
Making Plastics from Carbon Dioxide: Copolymerization of Epoxides and CO₂

Contents:

- I Global warming
- II Utilization of CO₂
- III Copolymerization of epoxides and CO₂
- a Background of copolymerization of epoxides and CO₂
- b First example of copolymerization of epoxides and \mbox{CO}_2
- c Salen metal complexe as catalysts
 - 1 Cr salen complex
 - 2 Co salen complex
- d Zinc catalysts
 - 1 Coates 's β -diiminate zinc catalysts
 - 2 Asymmetric copolymerization using zinc catalysts
- **IV Outlook**

Review:

- 1 Chem. Rew. **2001**, *101*, 953.
- 2 Angew. Chem. Int. Et. 2004, 43, 6618.
- 3 Chem. Rew. 2007, 107, 2388.

I Global warming!

Fig 1 sea-level rise caused by global warming

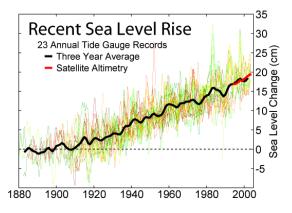


Fig 3 The major reason of global warning

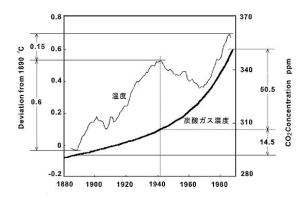


Fig 2: Desertification

On the other hand, since petroleum resources are predicted to be exhausted within the next century at the current rate of consumption, there is a growing effort to develop new chemical processes using biorenewable resources. CO_2 is an abundant, inexpensive, and nontoxic biorenewable resource. CO_2 might be an attrative raw material!

II Utilization of CO₂

a Situation in Japan: 1997 Kyoto Protocol; 2008 TOYAKO Summit Conference.

Fig 4 Immobilization of CO₂ in Japan

b Reduction of CO₂

Methods: Electrochemical reduction; Metal-catalyzed hydrogenation; Photochemical reduction and so on

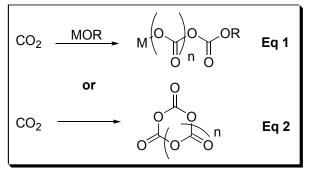
Scheme 1 Example of electrochemical reduction:

$$CO_{2} + e^{-} \rightarrow CO_{2}^{-} \quad (E^{\circ} = -2.14 \text{ V})$$
(1)

$$CO_{2} + 2e^{-} + 2H^{+} \rightarrow HCOOH \quad (E^{\circ} = -0.85 \text{ V})$$
(2)

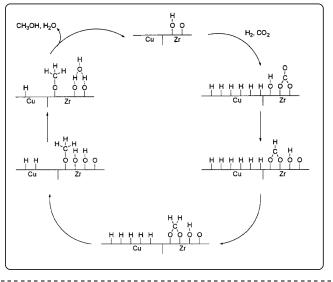
$$CO_{2} + 2e^{-} + 2H^{+} \rightarrow CO + H_{2}O \quad (E^{\circ} = -0.76 \text{ V})$$
(3)

$$CO_{2} + 4e^{-} + 4H^{+} \rightarrow H_{2}CO + H_{2}O \quad (E^{\circ} = -0.72 \text{ V})$$
(4)


$$CO_{2} + 6e^{-} + 6H^{+} \rightarrow CH_{3}OH + H_{2}O \quad (E^{\circ} = -0.62 \text{ V})$$
(5)

$$CO_{2} + 8e^{-} + 8H^{+} \rightarrow CH_{4} + 2H_{2}O \quad (E^{\circ} = -0.48 \text{ V})$$
(6)

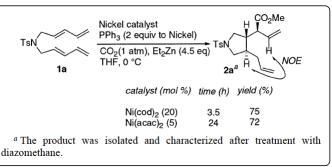
c Chemical transformation of CO₂



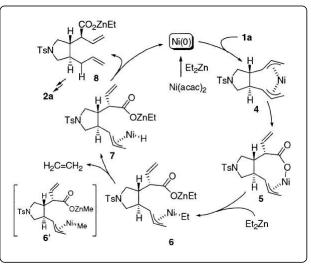
One of the most efficient way to immobilize CO_2 is polymerzation of CO_2

So far it is very difficult!

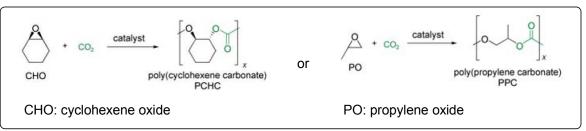
 Cu/ZrO_2 heterogeneous catalytic hydrogenation of CO_2 to methanol

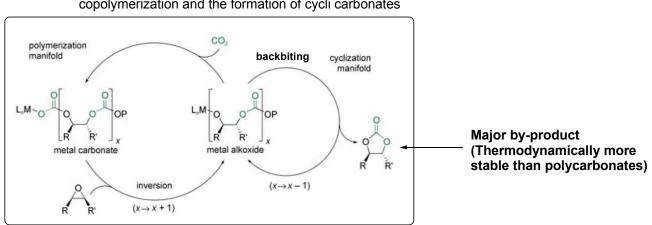


Example of chemical transfromation of CO₂:

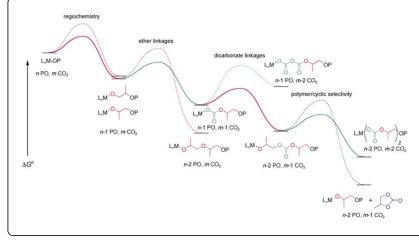

Mori miwako group, JACS 2002, 124, 10008.

Novel Catalytic CO₂ Incorporation Reaction: Nickel-Catalyzed Regio- and Stereoselective Ring-Closing Carboxylation of Bis-1,3-dienes


Scheme 4 Ni-catalyzed ring-closing carboxylation

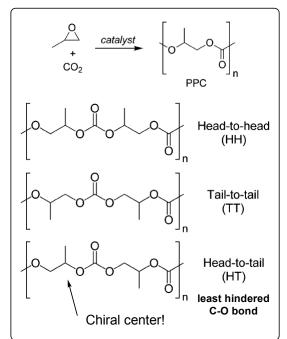

Scheme 5 Possible reaction mechanism

III Copolymerization of epoxides and CO₂



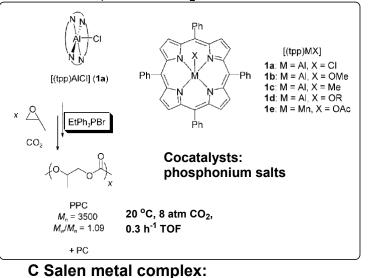
a Background of copolymerization of epoxides and CO₂

Scheme 6 The basic mechanism of epoxide and CO₂ copolymerization and the formation of cycli carbonates


Scheme 7 Qualitative, ideal free-energy profile depicting alternating copolymerization of propylene oxide and CO₂, as well as potential side-reactions.

⇒ low temperature is better!

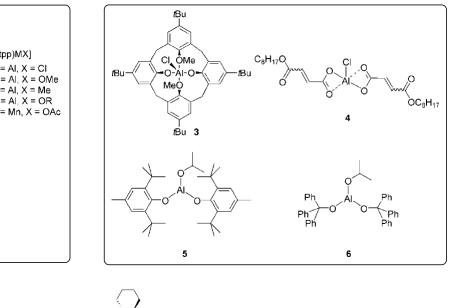
Other key point of this reaction: 1 TOF 2 Pressure(CO₂) 3 temperature 4 M_n 5 M_w/M_n

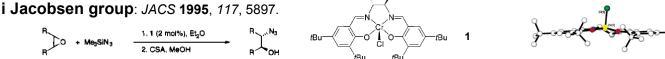

Scheme 8 Regiochemistry of PPC

b First example: Inoue group (aluminum catalysts)

Makromol. Chem. **1978**, 179, 1377. Macromolecules **1982**, 15, 682.

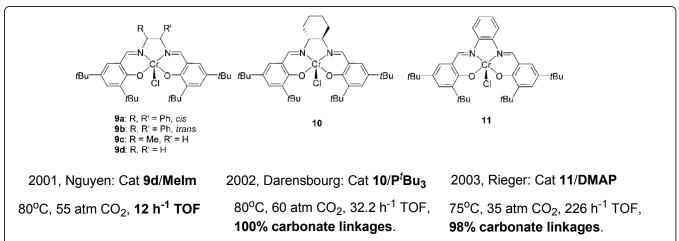
Scheme 9 Alumium porphyrins for copolymerization of epoxide and CO₂

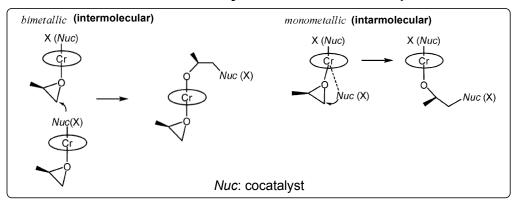



1 Cr Salen complex

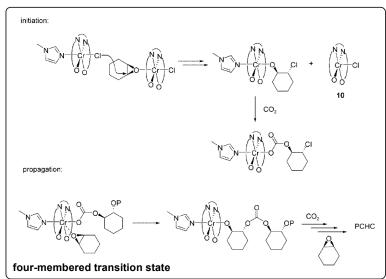
Scheme 10 Other alumium catalysts:

3: Aluminuim calix-4-arene (Kuran, 1998)

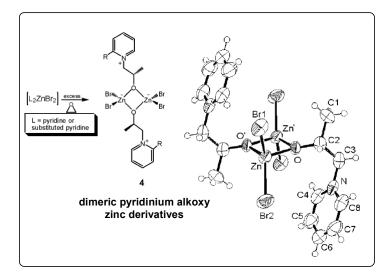

4,5,6: Aluminum alkoxides complex (Beckman, 1999, 2000)



First example of copolymerization of Salen complex: Jacobsen PCTInt. Appl. WO00/09463, 2000.


ii Other groups developed the salen complex system with cocatalysts:

iii Proposed mechanism with cocatalyst in the initiation step:


iv Intermolecular bimetallic pathway:

v Intarmolecular monometallic pathway:

Darensbourg; Chem. Rew. 2007, 107, 2388.

Scheme 11: X-ray structure of intermediate 4 Kim group: Angew. Chem. Int. Ed. 2000, 39, 4096.

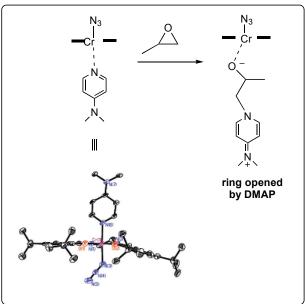
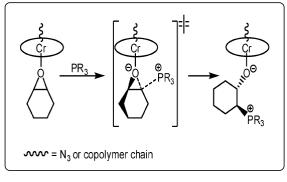
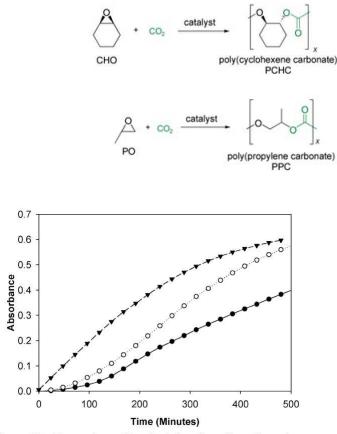


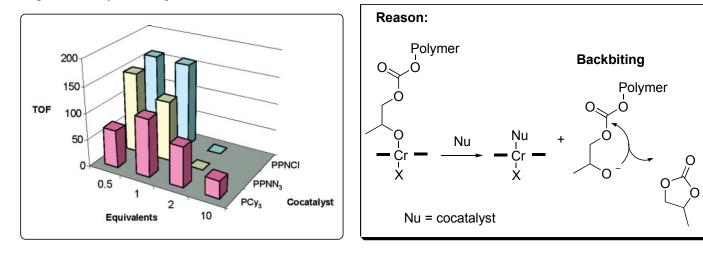
Table 1 Effect of various phosphines on the rate ofcopolymerization of cyclohexene oxide and CO_2 catalyzed by Cr Salen complex:


phosphine	cone angle (deg)	TON ^b	TOF ^c
P[C(CH ₃) ₃] ₃	182	1277	638
P(2,4,6-tri-CH ₃ OC ₆ H ₂) ₃	185	1417	354
$P(C_6H_{11})_3$	170	1318	329
$P(p-CH_3OC_6H_4)_3$	145	1293	323
$P(o-CH_3OC_6H_4)_3$	153	1170	292
P(p-CH ₃ C ₆ H ₄) ₃	145	1301	325

Sterical phosphines are effective cocatalysts


Scheme 12: The case in Cr-salen/DMAP system

Scheme 13 Activation of phosphines by formation of phosphonium zwitterious



vi Cocatalyst as a turning tools:

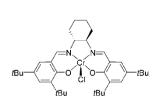
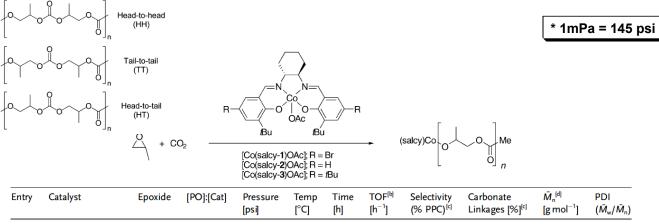

Figure 22. Comparison of in situ infrared profiles of copolymer production from CO_2 and cyclohexene oxide utilizing catalyst 1 and the three classes of cocatalysts: $PPN^+Cl^-(\mathbf{V})$, PCy_3 (O), and *N*-MeIm (\mathbf{O}).

Fig 4: Cocatalyst loading

2 Co (III) Salen complex:

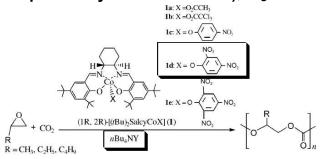
Competition of data in carbonate linkages, TOF, pressure, temperature and so on.


Table 2 Catalytic activity in the presence of PPNX cocatalyst.

Х	TOF^b
N_3	608
Cl	494
Br	420
I	360
OAc	350
HCO_3	280
I OAc	494 420 360 350

 a The carbonate content of all copolymers isolated was greater than 99%. b Mol of epoxide consumed/mol of catalyst h.

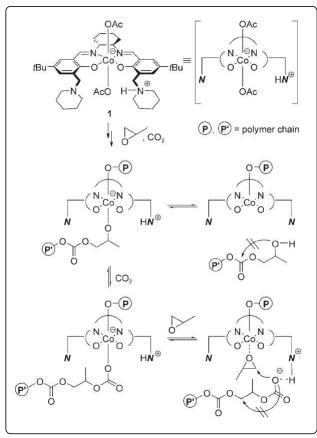
PPNCI: $(C_6H_5)_3P=N(CI)=P(C_6H_5)_3$ *N*-MeIm: *N*-methylimidazole


i 2003: Coates group (Co Salen complex only), Angew. Chem. Int. Ed. 2003, 42, 5484.

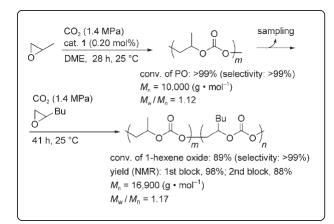
		•	[].[]	[psi]	[°C]	[h]	[h ⁻¹]	(% PPC) ^[c]	Linkages [%] ^[c]	[g mol ⁻¹]	$(\bar{M}_{\rm w}/\bar{M}_{\rm n})$
1	[Co(salcy -1)OAc]	rac-PO	500	800	25	3	81	> 99	95	15300	1.22
2	[Co(salcy-1)OAc]	rac-PO	500	600	25	3	19	>99	94	3100	2.60
3	[Co(salcy-1)OAc]	rac-PO	500	800	40	3	17	> 99	90	5600	1.21
4	[Co(salcy-1)OAc]	rac-PO	500	800	30	3	69	>99	94	12200	1.26
5	[Co(salcy-1)OAc]	rac-PO	500	800	20	3	42	>99	95	8000	1.44
6	[Co(salcy-1)OAc]	rac-PO	500	800	15	3	31	>99	95	7600	1.51
7	[Co(salcy-1)OAc]	rac-PO	200	800	25	3	51	>99	95	8200	1.25
8	[Co(salcy-1)OAc]	rac-PO	2000	800	25	8	38	>99	95	21700	1.41
9	[Co(salcy-2)OAc]	rac-PO	200	800	25	3	51	>99	96	6600	1.21
10	[Co(salcy-2)OAc]	rac-PO	500	800	25	3	66	>99	96	9000	1.31
11	[Co(salcy-3)OAc]	rac-PO	200	800	25	3	42	>99	99	5700	1.28
12	[Co(salcy-3)OAc]	rac-PO	500	800	25	3	59	>99	99	8100	1.57
13	[Co(salcy-3)OAc]	(S)-PO	500	800	25	3	71	>99	99	6900	1.58
14 ^[e]	[Zn(BDI)OAc]	rac-PO	2000	300	25	2	184	87	99	35900	1.11
15 ^[f]	[Cr(salph)Cl]	rac-PO	1500	490	75	4	160	71	98	16700	1.38

[a] All of the polymerizations were carried out in 3.5 mL of neat propylene oxide (PO). [b] Turnover frequency of PO to PPC. [c] Determined by using ¹H NMR spectroscopy. [d] Determined by gel permeation chromatography in tetrahydrofuran at 40°C, calibrated with polystyrene standards. [e] Reference [14]. [f] Reference [16].

ii 2004: Lu group (with quaternary amminium salts), Angew. Chem. Int. Ed. 2004, 43, 3574.


Entry	1	Y	Epoxide	t [h]	P [MPa]	TOF ^[b] [h ⁻¹]	Selectivity ^[c] [% PPC]	Carbonate linkages [%] ^[c]	M _n ^[d] [g mol ⁻¹]	$PDI(M_w/M_n)$	K _{rel} ^[e]
1	a	Br	PO	3	2.0	228	3	>99	_[f]	[f]	3.9
2	Ь	Br	PO	3	2.0	264	6	>99	_[f]	_[f]	4.7
3	d	Br	PO	3	2.0	289	78	>99	23 500	1.29	3.2
4	d	CI	PO	3	2.0	257	99	>99	30400	1.36	3.4
5	d	1	PO	3	2.0	272	69	>99	22100	1.34	2.8
6	d	OAc	PO	3	2.0	167	99	>99	18200	1.23	3.1
7	с	CI	PO	3	2.0	185	96	>99	21 000	1.48	2.9
8	е	CI	PO	3	2.0	248	99	>99	27500	1.43	3.0
9	d	_	PO	24	2.0	2	95	>99	_[f]	_[f]	_[f]
10	-	CI	PO	24	2.0	<1	0	_[f]	_[f]	_ <mark>[f]</mark>	_[f]
11	d	CI	PO	3	0.2	130	98	>99	18200	1.29	3.2
12	d	CI	PO	3	0.4	190	99	>99	28 300	1.31	3.5
13	d	CI	PO	3	1.0	243	99	>99	29900	1.41	3.3
14	d	CI	PO	3	4.0	219	99	>99	28 700	1.42	3.3
15	d	CI	PO	3	6.0	173	99	>99	25 500	1.33	3.4
16 ^[g]	d	CI	PO	3	4.0	371	99	>99	24000	1.37	2.8
17	d	CI	1,2-BuO ^[h]	6	2.0	61	99	>99	11600	1.26	_[f]
18 ^[g]	d	CI	1,2-HO	8	2.0	48	98	>99	7300	1.11	_[f]

[a] The reaction was carried out with neat epoxide (14 mL, 200 mmol; catalyst/co-catalyst/epoxide = 1:1:2000) at 25 °C, unless otherwise noted. [b] Turnover frequency of epoxide to products (polycarbonate and cyclic carbonate). [c] Determined by using ¹H NMR spectroscopy. [d] Determined by means of gel permeation chromatography in THF at 35 °C, calibrated with polystyrene standards. [e] $K_{rel} = ln[1-c(1+ee)]/ln[1-c(1+ee)]; c = conversion, ee = enantiomeric excess of unconverted epoxide. [f] Not applicable. [g] 40 °C. [h] 1,2-Butene oxide. [i] 1,2-hexene oxide.$


iii 2006: Nozaki group (with a piperidinium end-capping arm)

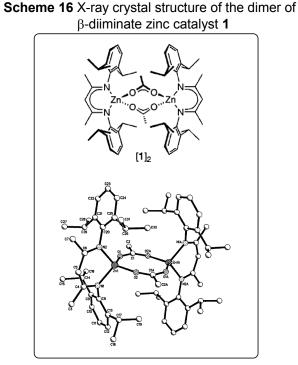
Angew. Chem. Int. Ed. 2006, 45, 7274.

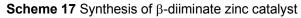
Scheme 14 Catalyst design to suppress the production of cyclic carbonate

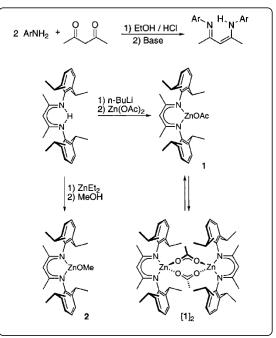
Scheme 15: Synthesis of a block terpolymer

Table 3: Copolymerization of epoxides with CO2catalyzed by cobalt complex 1

$rac{1}{0}$ R + co ₂ $\xrightarrow{\text{cat. 1}}$ $(rac{1}{0})$ $(ra$										
					2	3				
Entry	R	Solvent	t [h]	Yield of 2+3 [%] ^[b]	2/3 ^[b]	M _n [g mol ⁻¹] ^[q]	$M_{\rm w}/M_{\rm n}^{\rm [c]}$			
1	Me	2 <u>—</u> 1	3	38	99:1	12600	1.13			
2	Me	-	12	77	99:1	23900	1.14			
3	Me	-	116	79	96:4	83 700	1.28			
4 5	Me		1	34	90:10	7100	1.22			
5	Me	DME	6	53	99:1	13200	1.10			
6	Me	DME	48	>99	97:3	26500	1.10			
7 ^[d]	Me	DME	20	95	95:5	5100	1.06			
8	Et	DME	48	89	97:3	31000	1.12			
9	Bu	DME	48	89	98:2	34300	1.14			


[a] Reaction conditions: epoxide (14.3 mmol in entries 1, 2, and 4–9; 47.2 mmol in entry 3), 1 (epoxide/1 = 2000 in entries 1, 2, and 4; 6500 in entry 3; 1000 in entries 5–9), CO₂ (initial pressure: <u>1.4 MPa</u>), DME (1.0 mL in entries 5–9), at <u>25 °C</u> (entries 1–3 and 5–9) or 60 °C (entry 4). [b] Determined on the basis of ¹H NMR spectroscopy of the crude product by using phenanthrene as an internal standard. [c] Determined by size-exclusion chromatography analysis using a polystyrene standard. [d] Methanol (20 equivalents based on 1) was added.

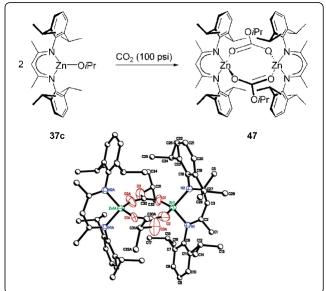

d Zinc catalysts:


1 Coates 's β-diiminate zinc catalysts

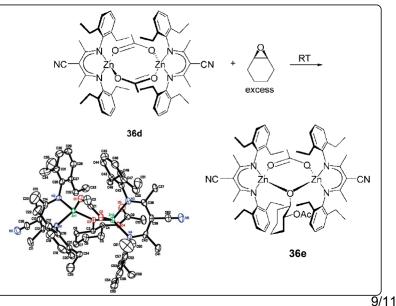
i High-activity Zn(II)-based catalysts for the copolymerization of CO_2 and cyclohexene oxide.

JACS **1998**, *120*, 11018. *JACS* **2001**, *123*, 8738.

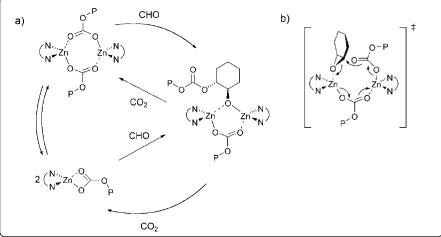

Table 4 Results of copolymerization of CO2 and cyclohexene oxide

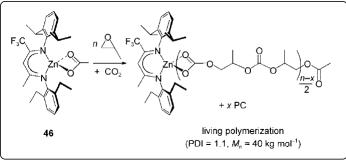

catalyst	temp (°C)	pressure (psig)	reaction length (h)	% carbonate linkages	$M_n (imes 10^{-3}) \ ({ m GPC})$	$\frac{M_{ m w}/M_{ m n}}{ m (GPC)}$	TON ^b	TOF ^c (h ⁻¹)
1	20	100	2	95	21.3	1.07	270	135
1	50	100	2	96	31.0	1.11	494	247
1	80	100	2	95	25.7	1.17	412	206
2	50	100	2	95	19.1	1.07	449	224
3 ^d	80	800	69	91	38.0	4.5	173	2.5
4 ^e	100	2000	24	93	17.0	6.4	216	9.0

^{*a*} All of the reactions were performed in neat CHO. ^{*b*} Moles of CHO consumed per mole of zinc. ^{*c*} Moles of CHO consumed per mole of zinc per hour. ^{*d*} Data from ref 12 for $(2,6-Ph_2C_6H_3O)_2Zn(Et_2O)_2$ (3). ^{*e*} Data from ref 13 for HO₂CCH=CHCO₂(CH₂)₂C₆F₁₃/ZnO (4).

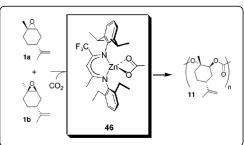

ii Proposed copolymerization mechanism using β -diiminate zinc catalyst:

JACS 2003, 125, 11911.

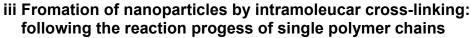



Scheme 19 Insertion reaction of CHO

Scheme 20 Proposed copolymerization mechanism and epoxide ring-opening transition state:



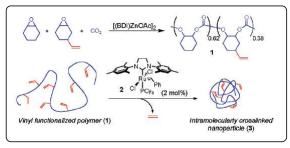
Scheme 21 Unsymmetrical, electron-deficient β -di-zinc complex for the copolymerization of propylene oxide and CO₂



Axial Attack JACS 2002, 124, 14284.

Scheme 22 Alternating copolymerization of limonene oxide and carbon CO₂ JACS 2004, 126, 11404.

1b Axial Attack


JACS 2007, 129, 11350.

X-ray

13

O(1)

Scheme 24 Synthesis of alkene crossing-linked polycarbonate nanoparticles

entry	time (h)	Mn ^b (g/mol)	M _w /M _n ^b	% vinyls cross-linked ^c	<i>T</i> g ^d (°C)
1	0	54 100	1.20	0	114
2	0.25	45 700	1.34	42	157
3	0.50	39 500	1.26	59	167
4	2.0	33 000	1.19	70	185
5	4.0	31 500	1.19	76	194

Scheme 23 Ring opening of 1a and 1b during copolymerization

Zn(BDI)

Zn(BDI)

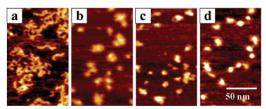
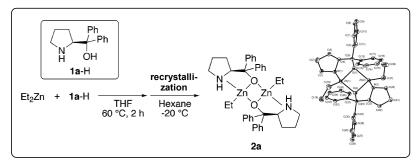
CO₂P

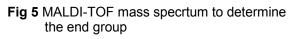
P = Polymer

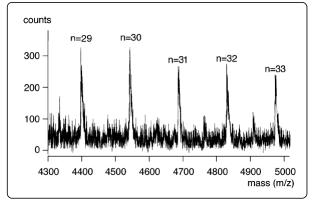
and hydrolytic cleavage to give diaxial diol 13

OH

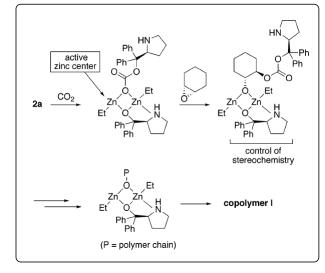
^a All reactions were run with 2 mol % of Ru catalyst at 22 °C with 1.0 mg polymer/mL toluene. ^b Determined by GPC in THF at 40 °C versus polystyrene standards. ^c Determined by ¹H NMR spectroscopy. ^d Determined by differential scanning calorimetry (second heat).

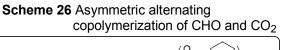



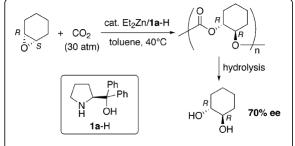

Figure 1. AFM height images for the nanoparticles in Table 1: (a) entry 1, (b) entry 2, (c) entry 3, (d) entry 5. (e) The plot presents the square of 10/11

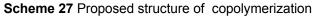

2 Zinc catalysts for asymmetric CHO-CO₂ copolymerizaiton

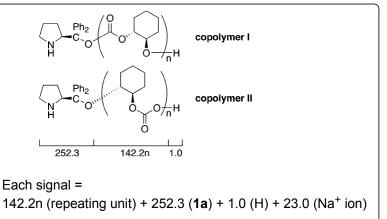
i Nozaki Group: JACS 1998, 121, 11008.

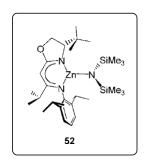

Scheme 25 Synthesis of complex 2a and it's structure

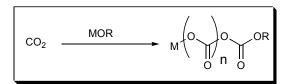


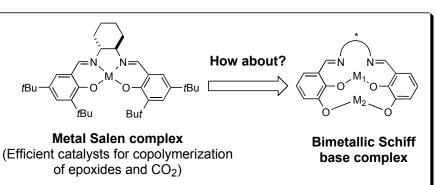





Scheme 28 Proposed mechanism






ii Coates group: Chem. Commun. 2000, 2007.

- Remained task: 1 Completely controlled asymmetric
- CHO-CO₂ copolymerizaiton 2 Polymerzation of CO₂

