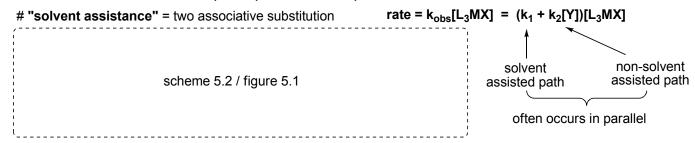

Chapter 5. Ligand Substitution Reactions

5.1 Introdution

Ligand Substitution = A reaction in which a free ligand replaces a coordinated ligand

5.2. Thermochemical Considerations

$$\mathbf{MX_n}$$
 + \mathbf{Y} \longrightarrow $\mathbf{MX_{n-1}Y}$ + \mathbf{X} \rightarrow \rightarrow \rightarrow \rightarrow thermodynamically favorable


BDE = bond dissociation energy

energy needed for homolytic cleavage (two radical generation) for charged X-type ligand energy needed for heterolytic cleavage (unsaturated metal + Lewis base) for neutral L-type ligand

- cf) BDE (M-CO) = 25-46 kcal/mol = 50-150°C heating leads to cleave BDE (CH₃-CH₃) = 88 kcal/mol BDE (CH₃-H) = 104 kcal/mol
- cf) BDE (polyhapto) > BDE (monohapto)
- cf) BDE (M-L) tend to be first-row < second-row < third-row (but not always) BDE($Cr(CO)_5$ -CO) < BDE ($Mo(C)_5$ -CO) < BDE ($W(CO)_5$ -CO) 37 40 46 kcal/mol
- cf) BDE (M- π acidic) > BDE (M- π neutral) if M is low valent
- cf) BDE (less hindered) > BDE (more hindered)

5.3. Mechanisms of Ligand Substitutions of 16e- and 17e- complexes

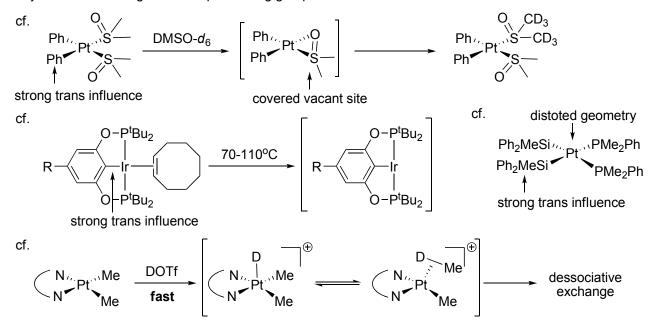
> Associative mechanisms of square-planer d⁸ complexes

stereochemistry = retentive (but not always) // cf. analogy of S_N2

if pentacoordinate intermediate is long-lived, stereochemistry is lost via Berry pseudorotation.

other factors affecting to rate

trans effect = trans ligand affect the rate of ligand substitutions = transition state/dynamism/kinetic (cf. **trans infulence** = related to bond length = ground state/structure/thermodynamic)


cis effect = similar effect by cis ligand, but usually smaller contribution

cf.
$$Et_3P_{C}Pt \xrightarrow{PEt_3} Py \qquad Pt \xrightarrow{P}Pt \xrightarrow{P}Py + Cl^{\ominus}$$
 Fig 5.2

larger when L^t is σ -donating (weakens M-X bond), or π -accepting (stabilizing 5-coordinate intermediate).

> When dessociative mechanism of square-planer d⁸ complexes is dominant?

- # weakly bound X
- # strong trans influence ligand
- # unsaturated metal site is covered by polydentate coordination
- # axial association of Y is prohibited
- # metal geometry is distorted from square planer
- # coordination number > 4
- # very fast association generate super leaving group

> Associative mechanism of 17e- complexes

substitution rate: 17e complexes > 18e complexes

associative mech. leads to energetic gains.

Fig. 5.3

cf.) Poe's experiment Dessociative mech. $Re(CO)_4CI$ Re₂(CO)₁₀ PPh₃ Re(CO)₄(PPh₃)CI + Re(CO)₅C Re(CO)₅ CCI₄ 17e⁻ 18e⁻ 18e⁻ Re(CO)₅ (PPh₃ Re(CO)₄(PPh₃) 19e⁻ Associative mech. excess CO had no effect on the ratio dessociative path was denied cf. R affects reaction rate • V(CO)₆ hexane, rt 17e⁻ rate = $k[V(CO)_6][PR_3]$

negative ΔS^{\dagger}

5.4. Mechanisms of Ligand Substitutions of 18e-complexes

> Dessociative mechanism

$$rate = \frac{k_1 k_2 [L_n M X][Y]}{k_{-1} [X] + k_2[Y]} \stackrel{\stackrel{}{=}}{=} k_1 [L_n M X]$$

$$(usually k_2[Y] >> k_{-1}[X])$$

cf.
$$Ni(CO)_4 \xrightarrow{-CO} \begin{bmatrix} Ni(CO)_3(solv) \end{bmatrix} \xrightarrow{L} Ni(CO)_3L & BDE((OC)_3Ni-CO) = 25 \text{ kcal/mol positive } \Delta S^{\ddagger} \ (= +8 \sim +13 \text{ eu}) \end{bmatrix}$$

Steric bulkiness of ligand (Tolman's cone angle) largely affects the rate.

cf.
$$R = \text{Et} << p\text{-tol} < {}^{i}\text{Pr} < o\text{-tol} << \text{PPh}_{3}$$

$$K_{D}$$

$$Ni(P(OR)_{3})_{4} \longrightarrow Ni(P(OR)_{3})_{3} + P(OR)_{3}$$

$$PhH. \text{ rt}$$

stereochemistry = easily lost //cf. analogy to S_N1

cis effect in (pseudo)octahedral complexes

= X makes dessociation of Lcis faster than that of Ltrans

 $NO_3^- > OAc^-$, HCO_2^- , $RC(O)^- > NHR > SH^- > OR > Cl^- > Br^- > l^- > carbene > PPh_3 > H^-$, CO larger in case of **chelating**, π -**donating**, **less** σ -**donating** ligand \longrightarrow stablization of unsaturated metal

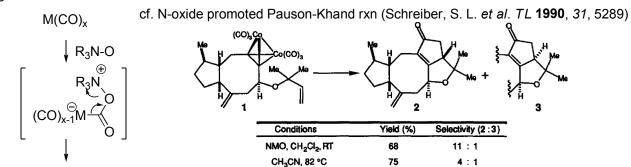

> Reagent and catalyst induced dessociation of CO

photo-induced

cf.
$$\frac{\text{hv, PBu}_3}{\text{rt, 20 min}} \xrightarrow{\text{HRe(CO)}_4(\text{PBu}_3)} \text{w/o light: NR at 75 °C for 60 days}$$
$$\mathbf{n} \rightarrow \sigma^*(\mathbf{M-L})$$

redox, SET-induced cf. analogous to radical chain rxn

ligand oxidation-induced (review: Coord. Chem. Rev. 1984, 53, 227.)

CH₃CN, ₃)), 45 °C

45

3:1

(faster if CO is more electrophilic)

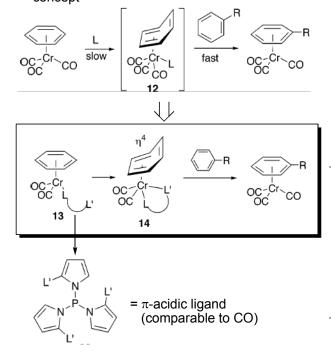
 $M(CO)_{x-1}(NR_3) + CO_2$

5.4. Mechanisms of Substitutions Involving Polyhapto Ligands

> Diene and Triene

18e- complex + strong dative L = competitive pathways

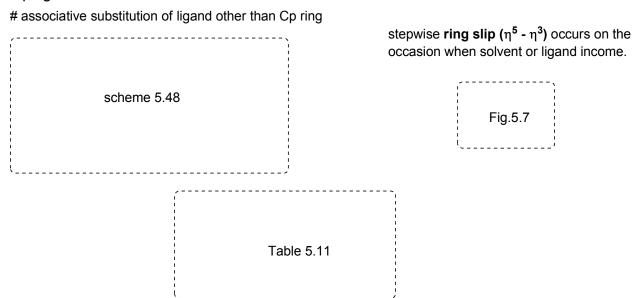
Fig5,43


> Arene

scheme 5.9

stepwise **ring slip** ($\eta^6 - \eta^4 - \eta^2$) occurs on the occasion when solvent or ligand income.

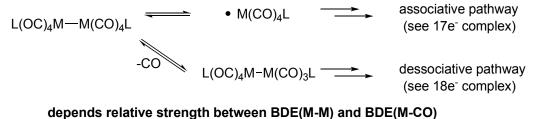
photoirradiation, redox, SET also accelerate the process.


cf.) acceleration by ligand design (Semmelhack, M. F. et al. JACS 2001,123, 8438, JACS 2005, 127, 7759.) <concept>

44j L = 2-Py 8 h at 22 °Ca

^a Too fast to measure at 70 °C.

> Cp ligand



aromaticity is not preserved during ring slip, in case of rightside Cp families. as other ratioinalization, ground state energy of η^5 -indenyl is higher (because of ring dissymmetry) than η^5 -Cp.

5.6 Ligand Substitutions in Multimetallic Clusters

All associative, dessociative, reagent-induced subsitutions are allowed as mononuclear complexes.

> Complex possessing metal-metal bond

weaker in case of first-row transition metals

relative rate ,1st : 2nd : 3rd = 1 : 30 : 920 presence of **bridging CO ligand** affects largely.