Cross-Dehydrogenative Coupling (CDC): Exploring C-C Bond Formations beyond Functional Group Transformations

Lit. seminar 2010/07/24 M2 JianYi Wang

Prof. Chao-Jun Li

Professional Experience

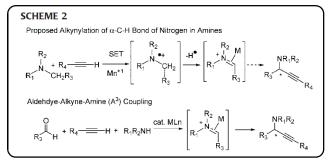
2003-	Professor of Chemistry Canada Research Chair (Tier I) in Organic/Green Chemistry Department of Chemistry, McGill University, Montreal,
2002 (Fall)	Canada Visiting Professor
2002 (1 all)	Department of Chemistry, University of California, Berkeley,
	USA
2000-2003	Professor of Chemistry
	Department of Chemistry, Tulane University, New Orleans,
	USA
1998-2000	Associate Professor (with Tenure)
	Department of Chemistry, Tulane University, New Orleans, USA
1994-1998	Assistant Professor
1004-1000	Department of Chemistry, Tulane University, New Orleans,
	USA
1992-1994	NSERC Post-Doctoral Fellow
	Stanford University; Advisor: Prof. B. M. Trost
1989-1992	Ph.D. Organic Chemistry
	McGill University; Advisors: Prof. Tak-Hang Chan and Prof.
	David N. Harpp
1985-1988	M.S. Organic Chemistry
	Chinese Academy of Science; Advisor : Prof. Tak-Hang
	Chan (McGill University)

1979-1983 **B.S. Chemistry** Zhengzhou University, China

Contents:

Introduction Background CDC Recation Involving ¦Á-C-H Bonds of Nitrogen in Amines Alkynylation (sp³-sp Coupling). Arylation (sp³-sp² Coupling). Alkylation (sp³-sp³). CDC Reaction of ¦Á-C-H Bonds of Oxygen in Ether (sp³-sp³) CDC Reaction of Allylic and Benzylic C-H Bonds Allylic Alkylation (sp³-sp³). Benzylic Alkylation (sp³-sp³). Benzylic Alkylation (sp³-sp³). CDC Reaction of Alkane C-H Bonds Alkane Alkylation (sp³-sp³). Alkane Arylation (sp³-sp²). Conclusion and Outlook

Introduction and Background

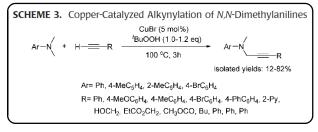

Research in three progressive stages (1) developing Grignard-type reactions in aqueous media to simplify protection-deprotection steps. (2) developing nucleophilic addition reactions by using C-H bonds as surrogates for organometallic reagents to simplify halogenationdehalogenation steps and avoid the utilization of a stoichiometric amount of metal for such reactions (possible in water) (3) developing direct C-H and C-H coupling to explore the possibility

(3) developing direct C-H and C-H coupling to explore the possibility of chemical transformations beyond functionalization and defunctionalization in syntheses. Chao-Jun Li, J. AM. CHEM. SOC. 2005, 105, 3095

Chao-Jun Li, J. AM. CHEM. SOC. 2007, 106, 2546

CDC Reaction Involving ¦Á-C-H Bonds of Nitrogen in Amines

Alkynylation (sp³-sp Coupling)

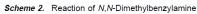


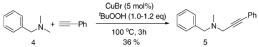
Starting Point:

(1) propargylic amines are of great pharmaceutical interest and are synthetic intermediates for various nitrogen compounds; (2) the sp³ C-H bond ¦Á to nitrogen in amines can be readily activated to generate iminium ions via single-electron-transfer (SET)

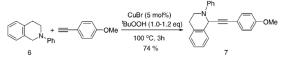
processes or by transition metals as described by Leonard and Murahashi;

(3) we and others have described the aldehyde-alkyne-amine coupling (A³) reactions to afford propargyl amines catalyzed by various transition metals via the formation of the same intermediate (Scheme 2).

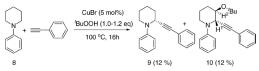

Chao-Jun Li, J. AM. CHEM. SOC. 2004, 126, 11810-11811


Table 1. Selection of Copper Catalyst^a Table 2. Copper-Catalyzed Alkynylation of Amines^a [Cu] (5 mol%) CuBr (5 mol%) ^tBuOOH BuOOH (1.0-1.2 eq) 100 °C, 3h 100 °C, 3h -R 1a 2a 3a 2 3 catalyst NMR yield^b entry Ar R product vield^b entry 74 CuBr 1 Ph Ph 3a 4-MeOPh 3b 82 CuB₂ 72 75 73 56 2 Ph 2 74 74 60 3 Ph 4-MePh 3c 3 CuC1 4-BrPh 4-PhPh 4 Ph 3d CuCl₂ 4 5 Ph 3e CuI 2-Py HOCH₂ 3f 36 6 Ph 61 25 6 Cu(I)₂Se Ph 3g 40 58 25 12 CuOTf EtCOOCH₂ 3ĥ 8 Ph 8 Cu(OTf)₂ 8 CH₃OCO 9 Ph 3i 9 0 no 10 Ph Bu 3j 4-MePh 2-MePh 11 Ph 3k 73 53 31 12 Ph

13

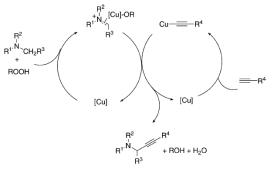

4-BrPh

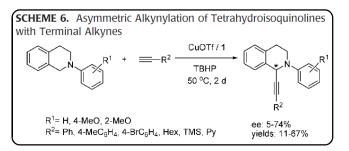
 a 4.0 mmol aniline, 2.0 mmol phenylacetylene, 0.1 mmol copper salt, and 0.8 mL BuOOH (5–6 M in decane). b Reported yields were based on alkynes and determined by NMR using an internal standard.



Scheme 3. Reaction of Cyclic Benzylamine

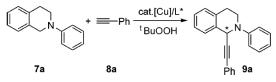
Scheme 4. Reaction of Simple Cyclic Amine

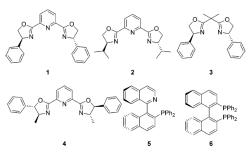

 a 4.0 mmol amine, 2.0 mmol alkyne, 0.1 mmol copper bromide, and 0.4 mL 'BuOOH (5–6 M in decane). b Isolated yields were based on alkynes.

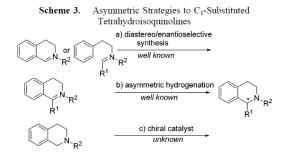

69

3m

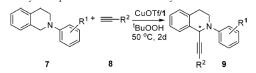
Scheme 5. Tentative Mechanism for the Direct Oxidative Coupling of Amine with Alkyne

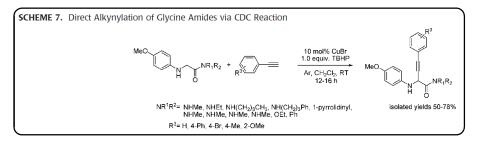

Ph


Chao-Jun Li, Org. Lett., Vol. 6, No. 26, 2004

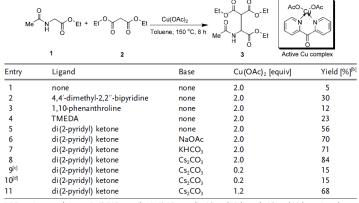

Table 1. Effect of Conditions on the Enantioselectivity ofCoupling of N-Benzene Tetrahydroisoquinoline withPhenylacetylene via $sp^3 C-H$ Bond Activation^a

entry	catalyst	ligand	$temp\left(^{\circ}C\right)$	$\mathrm{solvent}^b$	$\mathrm{ee}^{c}\left(\% ight)$
1	CuOTf	1	80	no	19
2	CuOTf	1	80	toluene	21
3	CuOTf	1	50	toluene	42
4	CuOTf	1	50	1,2-dichloroethane	20
5	CuOTf	1	50	H_2O	18
6	CuOTf	1	50	1,4-dioxane	50
7	CuOTf	1	50	THF	56
8	CuBr	1	50	1,4-dioxane	18
9	$CuBr_2$	1	50	1,4-dioxane	12
10	$Cu(OTf)_2 \\$	1	50	1,4-dioxane	40
11	CuOTf	2	50	dichloromethane	9
12	CuOTf	3	50	THF	14
13	CuOTf	4	50	THF	13
14	CuOTf	5	50	THF	20
15	CuBr	5	50	THF	4
16	CuOTf	6	50	THF	8
17	CuOTf	1	50	THF	63^d


 a 0.1 mmol of tetrahydroisoquinoline, 0.1 mmol of phenylacetylene, 0.01 mmol of copper salt, 0.015 mmol of ligand, and 0.1 mmol of 'BuOOH (5–6 M in decane); reaction time is 2 days. b Solvents were used without distillation, except THF was distilled from sodium. c Enantiomeric excess was determined with HPLC by using a Chiralcel OD-H column and 95/5 hexane/isopropyl alcohol as eluent or 100 hexane. d Ca. 50 mg of 4 Å molecular sieves was used.


Table 2. Enantioselectivity of Coupling of

 Tetrahydroisoquinolines with Terminal Alkynes^a


entry	\mathbb{R}^1	\mathbb{R}^2	compd	yield ^b (%)	$\mathrm{ee}^{c}\left(\% ight)$
1	Н	Ph	9a	67	63
2	Н	4-MeOPh	9b	65	41
3	Н	4-BrPh	9c	72	64
4	Н	Hex	9d	65	26
5	Η	TMS	9e	11	30
6	4-MeO	Ph	9f	59	60
7	4-MeO	Hex	9g	48	5
8	2 - MeO	\mathbf{Ph}	9h	54	73
9	2 - MeO	4-MeOPh	9i	56	69
10	2 - MeO	4-BrPh	9j	61	74
11	2 - MeO	$\mathbf{P}\mathbf{y}$	9k	57	36

 a 0.4 mmol of tetrahydroisoquinoline, 0.2 mmol of alkyne, 0.02 mmol of copper salt, 0.03 mmol of ligand, and 0.2 mmol of 'BuOOH (5–6 M in decane). b Isolated yields were based on alkynes. c Enantiomeric excess was determined with HPLC by using a chiralcel OD-H column and 95/5 hexane/ isopropyl alcohol or 100 hexane as eluent.

Chao-Jun Li, Angew. chem. int. Ed. 2008, 47, 7075-7078

Table 1: Optimization of reaction conditions.[a]

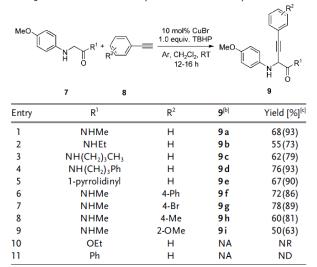
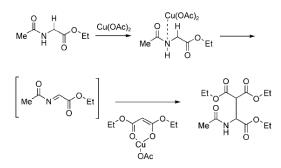
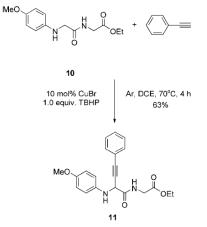
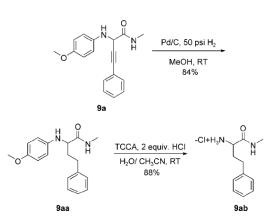

[a] Reaction conditions: 1 (0.125 mmol), 2 (0.25 mmol), 20 mol% ligand, 20 mol% base in toluene (1 mL), 150°C, 8 h. [b] Yields were based on compound 1 and determined by NMR spectroscopy using an internal standard. TMEDA=N,N',N'-tetramethylethylenediamine. [c] 5 mol% Pd(OAc)₂ was added and run under 1 atm O₂. [d] 5 mol% Pd(OAc)₂ was added.

Table 2: Functionalization of 4 by CDC reactions with malonate 5.^[a]

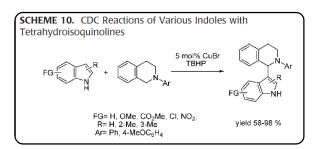

Tuble 2	· Functionalization of	+ by CDC rea	ctions with	i maionate .	.		
	⁰ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹	R ⁴ 0 0 0 0	^O `R ⁴ _20 n	DAc) _{2,} 20 mol% nol% di(2-pyrid Toluene, 150 °	yl) ketone		0′ ^{R4}
Entry	Reaction t [h]	R ¹	R ²	R ³	R ⁴	6 ^[b]	Yield [%] ^[c]
1	6	Me	<i>i</i> Pr	н	Et	6a	82(73)
2	10	Me	<i>i</i> Pr	н	Me	6b	85 (40)
3	6	Me	<i>i</i> Pr	н	<i>i</i> Pr	6c	80(62)
4	10	Me	<i>i</i> Pr	Me	Et	6 d	94 (48)
5	8	Me	Et	н	Et	6e	84(72)
6	10	Me	Et	Me	Me	6 f	75 (48)
7	6	Me	Et	н	<i>i</i> Pr	6g	73 (63)
8	6	Me	Et	н	Me	6h	63 (46)
9	10	Me	Et	Me	Et	6i	75(32)
10	6	Me	Me	н	Et	6j	65(55)
11	10	Et	Et	Me	Et	6k	75
12	10	<i>i</i> Pr	Et	Me	Et	61	53
13	10	<i>t</i> Bu	Et	Me	Et	6 m	NR
14	10	Et	Et	Me	Me	6 n	78
15	10	<i>i</i> Pr	Et	Me	Me	60	60
16	10	tBu	Et	Me	Me	6р	NR

[a] Reaction conditions: 4 (0.125 mmol), 5 (0.25 mmol), Cu(OAc)₂ (0.25 mmol), Cs₂CO₃ (0.025 mmol), di(2-pyridyl) ketone (0.025 mmol), toluene (1 mL). [b] For full experimental data, see the Supporting Information. [c] Yields of isolated product are based on 4, and the yields after 4 h reaction are given in parentheses. NR = No reaction.


Table 3: Functionalization of **7** by CDC reaction with alkyne **8**.^[a]


[a] Reaction conditions: 7 (0.30 mmol), 8 (0.90 mmol), TBHP (54 μ L, 5– 6 μ in decane), CuBr (0.03 mmol), CH₂Cl₂ (0.5 mL). [b] For full experimental data, see the Supporting Information [c] Yields of isolated product are based on 7, and NMR yields, using an internal standard, are given in parentheses. NA = Not applicable. NR = No reaction. ND = Not determined.

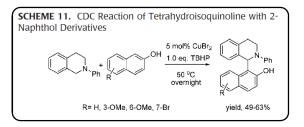
Scheme 2. Proposed mechanism for the oxidative functionalization of glycine derivatives with diethyl malonate.



Scheme 3. Functionalization of simple peptide 10 with ethynylbenzene.

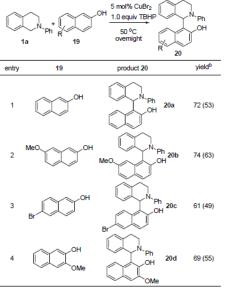
Scheme 4. Synthesis of homophenylalanine derivative **9ab**. TCCA=Trichloroisocyanuric acid

Arylation (sp³-sp² Coupling).



Chao-Jun Li, J. AM. CHEM. SOC. 2005, 127, 6968-6969

Table 1. Optimization of Reaction Conditions^a


	N_{Ph}	Xec	ol% CuBr q. TBHP ernight		N. Ph NH 3a	+	∕ ^N `Ph OO ^t Bu 4
entry	solvent	т (°С)	2a (equiv)	TBHP (equiv)	conv. of 1a (%) ^b	3a (%) ^b	4 (%) ^b
1	neat	22	1.0	1.0	90	45	<5
2	neat	22	2.0	1.0	85	40	trace
3	neat	50	1.0	1.0	90	75	N.D. ^c
4	neat	50	1.0	1.25	95	70	N.D.¢
5	t-BuOH	50	1.0	1.0	90	30	trace
6 ^d	neat	50	1.0	1.0	90	60	N.D. ^c
7	neat	50	1.5	1.5	100	60	N.D. ^c
8	H ₂ O/PhMe (0.5 mL/0.1 mL)	50	1.2	1.3	100	50	N.D. ^c
9	$H_2O/PhMe$ (2.0 mL/1.0 mL)	50	1.2	1.3	100	N.D.¢	70
10	neat	50	1.2	1.3	100	85	N.D. ^c

 a Tetrahydroisoquinoline (0.1 mmol) was used; unless otherwise noted; 'BuOOH (5–6 M in decane). b Detected by NMR using an internal standard. c Not detected by NMR. d Tetrahydroisoquinoline (0.15 mmol) was used.

Chao-Jun Li, PANS 2006, 103, 8928-8933

Table 8. CDC Reaction of Tetrahydroisoquinoline with 2-Naphthol Derivatives^a

 $^{a}\text{Tetrahydroisoquinoline}$ (0.2 mmol), 2-naphthol derivatives (0.1 mmol), TBHP (0.2 mmol, 5.5 M in decane), and CuBr_2 (5 mol%). b NMR yields are based on 2-naphthol derivatives and determined by ^{1}H NMR using an internal standard; isolated yields are given in parentheses.

Table 2. CDC Reaction of Indoles with Tetrahydroisoquinolines^a

entry	1	2	product	yield (%) [»]
1	Ia	Za	(3a)	86 (79)
2	1a	MeO L Zb	MeON (3b)	89 (57)
3	1a	NH 2c	Me (3c)	80 (61)
4	1a	Me H 2d	Me NH (3d)	81 (77)
5	1a	2e		77 (63)
6	1a	N 21 Me	(31)	58 (44)
7	1a	CI NH 2g		89 (73)
8	1a	O ₂ N		(85)
9	1a	NO ₂ 2i	NPh NH (3i)	64 (50)
10		2a OMe		95 (71) le
11	1Ь	2b	MeONH (3k)	98 (65) OMe
12	1Ь	2h		78 (50) OMe
	16	2d		95 (49)

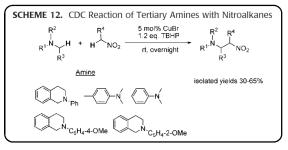
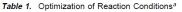
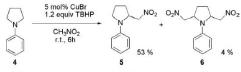

^a Tetrahydroisoquinolines (0.1 mmol), indoles (0.12 mmol), CuBr (0.005 mmol, 5 mol %), and 'BuOOH (0.13 mmol, 5–6 M in decane). ^b NMR yields are based on tetrahydroisoquinolines and determined by NMR using an internal standard; isolated yields are given in parentheses.

Table 7. CDC reaction of tetrahydroisoquinoline with 2-naphthol


	1a 19	OH ⁵ mol% [Cu] <u>1.0 equiv TBHP</u> 50 °C overnight		DH DH
			Yield of	Yield of
Entry	[Cu]		20*	BINOL*
1	Cul		57	13
2	CuCl		51	10
3	CuBr		58	23
4	CuBr ₂		63	10
5†	CuBr		63	10
6†	CuBr ₂		72	11
7	CuSO ₄		53	11
8	Cu(OTf	12	55	15

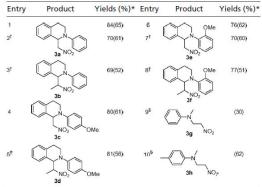
Tetrahydroisoquinoline (0.1 mmol), 2-naphthol (0.1 mmol), TBHP (0.1 mmol, 5.5 M in decane), and [Cu] (5 mol%): otherwise are mentioned. *Reported yields were NMR yields using an internal standard. *Tetrahydroisoquinoline (0.2 mmol).

Alkylation (sp³-sp³).



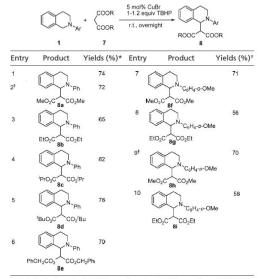
Chao-Jun Li, J. AM. C	CHEM. SOC.	2005, 127,	3672-3673
-----------------------	------------	-------------------	-----------

		X mol% [Cu] 1.0-1.2 eq. TBHP	
	Ń. _{Ph}	MeNO ₂ room temperature	N _{Ph}
	1a	·	3a NO ₂
entry	catalyst	X mol %	reaction time (NMR yield%) ^b
1	CuCl	10	3 h (70); 6 h (75)
2	CuBr	10	3 h (90)
3	CuI	10	3 h (60); 6 h (80)
4	CuOTf	10	3 h (20); 6 h (50)
5	CuCl ₂	10	3 h (60); 6 h (80)
6	CuBr ₂	10	3 h (40); 6 h (92)
7	Cu(OTf) ₂	10	3 h (5); 6 h (35)
8	Cu(OAc)2·H2	D 10	3 h (50); 6 h (80)
9°	CuBr	5	6 h (92)
10^d	CuBr	2	3 h (60); 6 h (90)
11	no	0	3 h (0)


 a 0.1 mmol tetrahydroisoquinoline, 1.0 mL of nitromethane, and 0.02 mL of 'BuOOH (5–6 M in decane). b Reported yields were based on tetrahydroisoquinoline and determined by NMR using an internal standard. c 0.2 mmol tetrahydroisoquinoline, 1.0 mL of nitromethane, and 0.04 mL of 'BuOOH (5–6 M in decane). d 0.5 mmol tetrahydroisoquinoline, 2.0 mL of nitromethane, and 0.1 mL of 'BuOOH (5–6 M in decane).

Scheme 2. Reaction of 1-phenylpyrrolidine with nitromethane.

Table 1. CDC reaction of tertiary amines with nitroalkanes


Amine (0.2 mmol), nitroalkane (0.4 mmol), and TBHP (0.24 mmol, 5.5 M in decane); otherwise are mentioned.

*NMR yields are based on amines and determined by ¹H NMR using an internal standard; isolated yields are given in parentheses.

[†]1 equiv (0.2 mmol) of nitromethane was used. [‡]The ratio of two isomers is 2.1.

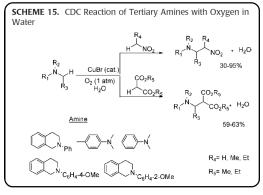

§1 ml of nitromethane was used.

Table 2. CDC reaction of tertiary amines with malonates

Tetrahydroisoquinoline (0.1 mmol), malonate (0.1 mmol), and TBHP (0.02 ml, 5–6 M in decane). [Reproduced with permission from ref. 25 (Copyright 2005, Wiley).] *Isolated vields.

^tCuBr (0.005 mmol, 0.5 mol%), tetrahydroisoquinoline (1.0 mmol), malonate (1.0 mmol), and TBHP (0.2 ml, 5–6 M in decane); the reaction time is 43 h. [‡]Malonate (0.2 mmol).

Chao-Jun Li, Green Chem, 2007, 9, 1047-1050

 Table 1
 Optimization of reaction conditions^a

N _{Ph}			cat.M		N _{Ph}		
1a			O ₂ (1 atm) 60°C		3a	NO ₂	
Entry	Solvent	RuC	l3 (mol%)	CuBr (mol%)	Time/h	Yield ^b	
1	H ₂ O	5		0	18	45	
2	H_2O	10		0	18	67	
3	H_2O	5		1	18	62	
4	H ₂ O	5		2	18	73	
5	H_2O	5		5	18	90	
6	H_2O	0		5	16	90	
7	MeOH	0		5	16	90	
^a Tertiary amine (0.2 mmol) and nitroalkane (0.4 mmol) were stirred							

under O_2 (1 atm) at 60 °C in 0.6 mL of water. ^b NMR yields based on tetrahydoisoquinoline using an internal standard.

Table 2 Catalytic CDC reactions between tertiary amines with nitroalkanes with oxygen in water a

Entry	Nitroalkanes	<i>T</i> /°C	Products	Yield $(\%)^d$
1	MeNO ₂ 2a	60	(3a) NO ₂	90 (79) ^b
2	EtNO ₂ 2b	60	(3b) NO ₂	90 (75)
3	PrNO ₂ 2c	60	(3c)	95 (82)
4	2a	40		95 (72) ^b
5	2b	40	NO2 OMe	80 (67)
6	2c	40		85 (69)
7	2a	60		(30) ^c
8	2a	60		75 (63) ^c

 a Tertiary amine (0.2 mmol), nitroalkane (1 mmol), CuBr (5 mol%), under O₂ (1 atm) at 60 °C for 16 h in 0.6 mL of water. b Nitromethane (0.2 mmol) was use. c Nitromethane (1.0 mL, 92 equiv) was use. d NMR yields based on tertiary amines with an internal standard (isolated yield are given in parentheses).

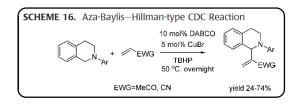
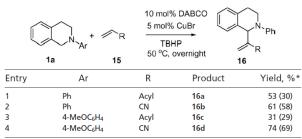
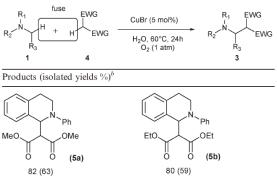
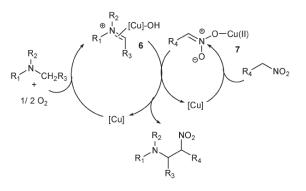




Table 5. Aza-Baylis-Hillman type CDC reaction



Tetrahydroisoquinoline (0.2 mmol), alkene (0.4 mmol), TBHP (0.2 mmol, 5.5 M in decane), CuBr (5 mol%), DABCO (10 mol%), and 4-Å molecular sieve (60 mg). *NMR yields are based on tetrahydroisoquinoline and determined by ¹H NMR using an internal standard; isolated yields are given in parentheses.

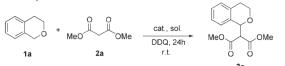
 Table 3 CDC reaction of tetrahydroisoquinoline with malonate^a

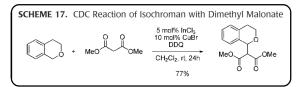
 a Terahydoisoquinoline (0.2 mmol) and malonate (0.2 mmol) under O₂ at 60 °C for 24 h in water. b NMR yields based on tertiary amines with an internal standard (isolated yield are given in parantheses).

Scheme 2 Possible mechanism.

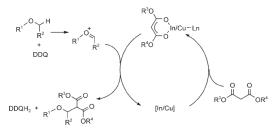
Chao-Jun Li, PANS 2006, 103, 8928-8933

Table 4. CDC reaction of tetrahydroisoquinoline with MVK

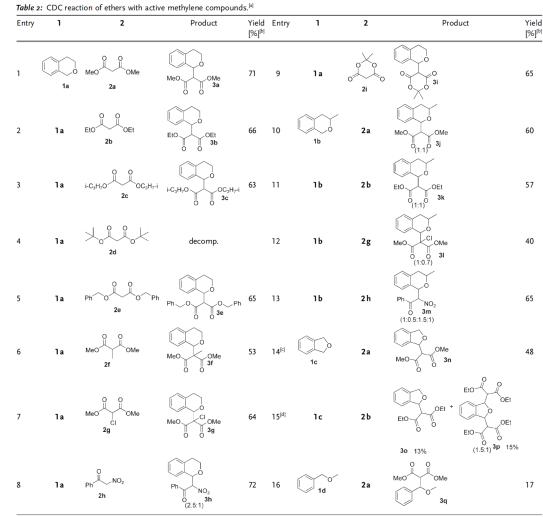

	$1a^{+}$	organocatalyst <u>5 mol% CuBr</u> TBHP 50 °C, overnight 16 0	
		Temperature,	Yield,
Entry	Organocatalyst	°C	%*
1	PPh ₃ , 30 mol%	RT	10
2	PPh ₃ , 30 mol%	50	20
3	DABCO, 5 mol%	50	30
4	DABCO, 30 mol%	50	28
5	DABCO, 10 mol%	RT	24
6†	DABCO, 10 mol%	50	53
2		and provide the first the first function of the	

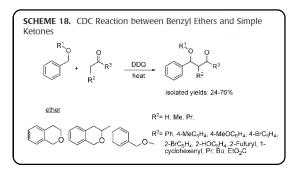

Tetrahydroisoquinoline (0.1 mmol). Methylvinylketone (MVK) (0.2 mmol). TBHP (0.1 mmol, 5.5 M in decane), and CuBr (5 mol%).

^{*}Reported yields were based on tetrahydroisoquinoline and determined by ¹H NMR using an internal standard.


⁺4-Å molecular sieve (30 mg) was added.

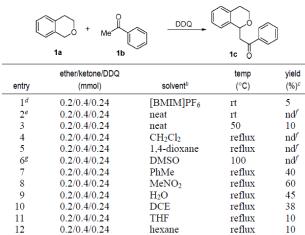
CDC Reaction of ¦Á-C-H Bonds of Oxygen in Ethers (sp³-sp³) Table 1: Optimization of reaction conditions.[a]


Chao-Jun Li, Angew. Chem. Int. Ed. 2006, 45, 1949-1952


 $[\]ensuremath{\textit{Scheme 3.}}$ Possible mechanism for the CDC reaction of ether with malonate.

				3a
Entry	Catalyst	Solvent	Conversion (1 a) [%] ^[b]	Yield (3 a) [%] ^[b]
1	InCl ₃ ^[c]	CH_2Cl_2	96	72
2	$\ln(OAc)_{3}^{[c]}$	CH_2Cl_2	100	n.d. ^[d]
3	$\ln(OTf)_{3}^{[c]}$	CH_2Cl_2	94	76
4	$\ln(NO_3)_3^{[c]}$	CH_2Cl_2	100	n.d. ^[d]
5	In(OH) ₃ ^[c]	CH_2Cl_2	100	n.d. ^[d]
6	Cu(OTf) ₂ ^[c]	CH_2Cl_2	93	69
7	Cu(OTf) ^[c]	CH_2Cl_2	94	50
8	InCl₃/Cu(OTf)₂ (5 mol%/5 mol%)	CH ₂ Cl ₂	92	77
9	$InCl_3/Cu(OTf)_2$ (10 mol%/5 mol%)	CH_2Cl_2	95	74
10	InCl ₃ /Cu(OTf) ₂ (5 mol%/10 mol%)	CH_2Cl_2	95	77
11	InCl ₃ /Cu(OTf) ^[e]	CH_2Cl_2	96	71
12	InCl ₃ /Cu(OTf) ₂ ^[e]	DCE	96	76
13	InCl ₃ /Cu(OTf) ₂ ^[e]	MeNO ₂	82	66
14	InCl ₃ /Cu(OTf) ₂ ^[e]	THE	0	n.d. ^[d]
15	InCl ₃ /Cu(OTf) ₂ ^[e]	H ₂ O	68	n.d. ^[d]
16	InCl ₃ /Cu(OTf) ₂ ^[e]	PhMe	80	43
17	InCl ₃ /Cu(OTf) ₂ ^[e]	MeCN	68	44
F 1 1		(c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	1	

[[]a] Isochroman (0.5 mmol), dimethyl malonate (0.6 mmol), DDQ (0.6 mmol), solvent (2–3 mL). [b] Determined by ¹H NMR spectroscopy using an internal standard. [c] Catalyst: 10 mol%. [d] Not detected by ¹H NMR spectroscopy. [e] In/Cu (5 mol%/5 mol%).



[a] Diethyl ether (0.5 mmol), active methylene compound (0.6 mmol), InCl₃/Cu(OTf)₂ (5 mol%), DDQ (0.6 mmol); all reactions were run for 24– 36 h. [b] Yields of isolated products based on ethers. [c] Phthalan (0.2 mmol), dimethyl malonate (0.4 mmol), DDQ (0.2 mmol). [d] Phthalan (0.2 mmol), diethyl malonate (0.4 mmol), DDQ (0.24 mmol).

Chao-Jun Li, J. AM. CHEM. SOC. 2006, 128, 4242-4243

Table 1. CDC Reaction of Isochroman with Acetophenone^a

10	0.2/0.1/0.2/1	nout	120	/ 1
16^{h}	0.4/0.2/0.24	neat	100	37
17	0.2/0.4/0.2	neat	100	66
18	0.2/0.4/0.3	neat	100	62
	ion time: 2 h. ^b So			
using an i	nternal standard. ^d F	ceaction time: o	overnight, InCl ₃ /C	$u(OII)_2$ a
	Reaction time: ove			
roman (60	%) remained after t	the reaction. ^h Y	ield was based or	1 ketone.

MeCN

neat

neat

35 76 71

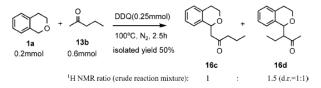
reflux

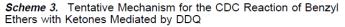
100

125

Scheme 2. CDC Reaction of Isochroman with 2-pentanone

13


14


15

0.2/0.4/0.24

0.2/0.4/0.24

0.2/0.4/0.24

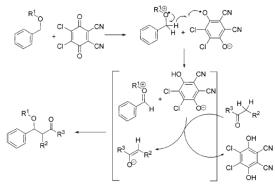
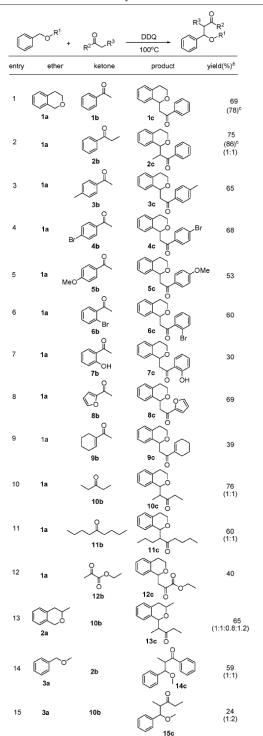
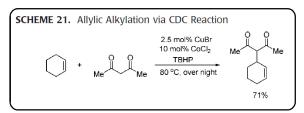




Table 2. CDC Reaction of Benzyl Ethers with Ketones^a

^a Reaction conditions: ether (0.2mmol), ketone (0.6 mmol), DDQ (0.24 mol), N2, 100 °C, 2.5 h. b Isolated yield; the ratios of diastereomers easured prior to purification are given in parentheses. c ¹H NMR yield ith internal standard.

CDC Reaction of Allylic and Benzylic C-H Bonds Allylic Alkylation (sp³-sp³).

Chao-Jun Li, J. AM. CHEM. SOC. 2006, 128, 56-57

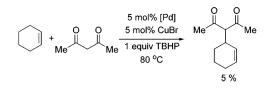
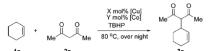
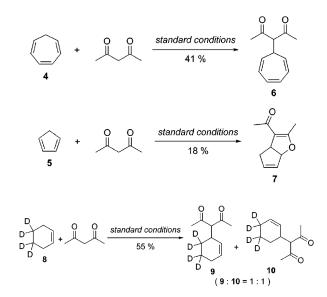
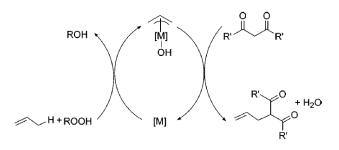




Table 1. Optimization of Reaction Conditions

	1a	2a	[Cu] ^a	[Co] ^a	TBHP	yield
entry	(mmol)	(mmol)	(mol %)	(mol %)	(mmol)	(%) ^c
1	2.5	1.0	5	5	1.0	25
2	2.5	1.0	5	2.5	2.0	12
3	1.0	2.0	5	5	1.0	6
4	2.5	1.0	5	10	1.0	36
5	2.5	1.0	10	10	1.5	29
6	5.0	1.0	1	10	2.0	62
7	5.0	1.0	2.5	10	2.0	71
8	5.0	1.0	1.25	5	2.0	60
9	5.0	1.0	2.5 (CuI)	10	2.0	57
10	5.0	1.0	2.5 (CuBr ₂)	10	2.0	60
11	5.0	1.0	2.5 (CuCl)	10	2.0	70
12	5.0	1.0	2.5	10 (CoI ₂)	2.0	10
13	5.0	1.0	2.5	10 (CoF ₂)	2.0	trace
14	2.5	1.0	0	5	1.0	10
15	2.5	1.0	5	0	1.0	0

^a CuBr was used, unless otherwise noted. ^b CoCl₂ was used, unless otherwise noted. ^c NMR yields using an internal standard.

SCHEME 20. Tsuji-Trost Reaction and Allylic CDC Reaction


$$H \longrightarrow LG \xrightarrow{"Pd"} Pd \xrightarrow{:Nu} Nu \qquad (1)$$

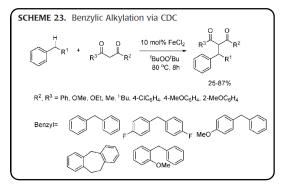
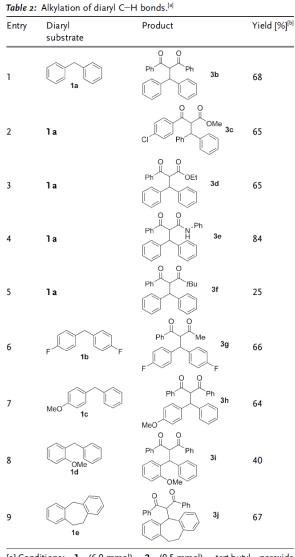
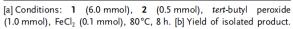

$$H + H - Nu \xrightarrow{CDC reaction} Nu \qquad (2)$$

Table 2. Cross-Dehydrogenative-Coupling Reactions of Allylic C–H and β -Dicarbonyl C–H^a


Entry	Alkene	Diketone	Product	Yield (%) ^b
1	() 1a	Et Lt Et	Et Et 3b	61
2	1a	OO Ph ^{LL} Me 2c	Ph Me 3c	64 (1:1)
3	1a	Me ^{OO} OMe 2d	Me OMe 3d	41 (1:1)
4	1a	Br 2e	Br OEt 3e	71 (1:1)
5	1a	CI CI OEt	CI CI OEt 3f	55 (1:1)
6	1a	O O Me ∠ d Me 2g	Me 3g	31 (1:1)
7	1a	O O Me ↓ Me 2h	Me 3h	46 (1.7:1)
8	1a	Me Me Zi	Me Me 3i	41
9	Chennel Ph	 Me Me 2a	Me Me 3j	34
10	()) 1c	2a	Me Me 3k	53 ^c
11) 1d	2a	Me 3i	30
12	le le	2a	Me Me 3m	35


^{*a*} Conditions: 0.025 mmol of CuBr, 0.1 mmol of CoCl₂, 5.0 mmol of alkene, 1.0 mmol of 1,3-dicarbonyl compound, and 2.0 mmol of TBHP. ^{*b*} Isolated yields were based on 1,3-dicarbonyl compounds; the ratio of two diastereomers is given in parentheses. ^{*c*} At 50 °C.

Chao-Jun Li, Angew. Chem. Int. Ed. 2007, 46, 6505-6507

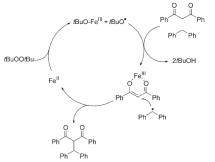
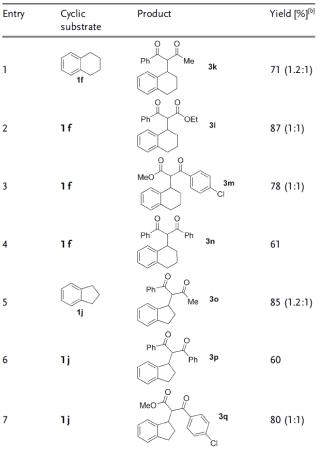



Table 1: Optimization of the reaction conditions.[a]

	Ph Ph + Ph 1a 2a	O cat. Me oxidant	Ph		`Me h
Entry	Catalyst (mol %)	Oxidant (equiv)	<i>Т</i> [°С]	<i>t</i> [h]	Yield [%] ^[b]
1	CoCl ₂ (10)	TBHP (2)	100	5	11
2	$CuBr/CoCl_{2}$ (10/10)	TBHP (2)	100	5	30
3	CuBr (10)	TBHP (2)	100	5	n.d. ^[c]
4	FeCl ₂ (20)	TBHP (2)	80	8	46
5	FeCl ₂ (20)	tBuOOtBu (2)	80	8	66
6	$FeCl_2$ (10)	tBuOOtBu (2)	80	8	47
7	FeCl ₂ (20)	PhCOOO <i>t</i> Bu (2)	80	8	n.d. ^[c]
8	FeCl ₂ (20)	tBuOOtBu (1)	80	8	64
9	FeBr ₂ (20)	tBuOOtBu (2)	80	8	49
10	FeCl ₃ (20)	tBuOOtBu (2)	80	8	56
11	Fe(OAc) ₂ (20)	tBuOOtBu (2)	80	8	n.d. ^[c]
12 ^[d]	FeCl ₂ (20)	tBuOOtBu (2)	80	8	46
13	FeCl ₂ (20)	tBuOOtBu (1)	RT	36	65
14	FeCl ₂ (20)	tBuOOtBu (2)	RT	36	80
15	-	tBuOOtBu (2)	80	8	n.d. ^[c]

[a] 1-Benzoylacetone (0.5 mmol), diphenylmethane (6.0 mmol), and TBHP (5–6 м in decane) under nitrogen, unless otherwise noted.
[b] Yield of isolated product. [c] Not detected by NMR spectroscopy.
[d] Only 1.0 mmol of diphenylmethane was used.

Table 3: Alkylation of cyclic benzylic C-H bonds.^[a]

[[]a] Conditions: **1** (6.0 mmol), **2** (0.5 mmol), *tert*-butyl peroxide (1.0 mmol), FeCl₂ (0.1 mmol), 80 °C, 8 h. [b] Yield of isolated product. The ratio of the two diastereomers is given in parentheses.

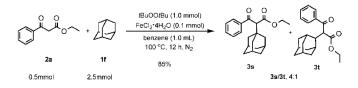
 $\textit{Scheme 3.}\ A$ tentative mechanism for the $\mathsf{FeCl}_2\mathsf{-}\mathsf{catalyzed}$ benzylic alkylation.

CDC Reaction of Alkane C-H Bonds Alkane Alkylation (sp³-sp³).

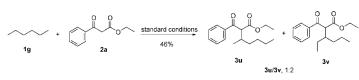
Table 2. FeCl2-catalyzed alkylation of alkane C-H bonds.[a]

SCHEME 24. Alkane Alkylation via CDC $\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ &$

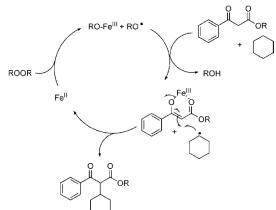
Chao-Jun Li, *Eur. J. Org. Chem.* 2007, 4654-4657


Table 1. Optimization of reaction conditions.[a]

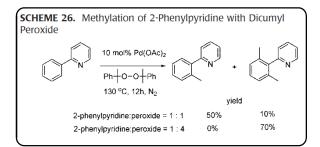
		O O O Ph O 2a	cat. M oxidant	38	O 	t
Entry	y Catalyst (mol-%)	Oxi	dant (equiv.)		T [°C] `	rield [%] ^[b]
Entry 1 ^[c] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	FeCl ₂ •4H ₂ O (20) FeCl ₂ •4H ₂ O (20) FeCl ₂ •4H ₂ O (20)	PhCi TB PhCi Di(tert-buty PhC(C) PhC(C) PhC(C PhC(C fBu fBu fBu fBu fBu fBu fBu fBu fBu fBu	(dant (equiv.) (0)OOtBu (2.0) HP (2.0) (0)OOtBu (2.0) Iperoxyisopropy)// H ₃) ₂ OOC(CH ₃) ₂ H ₃) ₂ OOtBu (2.0) 0)OOC(O)Ph (2. 0OtBu (2.0) 00tBu (2.0)	Ph (2.0)	100 100 100	30 N.D. [d] 52 60 75 35 79 <5
20	FeCl ₂ •4H ₂ O (10)		OO/Bu (2.0) OO/Bu (1.0)		100	20 54
21	FeCl ₂ •4H ₂ O (40)		OOfBu (2.0)		100	80
22 23	FeCl ₂ •4H ₂ O (20)		OOtBu (4.0) OOtBu (2.0)		100 100	75 <5


[a] Ethyl benzoylacetate (0.2 mmol), cyclohexane (4.0 mmol), 12 h under N_2 ; unless otherwise noted; TBHP (5–6 M in decane). [b] NMR spectroscopic yields by using an internal standard. [c] Ethyl benzoylacetate (0.2 mmol), cyclohexane (1.0 mL), 12 h. [d] Not detected by NMR spectroscopy.

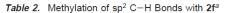
Entry	Alkane	Products		Yield [%] ^[b]
	~	00		
1	Q	OX0^	3a	88
	1a	Ŭ		
				-
2	1a		3b	74
		00		
3	1a		3c	64
4	1a	$\sim \sim \sim$	3d	75
		ιõõ		
5	1a	OX°	3e	48
		, U		
6	1a	U A V	3f	83
		<u> </u>		
7	1a	CTT'O'	3g	84
8	1a		3h	15
		\sim		
9	1a		3i	10
		×0		
10	\mathcal{Q}	©X°^	3j	75
	1D	\sim		
11	1b	n'Y'o'	3k	70
10	\cap		31	
12	Q	U d	31	77
	10	\sim		
13	1c	NTY OF	3m	76
		ci~~ 🔿		
63				
14 ^[c]	Q.	U.Y.	3n	38
	1d	္ခ်ဳပ္		
15	1d	CI CI CI CI	30	82
16	1d	$\sim 10^{10}$	3р	72
		0°~ ()		
	A	\sim	2-	00
17	2(.) 1e	<u>لَمْ</u> ال	3q	82 (1:1)
	16			(,
40	4-	$\sim \sim \sim \sim \sim$	3r	49
18	1e	ci 🗸 🔨	51	(1:1)
		<u></u>		
ditions: 1	(10 mm)	ol) $2 (0.5 \text{ m})$	imol) –	tert-hu

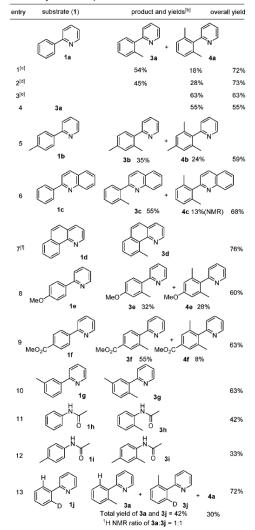

[a] Conditions: 1 (10 mmol), 2 (0.5 mmol), *tert*-butyl peroxide (1.0 mmol), FeCl₂·4H₂O (0.1 mmol), 100 °C, 12 h, N₂. [b] Isolated yields are reported; the ratios of two isomers are reported in the parentheses. [c] 23% of **2a** remained after reaction.

Scheme 2. Alkylation of ethyl benzoylacetate with adamantane.

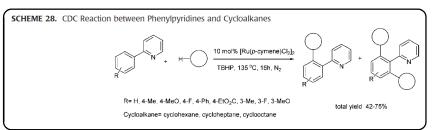


Scheme 3. Alkylation of ethyl benzoylacetate by n-hexane.



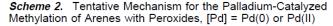

Scheme 4. Tentative mechanism for the Fe-catalyzed alkylation with simple alkanes.

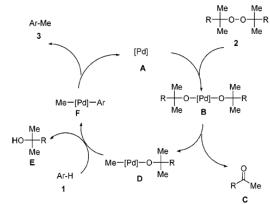
Alkane Arylation (sp³-sp²).



Chao-Jun Li, J. AM. CHEM. SOC. 2008, 130, 2900-2901

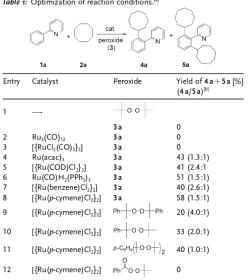
^{*a*} Conditions: all reactions were carried out with **1** (0.5 mmol), dicumyl peroxide **2f** (1.0 mmol), 12 h under N₂, unless otherwise noted. ^{*b*} Isolated yields. ^{*c*} **1a** (0.5 mmol), dicumyl peroxide (0.75 mmol). ^{*d*} **1a** (0.5 mmol), dicumyl peroxide (1.0 mmol). ^{*e*} **1a** (0.5 mmol), dicumyl peroxide (2.0 mmol). ^{*f*} **1d** (0.5 mmol), dicumyl peroxide (0.75 mmol).

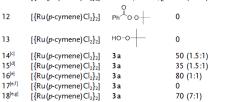

1a

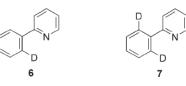

Table 1. Optimization of Reaction Conditions^a

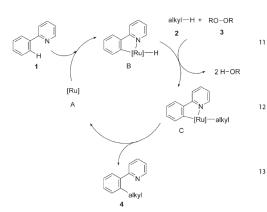
cat M peroxide (2)

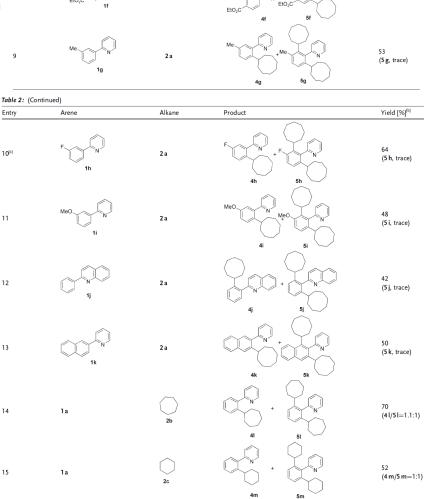
entry	catalyst (mol %)	2 (equiv)		T (°C)	yields of 3 + 4 (%) ^[b]
1 ^[c]	Pd(OAc) ₂ (10)	+0-0+ (2 a)	(5.0)	140	20 + 0
2 ^[d]	Pd(OAc) ₂ (10)	2a	(5.0)	150	40 + 5
3	Pd(OAc) ₂ (10)		(2.0)	130	0 ^[e]
4	Pd(OAc) ₂ (10)	PhC(0)0-0+(20	:)(2.0)	130	5 + 0 ^[f]
5	Pd(OAc) ₂ (10)	1 1	(2.0)	130	50 + 10
6	Pd(OAc) ₂ (10)	$p-C_6H_4$ $(+O-O+)$ (2e)	2 (1.0) 130	50 + 10
7	Pd(OAc) ₂ (10)	Ph+0-0+Ph (2f)	(2.0)	130	50 + 40
8	PdCl ₂ (10)	2f	(2.0)	130	65 + 10
9	(CH ₃ CN) ₂ PdCl ₂ (1	0) 2f	(2.0)	130	55 + 7
10	Pd(CF3COO)2 (10) 2 f	(2.0)	130	30 + 10
11	Pd(PPh3)4 (10)	2f	(2.0)	130	30 + 0 ^[f]
12	Pd(C5H7O2)2 (10)	2f	(2.0)	130	20 + 5
13	(PPh3)2PdCl2 (10)) 2 f	(2.0)	130	20 + 0 ^[f]
14	Pd(OAc) ₂ (10)	2f	(1.0)	130	50 + 10
15	Pd(OAc) ₂ (10)	2f	(4.0)	130	0 ^[f] + 70
16	Pd(OAc) ₂ (10)	2f	(2.0)	150	50 + 45
17	Pd(OAc) ₂ (10)	2f	(2.0)	100	40 + 5
18	Pd(OAc) ₂ (5)	2f	(2.0)	130	60 + 20
19		2f	(2.0)	130	O _[0]


^a Conditions: all reactions were carried out with 1a (0.2 mmol), 12 h under N2 in a closed reaction vessel, unless otherwise noted. ^b ¹H NMR yields determined by using 1,4-dioxane as an internal standard. ^c Reaction time: 5 h. ^d tert-Butylbenzene (0.1 mL) as solvent. ^e Not detected by ¹H NMR; 90% of **1a** remained. ^f Not detected by ¹H NMR.




Chao-Jun Li, Angew. Chem. Int. Ed. 2008, 47, 6278-6282


Table 1: Optimization of reaction conditions.^[a]



[a] 1a (31 mg, 0.2 mmol), catalyst (10 mol%), cyclooctane (0.6 mL, 4.5 mmol), peroxide (2 equiv), 135 °C, 16 h in air unless otherwise noted. [b] Reaction was carried out at 120 °C. [c] Yields determined by using NMR methods in which 1,2-dichloroethane was the internal standard. [d] 5 mol% catalyst was used. [e] 4.0 equiv of peroxide used. [f] No cyclooctane was used. [g] Benzene was used instead of cyclooctane, and the yield was refers to the methylated product.

Scheme 2. Proposed mechanism for the ruthenium-catalyzed cycloalkylation of arenes mediated with peroxides.

[a] 1 (0.2 mmol), tert-butyl peroxide (0.8 mmol), alkane (0.6 mL), 16 h in air unless otherwise noted. [b] Yields of isolated products. [c] 2 equiv tert-butyl peroxide was used. [d] The reaction was run for 6 h.

5^[d] 6

(**5 b**, trace) (**5 c**, trace) (**4 d**, trace) 4c 5 d 4 d (4 d/5 d=1:1) (4 e/5 e=5:1) (5 f, trace) EtO.

Yield [%]^[b]

75 (4 a/5 a=1.1:1)

56 (4 a/5 a=1.5:1)

Product

4a

5a

4a -

Alkane

2a

2a

2 a

2 a

2 a

2a

2a

2a

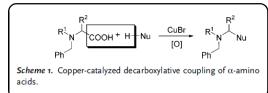
Arene

Entry

2[

7

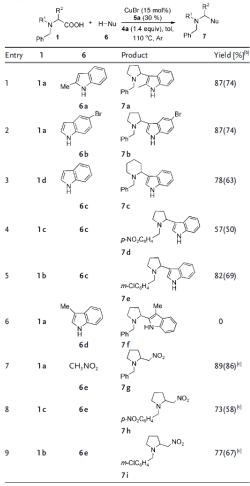
8

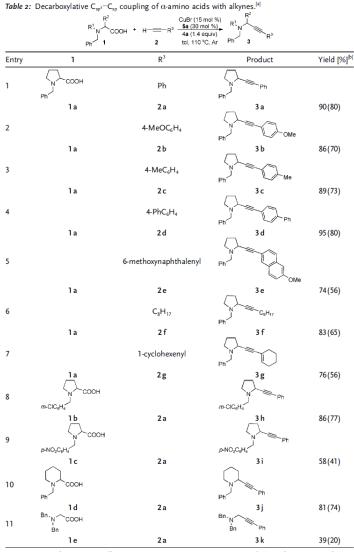

9

Entry

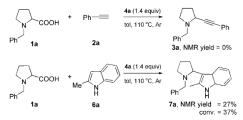
10^{[c}

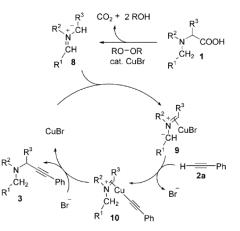
14


15


Table 1: Optimization of reaction conditions. ^[n] \bigvee_{N} COOH ⁺ Ph = <u>conditions</u> \bigvee_{N} $\stackrel{+}{\longrightarrow}$ Ph = Ph						
Ph ⁻¹ a 2a Ph ⁻ 3a						
Entry	Catalyst	Oxidant	Ligand	NMR yield [%] ^[b]	Dimer yield [%] ^[c]	
1	CuBr	но-о+	-	42	8	
2	CuBr	Ph+0∙0+	-	31	trace	
3	CuBr	Ph+0−0+Ph	-	45	trace	
4	CuBr	Ph ⁰ 0·0+	-	trace	6	
5	CuBr	+o-o+ 4a	-	81	7	
6	Cul	4 a	-	65	11	
7	CuOTf	4 a	-	36	trace	
8	CuCl	4a	-	54	trace	
9	CuBr	4a	NEt ₃	82	trace	
10	CuBr	4a	N∕N □ 5a	90	trace	
11	CuBr	4a		73	trace	

[a] Reactions were carried out on a 0.3 mmol scale in toluene (1.5 mL) under argon at 110°C, overnight with 1a (1.0 equiv), 2a (1.5 equiv), oxidant (1.4 equiv), catalyst (0.15 equiv), and ligand (0.30 equiv). [b] Reported yields were based on 1a and determined by NMR methods using an internal standard. [c] Yield of isolated product.


Table 3: Decarboxylative $C_{sp^3}{-}C_{sp^3}$ and $C_{sp^3}{-}C_{sp}$ coupling of $\alpha\text{-amino}$ acids. $^{[a]}$


[a] α -Amino acid (1.0 equiv), nucleophile (1.5 equiv), 4a (1.4 equiv), 5a (30 mol%), and CuBr (15 mol%) in toluene (1.5 mL). [b] NMR yields are based on α -amino acid and determined by NMR methods using an internal standard; yield of isolated product is given in parentheses. [c] Used 3 equivalents of the nucleophile.

[a] α -Amino acid (1.0 equiv), alkyne (1.5 equiv), 4a (1.4 equiv), 5a (30 mol%), and CuBr (15 mol%) in toluene (1.5 mL). [b] NMR yields are based on α -amino acid and determined by NMR methods using an internal standard; yield of isolated product is given in parentheses.

Scheme 2. Decarboxylative coupling reaction without CuBr.

Scheme 3. Proposed mechanism for the copper-catalyzed decarboxylative coupling between an $\alpha\text{-}amino$ acid and phenylacetylene.