring-opening carbonylation

Co2(CO)8 + Ru3(CO)12 system

w/o H2

Co2(CO)8 + 1,10-Phen + BnBr system

aziridines

addition of Lewis acid acclerate the rxn.

<Scope>
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17.7. Carbonylation of Organic Halides (Carbonylative Cross Coupling)

Pd cat.

+ CO + NuR X
R Nu

O

<Scope> review: Nicolaou, K. C. et al. ACIE 2005, 44, 4442.

<Mechanism>

scope is similar to that of cross coupling.
R = alkyl is remains to be developed.

(Nu = R'OH, R'2NH, R'-M)

details depend on R-X and HNu.



17.8. Copolymerization of CO and Olefins
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bidentate ligand(dppp) is favored.

Origin of perfect alteration

unfavorable

CO insertion into M-acyl bond is thermodynamically unfavorable.

[Pd] = Pd(dppp)+

Catalyst decomposition

Chain Termination

still active cat.

still active cat.

presence of ROH absence of ROH

still active cat.

or generation of
Pd(0) metal
from Pd hydride

CO + ethylene



CO + -olefin

R + CO

Pd cat.

CO + styrene

very high
regioselectivity

depends on ligand
and reaction conditions

bipy
1,10-phen

chiral Box

CO + aliphatic olefin

Pd-BINAPHOS cat. 4 : 1

reversed regiochemistry
compered to styrene,

but usually not high degree

Pd-BINAPHOS cat.

isotactic
copolymer

ketal is final product.



17.9. Pauson-Khand Reactions (PKR)

+ CO

metal reagent
or catalyst

+ O

discovered in eary 1970s

M(CO)x

M(CO)x-1(NR3) + CO2

additive effect

R3N-O

(CO)x-1M

O

O

R3N

(also see Oisaki's handout, chapter 5)

effective only to
intramolecular PKR

typical conditions:
stoichiometric Co2(CO)8

catalytic conditions

Cp2Ti(CO)2, Rux(CO)y, [Rh(CO)2Cl]2, Fe, Pd,
Ir(cod)Cl(PPh3), Mo(dmf)3(CO)3, W(CO)5(thf)
also showed catalytic activity.

* Co2(CO)8 is thermally unstable

Catalytic asymmetric PKR

is also active.

Intermolecular PKR : difficult to control the regioselectivity chelating auxiliary is the choice.

Kraft et al.

Yoshida & Itami et al.



Application in Total Synthesis

Nicholas rxn

PKR

Jamison & Schreiber et al.: synthesis of (+)-epoxydictymene

<Mechanism> Magnus, P. et al. TL 1985, 26, 4851.

slow

totally irreversibe in the presence of CO


