Chapter 18: Catalytic C-H Functionalization

Y. Shimizu

18.1. Overview

C-H activation: Catalytic or stoichiometric reactions of transition metal complexes with the unreactive C-H bonds of alkanes, arenes, or alkyl chains to form products containing a new metal-carbon bond. (Fiedel-Crafts reaction or ortho lithiation are not C-H activation.)

major challenge: •selective activation

•catalytic process

•terminal C-H bond functionalization (sec. or tert. C-H: radical approach)

•methane to methanol

Difficulties

•The reactions are thermodynamically unfavored in many cases.

Oxidation by many oxidizing reagents is downhill.

+ co
$$\rightarrow$$
 $\Delta H = 1.7 \text{ kcal/mol}$ (18.2)

$$R-H + HX \longrightarrow RX + H_2$$
 $\Delta H = 22 \text{ kcal/mol}$ for $R = C_6H_{11}$, $X = OH$ (18.3)

$$RCH_2CH_3 \longrightarrow R + H_2 \qquad \Delta H = 30 \text{ kcal/mol}$$
for $R = C_4H_2$

$$(18.4)$$

18.2. 18.3. Oxidations

Platinum catalyst Shilov's system

H-D exchange

Alkane		D found (%)	D in ^a			
	Time (h)		Me- (%)	-CH ₂ - (%)	-CH- (%)	
Methane	95	25				
Ethane	137	91	91	_	_	
Pentane	137	75	92	57	_	
2-Methylbutane	137	69	83	37	9	_ n

primary C-H selective

functionalization

Pt(IV) as oxidant : impractical

Periana's improvement

$$CH_4 + 2 H_2SO_4 \xrightarrow{Cat. (bpym)PtCl_2} CH_3OSO_3H + 2 H_2O + SO_2$$

$$(bpym)PtCl_2 = \bigvee_{N} \bigvee_{N} Cl$$

$$TOF = 10^{-2} s^{-1}$$

$$TON > 500$$

$$H_2SO_4: corrosive...$$

EWG: prevent the further reaction

cf. Polyoxometallate (H₄PV₂Mo₁₀O₄₀) can act as a mediator of oxidation by O₂.

Directed functionalizations

Role of directing group

- trigger C-H bond cleavage
- regioselective functionalization

Sames (Shilov's system)

Catalyst/oxidant	Yield	Syn: anti
16% K ₂ PtCl ₄ /K ₂ PtCl ₆	21%	5:1
10% K ₂ PtCl ₄ /CuCl ₂	67	3:1
1% KoPtCL/5%CuClo	20	3:1

halogenation

But

acetoxylation

$$\begin{array}{c|c} \text{MeO} & \text{MeO} & \text{MeO} & \text{MeO} \\ \hline & \text{Pd}(\text{OAc})_2 & & & \\ \hline & & \text{PhI}(\text{OAc})_2 & \\ \hline & & \text{X} = \text{Y} = \text{H} \\ & \text{X} = \text{OAc}, \text{Y} = \text{H} \\ & \text{X} = \text{Y} = \text{OAc} \\ \end{array}$$

amination

83%

91:9 ds

18.4. Carbonylation of Arenes and Alkanes

oxidative carbonylation

stoichiometric in Pd by Fujiwara

$$Ar-H \xrightarrow{Pd(OAc)_2} Ar-Pd-OAc \xrightarrow{CO} \xrightarrow{Ar} Pd-OAc \xrightarrow{HOAc} Ar-CO_2H + Ac_2O + Pd(O)$$

$$ArH. \ arenes \ and \ heteroarenes$$

catalytic in Pd

\$p^3 C-H

$$CH_4 + CO \xrightarrow{VO(acac)_2/K_2S_2O_8} TFA, 80 °C, 20 h$$

$$Yield: 93\% TON: 18$$

alkylative carbonylation

mainly by Ru

linear selective

Inear selective

$$N + CO + \frac{Ru_3(CO)_{12}}{150 \, ^{\circ}C, 16 \, h}$$

Solvent

 $N + CO + \frac{Ru_3(CO)_{12}}{150 \, ^{\circ}C, 16 \, h}$

directed reaction

sp³ C-H

direct carbonylation to aldehyde

endothermic process (thermal conditions were inefficient)

Photochemical processes partially succeeded the reaction.

$$+ CO \xrightarrow{\text{RhCI(CO)(PMe}_3)_2 \ 0.7 \text{ mM}, \ h\nu} + CH_3 \text{CHO} + CH_3 \text{CHO} + CH_3 \text{CHO} + n \cdot \text{C}_6 \text{H}_{13} \text{OH}$$

$$+ CH_3 \text{CHO} + CH_3 \text{CHO} + n \cdot \text{C}_6 \text{H}_{13} \text{OH}$$

$$+ CH_3 \text{CHO} + CH_3 \text{CHO} + n \cdot \text{C}_6 \text{H}_{13} \text{OH}$$

$$+ CH_3 \text{CHO} + CH_3 \text{CHO} + n \cdot \text{C}_6 \text{H}_{13} \text{OH}$$

$$+ CH_3 \text{CHO} + CH_3 \text{CHO} + n \cdot \text{C}_6 \text{H}_{13} \text{OH}$$

$$+ CH_3 \text{CHO} + CH_3 \text{CHO} + n \cdot \text{C}_6 \text{H}_{13} \text{OH}$$

$$+ CH_3 \text{CHO} + CH_3 \text{CHO} + n \cdot \text{C}_6 \text{H}_{13} \text{OH}$$

$$+ CH_3 \text{CHO} + CH_3 \text{CHO} + n \cdot \text{C}_6 \text{H}_{13} \text{OH}$$

$$+ CH_3 \text{CHO} + CH_3 \text{CHO} + n \cdot \text{C}_6 \text{H}_{13} \text{OH}$$

$$+ CH_3 \text{CHO} + CH_3 \text{CHO} + n \cdot \text{C}_6 \text{H}_{13} \text{OH}$$

$$+ CH_3 \text{CHO} + CH_3 \text{CHO} + n \cdot \text{C}_6 \text{H}_{13} \text{OH}$$

$$+ CH_3 \text{CHO} + CH_3 \text{CHO} + n \cdot \text{C}_6 \text{H}_{13} \text{OH}$$

$$+ CH_3 \text{CHO} + CH_3 \text{CHO} + n \cdot \text{C}_6 \text{H}_{13} \text{OH}$$

$$+ CH_3 \text{CHO} + CH_3 \text{CHO} + n \cdot \text{C}_6 \text{H}_{13} \text{OH}$$

$$+ CH_3 \text{CHO} + CH_3 \text{CHO} + n \cdot \text{C}_6 \text{H}_{13} \text{OH}$$

$$+ CH_3 \text{CHO} + n \cdot \text{C}_6 \text{H}_{13} \text{OH}$$

$$+ CH_3 \text{CHO} + n \cdot \text{C}_6 \text{CHO} +$$

A radical trap inhibited the formation of the branched aldehyde
$$X = Rh(PMe_3)_2(CO)(CI)(H)(R)$$

alternative use of isocyanide (weaker multiple bond)

18.5. Dehydrogenation

Early works by Crabtree and Felkin

Crabtree: Catalyst = $[Ir(PR_3)_2(\kappa^2-O_2CC_2F_5)_2H_2]^+R = Cy$ or $C_6H_4CF_3$ 35 turnovers with acceptor; 35 turnovers without acceptor in open reflux Felkin: Catalyst = $(i-Pr_3P)_2IrH_5$, $[(\rho-FC_6H_4)_3P]_2IrH_5$, or $[(\rho-FC_6H_4)_3P]_3RuH_4$ 45–70 turnovers with acceptor

high temperature condition catalyst stability limits turnover numbers

Pincer complex

thermaly stable complex

applicable to polymers and amines

dehydrogenation cat. + olefin metathesis cat. = alkane metathesis

(H₃C)(F₃C)₂CO Mo Pr (H₃C)(F₃C)₂CO CHC(CH₃)₂Ph

Schrock's metathesis catalyst:

18.6. Hydroarylation

overview

Murai et al. 1993

$$R^{2} \xrightarrow{R^{1}} + R^{3} \xrightarrow{RuH_{2}(CO)(PPh_{3})_{3}} R^{2} \xrightarrow{R^{1}} R^{1}$$

$$R^{1} = Me \text{ or } Bu^{l}; R^{2} = Me, R^{3} = Si(OEt)_{3}, SiMe_{3}, Me \text{ or } Ar$$

synthesis of lithospermic acid

mechanism

resembles to migration process (by calc.)

$$\bigcap_{\substack{\mathsf{R}\mathsf{u}-\mathsf{R}\\\mathsf{L}_n}} \longrightarrow \bigcap_{\substack{\mathsf{R}\mathsf{u}\mathsf{L}_n}} \bigcirc$$

Scope

DG part: imine, pyridine, carbonyl, heterocycles

ketone

heterocycle

pyridine

catalyst

ketone DG: $RuH_2(CO)(PPh_3)_3$, $[RuH_2(H_2)(PCy_3)_2]$, $[Cp*Rh(C_2H_3SiMe_3)_2]$

imine DG: Ru₃(CO)₁₂, [Rh(PPh₃)₃Cl] pyridine DG: [RhCl(COE)] + PCy₃

alkynes

more likely via electrophilic substitution

without directing group

anti-Markovnikov selectivity

oxidative arylation

alternative to the Heck reaction

18.7. Functionalization of Alkanes and Arenes with Main Group Reagents

Borylation of Alkanes

Hartwig's land mark reaction

$$sp^{3} \xrightarrow{\qquad \qquad \qquad } \frac{0.5\% \ Cp^{*}Rh(C_{6}Me_{6})}{150 \ ^{\circ}C, \ 80 \ h} \xrightarrow{\qquad \qquad } \frac{72\%}{144 \ turnovers}$$

$$sp^{2} \xrightarrow{\qquad \qquad \qquad } + B_{2}pin_{2} \xrightarrow{\qquad \qquad } \frac{0.25\% \ Cp^{*}Rh(C_{6}Me_{6})}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad \qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad } \frac{Bpin + H_{2}}{150 \ ^{\circ}C, \ 45 \ h} \xrightarrow{\qquad } \frac{Bpin + H_$$

terminal C-H slective less hindered position not at the α position of heteroatom

Ir catalized borylation of arenes

With OMe precursor
$$1/2[Ir(OMe)(COD)]_2/dtbpy$$

$$B_2pin_2 + 2 H-Ar$$

$$1.0 equiv./B$$

$$(3 mol \%)$$

$$Hexane$$

$$Room temperature$$

$$2 Ar-Bpin + H_2$$

little electronic preference controlled by steric effects complements to electrophilic substitutions

mechanism

p-orbital on boron assists in the C-H bond cleavage step (chapter 6)

silylation of C-H bonds

with DG

without DG

18.8. Hydroacylation

mechanism

decarbonylation is problematic poisoning the catalyst cycle
$$L_nRh-R$$
 L_nRh-R L_nRh-CO $R-H$

Rh cat.

Co cat.

intramolecular asymmetric

H Cat. [Rh((
$$R$$
)-BINAP)]CIO₄
CH₂Cl₂
RT, 0.5-2 h
92% yield; > 99% ee

The use of cationic Rh complex containing chelating ligand suppresses poisoning of the catalyst by decarbonylation.

directing group

imine derivative

stable metallacycle
+
less favorable de-insertion
of an isocyanide

18.9. Functionalization of C-H Bonds by Carbene Insertions

favorable at sites that stabilize a buildup positive charge (favored: α to O, N disfavored: α to ester, OAc)

aliphatic C-H > aromatic C-H

Cu catalyst

The first work was conducted with copper complexes.

intramolecular

1: n = 1 2: n = 2 1: n = 2 1: n = 2 1: n = 2

intermolecular

$$\begin{array}{c} O \\ + \\ N_2 \end{array} \begin{array}{c} CO_2 Et \\ \hline \\ R \\ \hline \\ R \\ \hline \\ R \\ \end{array} \begin{array}{c} Tp'Cu \\ catalyst \\ \hline \\ R \\ R \\ \hline \\ R \\ R \\ \end{array} \begin{array}{c} CO_2 Et \\ \hline \\ 98\% \text{ yield} \\ \hline \\ R \\ R \\ \hline \\ R \\ R \\ \end{array}$$

Rh catalyst

intramolecular reaction

asymmetric reaction

for total synthesis

intermolecular reaction (see Mr. Takasu's lit. seminar (D₂))

major problem: self coupling to form olefins

 π -Donor- π -acceptor type carbenoids have moderate reactivity. It worked well for intermolecular C-H functionalization.

Donor

Acceptor

Rh₂(S-DOSP)₄

α to heteroatom

for total synthesis

23-81% yield

18.10. H/D Exchange

$$L_nM-D$$
 $R-H$
 L_nM
 R
 H
 D_2 , C_6D_6 , or D_2O

Label compounds directly from natural products or synthetic products.