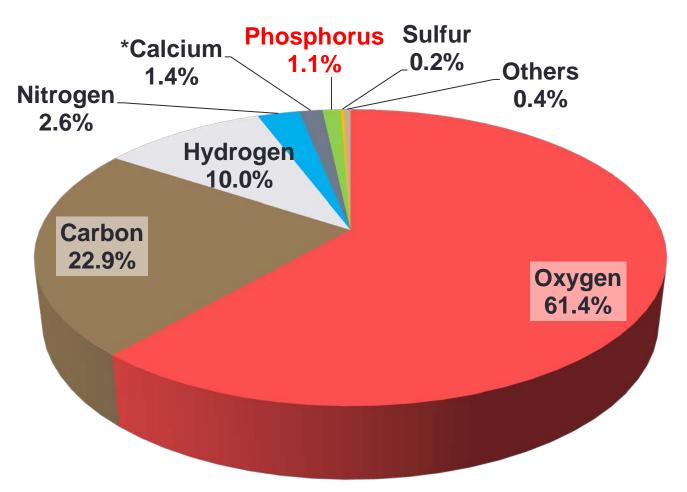
Can Life use Arsenic instead of Phosphorus ?


Kanai's Lab. Literature Seminar 27th October 2012 Junya Kawai (M2)

Index

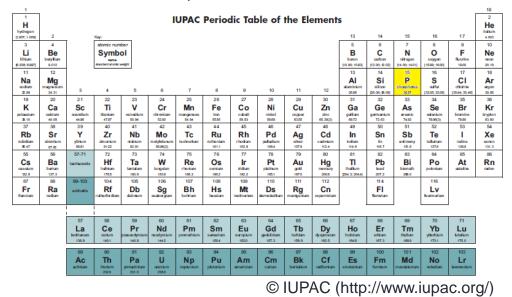
- 1. Phosphorus in Life
- 2. NASA's Report in 2010
- 3. Objections to NASA's Report
- 4. Conclusion

1. Phosphorus in Life

Six Nutrients Elements of Life

Elements in human body (w/w %, IAEA, 1972)

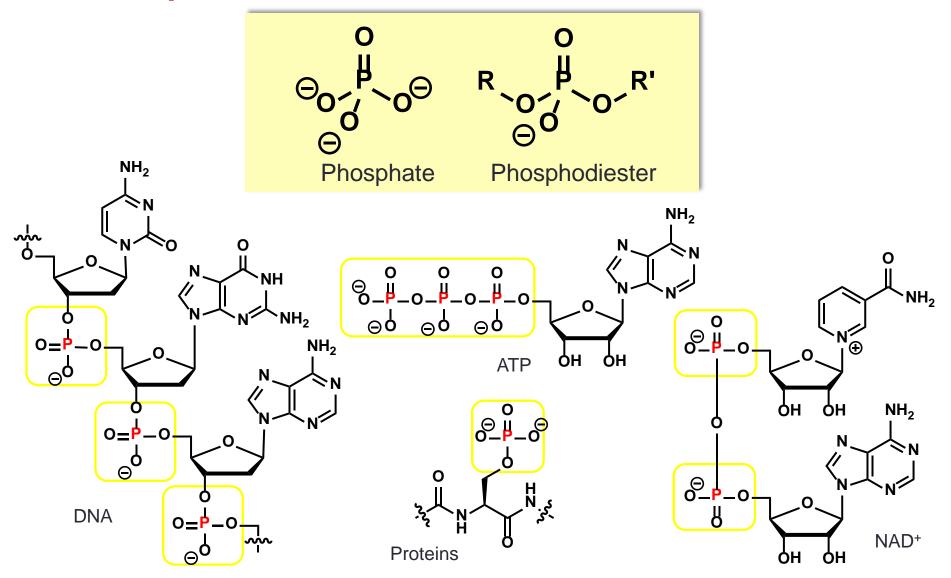
*Calcium is not included in "six nutrients".


Phosphorus

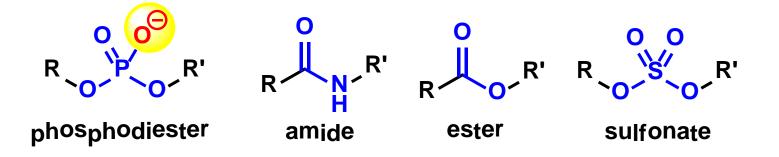
Phosphorus

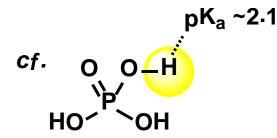
Atomic number: 15 Atomic weight: 30.973762 Electron configuration: [Ne] 3s² 3p³ Atomic radius: 98 pm Electronegativity (Pauling): 2.19 Stable isotope: ³¹P Oxidation states: +V ~ -III (+V is most important for life.) Allotropes: white, red, black, *etc.*

© periodictable.com



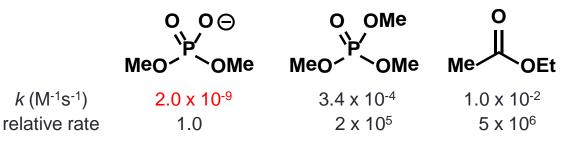
fertilizer http://www.onoda-kagaku.co.jp


5


http://www.siyaku.com

Phosphorus in Life

Phosphodiester: an Anionic linker



Phosphodiester can link two carbons and still ionize.

Why DNA use Phosphorus

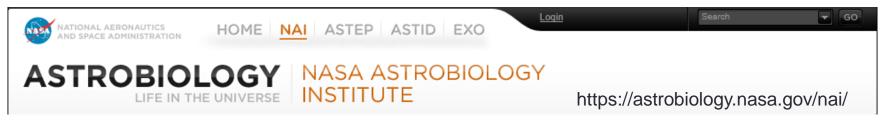
Ionized phosphodiester is highly tolerant of hydrolysis.

- Rates of saponification at 35 °C

> Phosphodiester is retained within membrane.

- Due to the lipophobicity of anion, molecules can be kept inside membrane.
- > Molecules can be bound by electrostatic interaction
 - For example, the "packaging" of DNA around histone

Phosphate is redox inactive in a physiological conditions.


- It can be reduced to phosphite only at potentials as low as -700 mV.

8

Westheimer, F. H. Science 1987, 235, 1173-1178.

2. NASA's Report in 2010

NASA Astrobiology Institute (NAI)

> Astrobiology

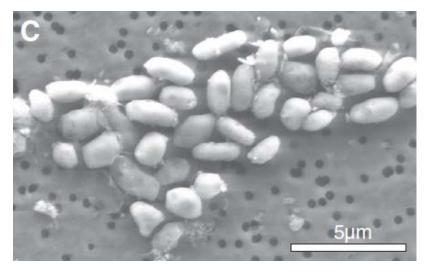
The study of the origin, evolution, distribution, and future of life in the universe

- >Three questions they address
 - How does life begin and evolve?
 - Is there life elsewhere in the universe?
 - What is the future of life on Earth and beyond?

>What they do

- The search for habitable environments in our Solar System and on planets around other stars
- The search for evidence of prebiotic chemistry or life on Solar System bodies such as Mars, Jupiter's moon Europa, and Saturn's moon Titan
- Research into the origin, early evolution, and diversity of life on Earth

NASA's Press Conference in 2010


"NASA will hold a news conference at 2 p.m. EST on Thursday, Dec. 2, to discuss an astrobiology finding that will impact the search for evidence of extraterrestrial life."

NASA's Report on Science

A Bacterium That Can Grow by Using Arsenic Instead of Phosphorus

Felisa Wolfe-Simon,^{1,2*} Jodi Switzer Blum,² Thomas R. Kulp,² Gwyneth W. Gordon,³ Shelley E. Hoeft,² Jennifer Pett-Ridge,⁴ John F. Stolz,⁵ Samuel M. Webb,⁶ Peter K. Weber,⁴ Paul C. W. Davies,^{1,7} Ariel D. Anbar,^{1,3,8} Ronald S. Oremland² Wolfe-Simon, F. *et al. Science* 2011, **332**, 1163-1166.

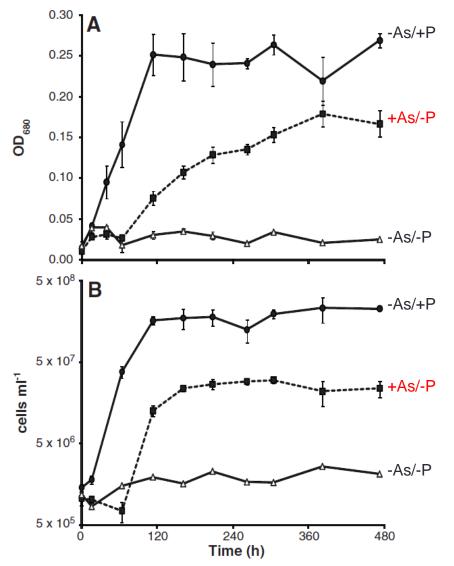
 They claimed that a bacterium GFAJ-1 could sustain its growth by using arsenate instead of phosphate.

GFAJ-1

- A rod-shaped bacterium
- Isolated from the sediment of Mono lake.
- Belongs to the Halomonadaceae family, identified by 16S rRNA sequence philogeny.

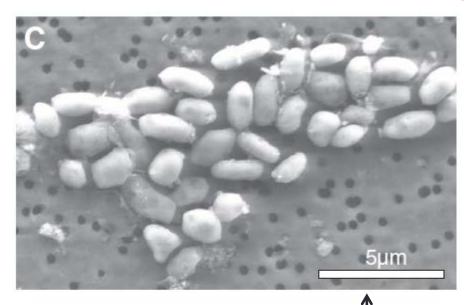
Figure: SEM image of a strain of GFAJ-1 cultured under arsenic-rich condition

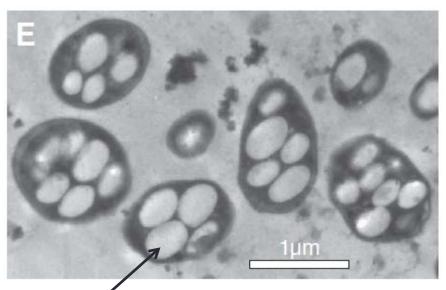
Mono Lake

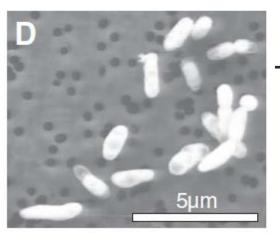


- Located in eastern California, U.S. (http://www.monolake.org/)
- An example of "extreme environments" on earth
 - Alkaline: pH 9.8
 - Hypersaline: 78 g/L (2.5 times higher than ocean)
 - Arsenic-rich: 200 µM (Highest in the world)
- Some unnatural lives have already been found here.
 As(III)-fueling photosynthesis: Oremland, R. S. et al. Science 2008, 321, 967-970.

Growth of strain GFAJ-1




- Cell growth was monitored by both an increase in optical density and cell numbers.
- Cell grew the fastest under –As/+P.
- Also under +As/-P, cell could grow to be 20-fold in cell numbers after 6 days, while it didn't grow under –As/-P.
- GFAJ-1 seems to use arsenate instead under phosphate-poor condition.


* Artificial medium (pH 9.8) contains 10 mM glucose, other vitamins and minerals required but no phosphate.
**+As: 40 mM AsO₄³⁻
+P: 1.5 mM PO₄³⁻
-P: 3.1 (±0.3) μM PO₄³⁻ (background)

Wolfe-Simon, F. et al. Science 2011, 332, 1163-1166.

Electron Microscopy of GFAJ-1

Cells became 1.5-fold larger.

- C: SEM* image of +As/-P
- D: SEM* image of -As/+P
 - * Scanning Electron Microscopy

Vacuole-like regions were especially enlarged.

E: TEM** image of +As/-P ** Transmission Electron Microscopy

> ***+As: 40 mM AsO₄³⁻ +P: 1.5 mM PO₄³⁻ -P: 3.1 (\pm 0.3) μ M PO₄³⁻ (background)

Wolfe-Simon, F. et al. Science 2011, 332, 1163-1166.

ICP-MS Analysis of Intracellular Elements

ICP-MS: Inductively Coupled Plasma Mass Spectrometry Possible to detect <u>the quantity</u> of each containing element (or its isotope) (http://www.chem-agilent.com/contents.php?id=513)

Table 1. Bulk intracellular elemental profile of strain GFAJ-1. Cells were grown and prepared with trace metal clean techniques (*11*). Numbers in parentheses indicate replicate samples analyzed. As:P ratios were calculated based on all samples analyzed (*11*). Units are percent dry weight.

Condition	As	Р	As:P
+As/-P (8)	0.19 ± 0.25	$\textbf{0.019}\pm\textbf{0.009}$	7.3
-As/+P (4)	0.001 ± 0.0005	$\textbf{0.54} \pm \textbf{0.21}$	0.002

They claimed followings:

- Higher intracellular As & lower P were detected for the +As/-P cells.
- Intracellular P grown +As/-P is 96.5% less than that of –As/+P, which is far below the required amount to support growth (1-3 % P by dry weight).

16

Elemental Distribution

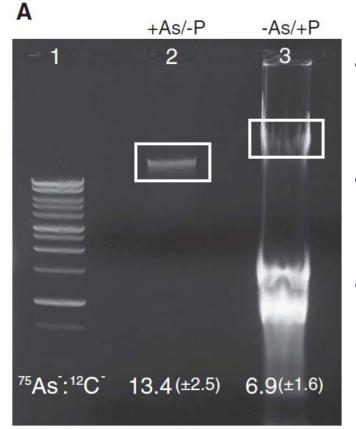
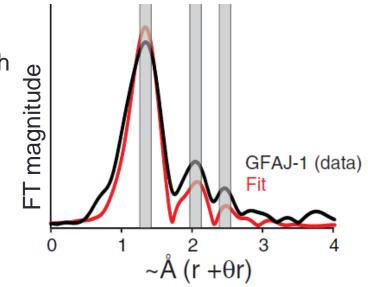

• Radiolabeled ⁷³AsO₄³⁻ was employed to check the intracellular distribution.

Table 2. Intracellular radiolabeled ⁷³AsO₄⁻ arsenate distribution. All major cellular subfractions contained radiolabel after cell-washing procedures. Small molecular weight (s.m.w.) metabolites potentially include arsenylated analogs of ATP, NADH, acetyl-CoA, and others (11). SE is shown.

Solvent (subcellular fraction)	Cellular radiolabel recovered (percent of total)					
Phenol (protein + s.m.w. metabolites)	80.3 ± 1.7					
Phenol:Chloroform (proteins + lipids)	5.1 ± 4.1					
Chloroform (lipids)	1.5 ± 0.8					
Final aqueous fraction (DNA/RNA)	11.0 ± 0.1					
	•					
	Proteins & small molecule weight metabolites (NADH, ATP, acetyl-CoA <i>etc.</i>) may be arsenylated.					

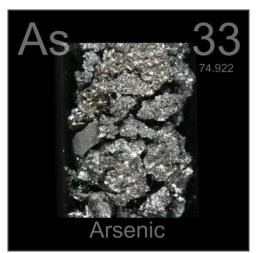
17

NanoSIMS Analysis of DNA



- The extracted DNA/RNA fractions were loaded on agarose gel and the bands indicated were analyzed.
- ⁷⁵As ion ratio of +As/-P relative to ¹²C was twice as much as that of –As/+P. (The value of –As/+P is almost same as blank.)
- ³¹P:¹²C ratio was 3.4 times less than –As/+P.
- Purified DNA from +As/-P seems to contain As.

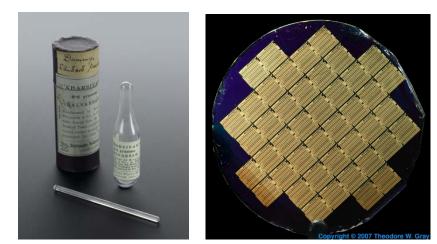
Fig. 2. NanoSIMS analyses of GFA]-1: extracted DNA and whole-cells elemental ratio maps. (**A**) Agarose gel loaded with DNA/RNA extracted from GFA]-1 grown (lane 2) +As/–P and (lane 3) –As/+P as compared with (lane 1) a DNA standard. Genomic bands were excised as indicated and analyzed with NanoSIMS. Ion ratios of ⁷⁵As⁻:¹²C⁻ of excised gel bands are indicated below with 2σ error shown (all values multiplied by 10^{-6}).


XANES & EXAFS Analysis

- XANES : X-ray Absorption Near Edge Structure Electron status or symmetry can be detected.
- As(V) coordination was detected.
- EXAFS : Extended X-ray Absorption Fine Structure Coordination number and atomic distance can be obtained. (http://support.spring8.or.jp/Doc_lecture/PDF_090127/xafs_4.pdf)
- The first neighbor shell around As consisted of 4 oxygen ligands and had a second shell, which is inconsistent with previous data.
- But authors said its spectrum matched with that of the model structure of arsenylated DNA (red), metabolites, or proteins.

Wolfe-Simon, F. et al. Science 2011, 332, 1163-1166.

Arsenic

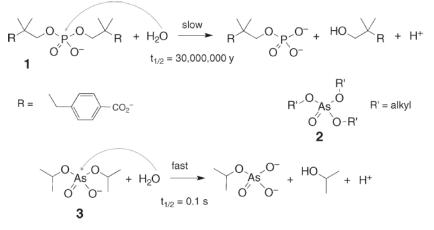


Atomic number: 33 Atomic weight: 74.92160 Electron configuration: [Ar] 4s² 3d¹⁰ 4p³ Atomic radius: 114 pm Electronegativity (Pauling): 2.18 Stable isotope: ⁷⁵As Oxidation states: +V ~ -III Allotropes: grey, yellow, black

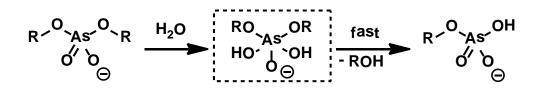
© periodictable.com

1											18						
1	IUPAC Periodic Table of the Elements											2					
Н													He				
hydrogen [1.007; 1.009]	2	_	Kay:									13	14	15	16	17	4.003
3	4	I	atomic num	ber								5	6	7	8	9	10
Li	Be		Symbo	ol								B	С	N	0	F	Ne
lithium	baylium		name baron carbon mitrogen oxygen fluorine meon											neon			
0.930; 0.997]	9.012		standard atomic w	Exonderd Arionitic weight													
11	12											13	14	15	16	17	18
Na	Mg											AI	Si	P	S	CI	Ar
sodium 22.99	magnesium 24.21	3	4	5	6	7	8	9	10	11	12	aluminium 20.90	silicon (20.00; 20.09)	phosphorus 30.97	sulfur (32.05; 32.00)	chiorina [35.44; 35.46]	argon 39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	89	34	35	36
ĸ	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium	calcium	scandium	titenium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gailium	gamanium	recentle	selenium	bromine	krypton
39.10	40.08	44.90	47.07	50.94	52.00	54.94	55.85	55.93	55.09	63.55	65.38(2)	69.72	72.63	12392	70.90(3)	79,90	03.00
37	38	39 Y	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Vitrium	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	indum	Sn	Sb	Te	iodine	Xe
10.47	67.62	00.91	91.22	92.91	95.95(2)	bechnetum	101.1	102.9	105.4	107.9	112.4	114.0	10.7	antimony 121.0	127.6	125.9	121.2
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Ianthenoids	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	Т	Pb	Bi	Po	At	Rn
caesium	barium		hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallum	lead	bismuth	polonium	estatine	nation
102.9 87	137.3	89-103	178.5	100.9	103.0	105.2	1902	192.2	195.1	197.0	200.6	[204.3; 204.4]	207.2	239.0	116		
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn		FI		Lv		
francium	radium	actinoida	rutherfordium	dubrium	seaborgium	bohrium	hessium	IVIL meitnerium	dermstedfum	roentgenium	copernicium		ferovium		L.V Ivernorium		
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
		lanthanum	cerium	praseodymium		promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	ertium	thulium	yterbium	lutatium	
		138.9	140.1	140.9	144.2		150.4	152.0	157.3	158.9	162.5	164.9	167.3	165.9	173.1	175.0	
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
		actrium	thorium	protactinium	uranium	neplunium	plutonium	americium	curium	berkeijum	californium	einsteinium	fermium	mendelevium	nobelium	lawrancium	
			232.0	231.0	238.0												

© IUPAC (http://www.iupac.org/)



Salvarsan (drug)Semiconductor (Gallium arsenide)© Science Museum, Londonhttp://www.theodoregray.com/


Arsenate vs Phosphate

- Similarities
- Same electron configuration (s²p³ for unclosed shell)
- Nearly identical pK_a (As: 2.2, 6.97, 11.53 / P: 2.1, 7.2, 12.7)
- Thermochemical radii (only 4% different)
- > Differences
- Less tolerance for hydrolysis

 Kinetic stability of arsenate in H₂O is far below that of phosphate.
 Edwards, J. O. *et al. Inorg. Chem.* 1980, *20*, 907.
- Easily reduced to As(III)

Gates, K. S. et al. ACS Chem. Bio. 2011, 6, 127.

Summary of NASA's Claim

- Cells grew under +As/-P, although they didn't under -As/-P.
- Higher intracellular As & lower P were detected (than –As/-P).
- P value was less than required for its growth (1-3 % P by dry weight).
- Based on the purification by extraction, proteins, s.m.w. metabolites and DNA might contain arsenic.
- NanoSIMS analysis of DNA also supported the fact above.
- XANES & EXAFS suggested the arsenate was incorporated in DNA or other microorganisms.

3. Objections to NASA's Report

Eight Technical Comments have come !!

TECHNICALCOMMENT

Comment on "A Bacterium That Can Grow by Using Arsenic Instead of Phosphorus"

Stefan Oehler

Wolfe-Simon *et al.* (Research Articles, 3 June 2011, p. 1163; published online 2 December 2010) reported that a naturally occurring bacterium, strain GFAJ-1, can substitute arsenic for phosphorus in its biomolecules. However, straightforward experiments to support this claim, including density gradient centrifugation of DNA assumed to contain arsenic, were either not performed or not presented. As a result, the authors' conclusions remain uncertain.

The title of the research article by Wolfe-Simon *et al.* (1) asserts that a bacterium, strain GFAJ-1, can grow by using arsenic instead of phosphorus. However, their study

Biomedical Sciences Research Center Alexander Fleming, 16672 Vari, Greece. E-mail: oehler@fleming.gr presents only preliminary results, not the confirmatory experiments one would expect to find in support of this claim.

The tolerance to and possible conditional dependence on arsenic of the bacterial isolate is very interesting. However, the main claim that "strain GFAJ-1...can vary the elemental composition of its basic biomolecules by substituting As for P" does not appear to be sufficiently supported by the data. Straightforward experiments that could verify incorporation of arsenic into biological macromolecules were either not performed or not reported. These could, for example, be density gradient centrifugation of DNA assumed to contain arsenic or autoradiography of electrophoretically separated proteins and restriction fragments of DNA from cells grown in the presence of radioactive arsenic. A comparison of the hydrolysis rates of DNA from bacteria grown in arsenate medium versus DNA from bacteria grown in phosphate medium could also have been easily done. Without these data, the authors' claim that the bacterium they described can grow by using arsenic instead of phosphorus remains unconvincing.

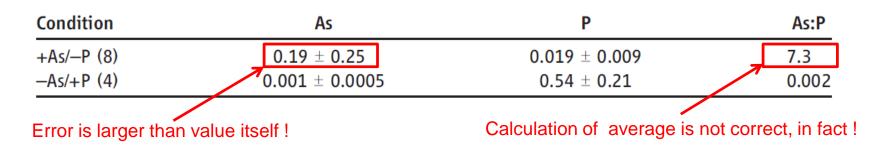
References

 F. Wolfe-Simon et al., Science 332, 1163 (2011); published online 2 December 2010; 10.1126/ science.1197258.

7 December 2010; accepted 17 May 2011 Published in Science Express 27 May 2011; 10.1126/science.1201381

All doubted whether GFAJ-1 was truly using arsenic in its DNA.

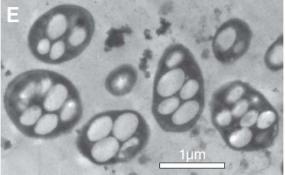
1. Unsolved Matters


Stability against hydrolysis of arsenate diester

- Arsenic ester can be hydrolyzed in water much faster than phosphate.
- If the arsenylated DNA was stabilized by association with another molecule, it would be required to remain associated with DNA through extraction and gel electrophoresis processes.
- >High redox potential of As(V)
 - As(V) is reduced into As(III) in the physiological range of redox potential.
 - The resulting structural change & oxidation of other molecules impair the metabolic processes.
- Relatively lower intracellular As concentration Medium: As/P = ca. 10000 Cell: As/P = only <10</p>

2. Inadequate Data & Analyzing Methods

No direct evidence of incorporation of As in DNA


- Insufficient purification method of DNA
 - Aqueous DNA/RNA fraction they used directly is typically contaminated.
 - It wasn't purified from the agarose gel which may contain some elements.
- > High phosphate concentration on background (*ca.* 3μ M)
- > Unknown purity of arsenic
- > Incorrect statistical calculation and large estimated errors

3. Alternative Interpretations

Induced Pst system under +As/-P condition

- Many bacteria have two systems to assimilate phosphorus:
- (i) phosphate inorganic transport (Pit): Low affinity for P and always active
- (ii) the phosphate-specific transport (Pst): High affinity for P and active when phosphate levels are low
- Arsenate is known to poison the Pit system and to accelerate Pst system. Malamy, M. H. *et al. J. Bacteriol.* 1980, **144**, 366.
- Growth under +As/-P is due to the increased uptake of P by Pst system ?
- Cell growth in volume perhaps means the storage of toxic molecules. Nature 2010, 468, 741.
- Some bacteria only need much less than1 % P by dry weight.

Two Definitive Reports in 2012

GFAJ-1 Is an Arsenate-Resistant, Phosphate-Dependent Organism

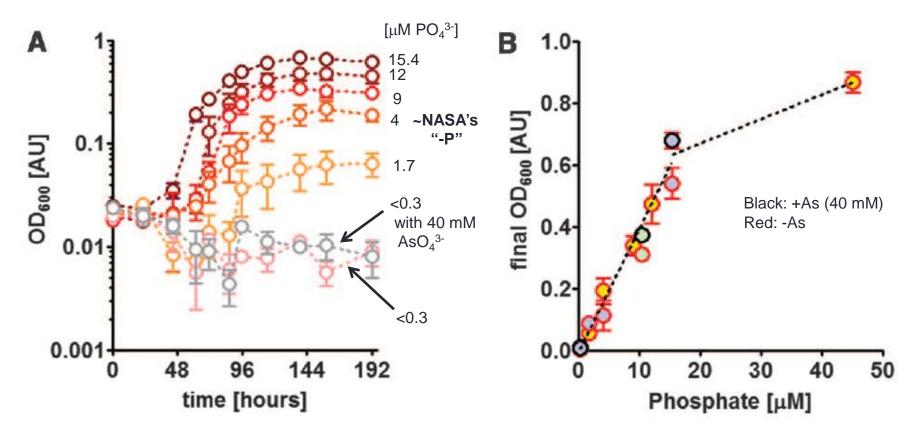
Tobias J. Erb,¹*† Patrick Kiefer,¹* Bodo Hattendorf,² Detlef Günther,² Julia A. Vorholt¹†

The bacterial isolate GFAJ-1 has been proposed to substitute arsenic for phosphorus to sustain growth. We have shown that GFAJ-1 is able to grow at low phosphate concentrations (1.7 μ M), even in the presence of high concentrations of arsenate (40 mM), but lacks the ability to grow in phosphorus-depleted (<0.3 μ M), arsenate-containing medium. High-resolution mass spectrometry analyses revealed that phosphorylated central metabolites and phosphorylated nucleic acids predominated. A few arsenylated compounds, including C6 sugar arsenates, were detected in extracts of GFAJ-1, when GFAJ-1 was incubated with arsenate, but further experiments showed they

Absence of Detectable Arsenate in DNA from Arsenate-Grown GFAJ-1 Cells

Marshall Louis Reaves,^{1,2} Sunita Sinha,³ Joshua D. Rabinowitz,^{1,4} Leonid Kruglyak,^{1,5,6} Rosemary J. Redfield³*

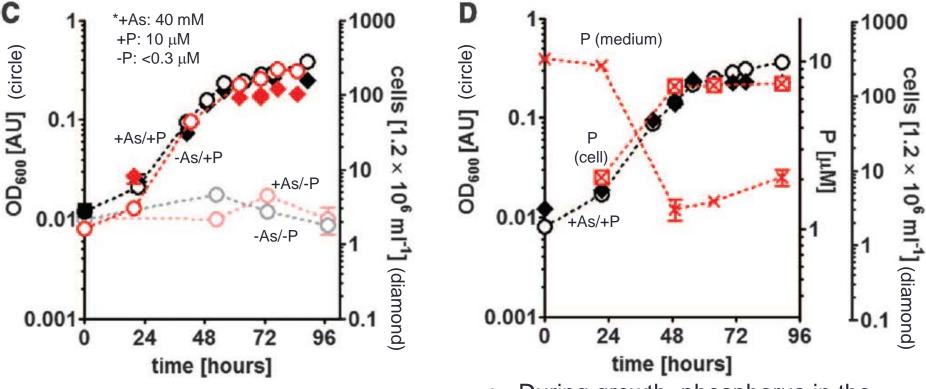
A strain of *Halomonas* bacteria, GFAJ-1, has been claimed to be able to use arsenate as a nutrient when phosphate is limiting and to specifically incorporate arsenic into its DNA in place of phosphorus. However, we have found that arsenate does not contribute to growth of GFAJ-1 when phosphate is limiting and that DNA purified from cells grown with limiting phosphate and abundant arsenate does not exhibit the spontaneous hydrolysis expected of arsenate ester bonds. Furthermore, mass spectrometry showed that this DNA contains only trace amounts of free arsenate and no detectable covalently bound arsenate.


of GFAJ-1 might have been perturbed to some extent by the short washing step, we found that when GFAJ-1 was grown in the presence of arsenate, most core metabolites (e.g., nucleotides and sugar phosphates) were only detected in their phosphorylated, but not arsenylated, form (Table 1 and tables S1 to S4). Moreover, the absolute concentrations of most phospho-metabolites did not differ between GFAJ-1 cells grown in the presence or absence of arsenate (Table 1). Notably, the levels of nucleotide trisphosphates [ATP, cytidine trisphosphate (CTP), guanosine trisphosphate (GTP), and uridine trisphosphate (UTP)], as a measure for cellular energy status.

ever, although we obtained strain GFAJ-1 from these authors, in our hands GFAJ-1 was unable to grow at all in AML60 medium containing the specified trace elements and vitamins, even with 1500 µM sodium phosphate added as specified in (1). We confirmed the strain's identity using reverse transcription-polymerase chain reaction and sequencing of 16S ribosomal RNA, with primers specified by Wolfe-Simon et al. (1); this gave a sequence identical to that reported for strain GFAJ-1. We then found that addition of small amounts of yeast extract, tryptone, or individual amino acids to basal AML60 medium allowed growth, with doubling times of 90 to 180 min. Medium with 1 mM glutamate added was therefore used for subsequent experiments (6).

With 1500 μ M phosphate but no added arsenate (Wolfe-Simon *et al.*'s –As/+P condition), this

Erb, T. J. et al. Science 2012, 337, 467-470.; Redfield, R. J. et al. Science 2012, 337, 470-473


"As-Resistant", but still P-Dependent

- Growth correlated with the amount of phosphate, and 1.7 μ M is sufficient.
- +As/-P (<0.3 μ M): No growth occurred.
- Final growth didn't change whether or not arsenate was added.

29

"As-Resistant", but still P-Dependent

- Growth correlated with the amount of phosphate, not with that of arsenate.
- During growth, phosphorus in the medium decreased and became enriched in the cellular fraction.
- During growth, GFAJ-1 is obviously using phosphorus in the medium.

Metabolomic Analysis by HRMS

- Cells were cultured in almost the same medium as reported.
 (As: 40 mM(+) or 0 mM(-), P: 9 μM, glucose: 10 mM)
- In both media, only phosphorylated metabolites were detected.
 - Only nucleotide bisphosphates (ADP etc.) appeared elevated in the cell cultured +As, which might result from a higher energy demand when grown +As.

(Due to ATP-dependent detoxification or induced Pst system ?)

 Although hexose arsenate was detected in MS, it was found this is abiotically formed glucose arsenate.

31

Analysis of Well-Purified DNA

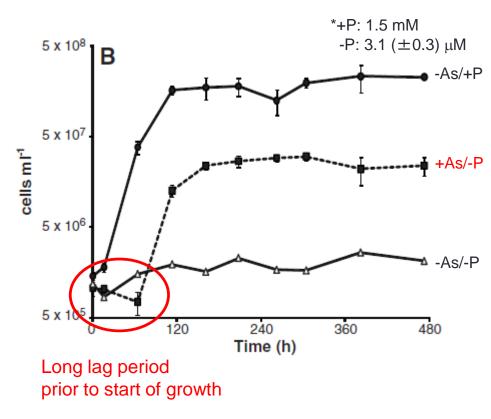
<u>kb</u> 23	1 λ	2 Hin	3 -As/-P	4 -As/+P	5 +As/-P	6 +As/+P	7 ss λ	ds DNA fresh	•	Independent or fragments are of	•						
23	B.	: 		1.1.5	<u> </u>			ds DNA 2 mos	•	& single-stranded DNA . Hydrolysis or other stabilizing molecules were not observed.							
23	C.]]]							ss DNA 2 mos	•	According to the purified DNA, r		,					
4.4 2.3	=									e 2. Elemental analysis of nucleic a bsence or presence of 40 mM arse		wn on 10 μM phosphate in					
									Samp	le	GFA]-1 grown with 9 µM P	GFA]-1 grown with 9 μM P 40 mM As					
									Phosp	ic acids (ng) horus in nucleic acids (ng) ic in nucleic acids (ng)	15,700 ± 1800 934 ± 13 <1*	17,400 ± 1900 1043 ± 8 <1*					

As/P molar ratio

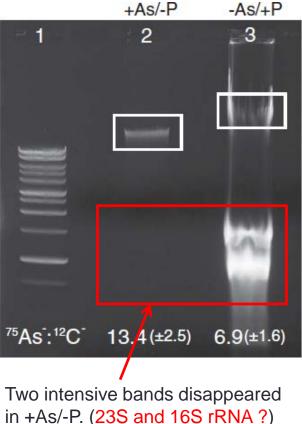
*Below detection limit.

- A. Soon after purification
- B. 2 months later @ 4 °C
- C. 2 months @ 4 °C, 10 min. @ 95 °C

Redfield, R. J. et al. Science 2012, 337, 470-473


< 0.001

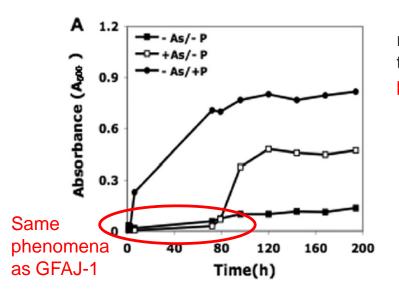
< 0.001


32

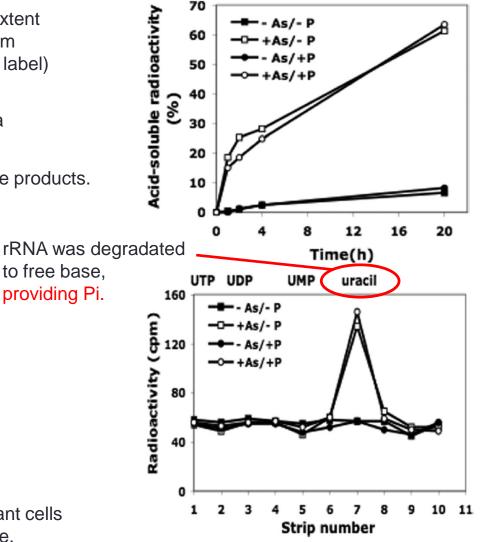
As-induced Massive Ribosome Breakdown

One reason why arsenate stimulated the growth of GFAJ-1 might be that arsenate induces massive ribosome degradation, providing a source of phosphate.

Wolfe-Simon, F. et al. Science 2011, 332, 1163-1166.

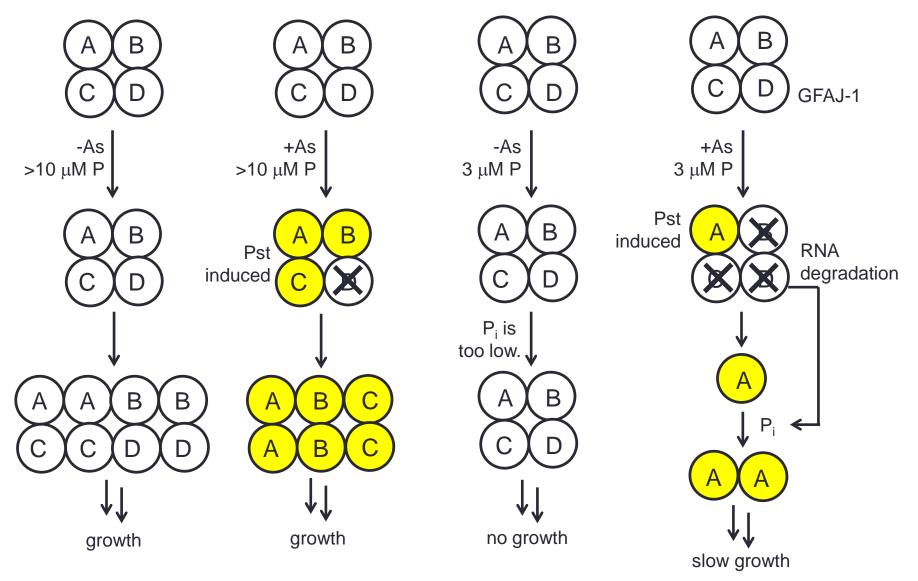

Deutscher, M. P. et al. J. Biol. Chem. 2012, 287, 28816.

As-induced Massive Ribosome Breakdown


<u>*E. coli*</u> : known to be As-resistant to some extent *E. coli* growing in 0.1 mM phosphate medium was prelabeled with $[^{3}H]$ -uridine. (ribosome label)

After washing, cultured under various media

Measured release of acid-soluble radioactive products. Deutscher, M. P. *et al. RNA* 2011, **17**, 338.



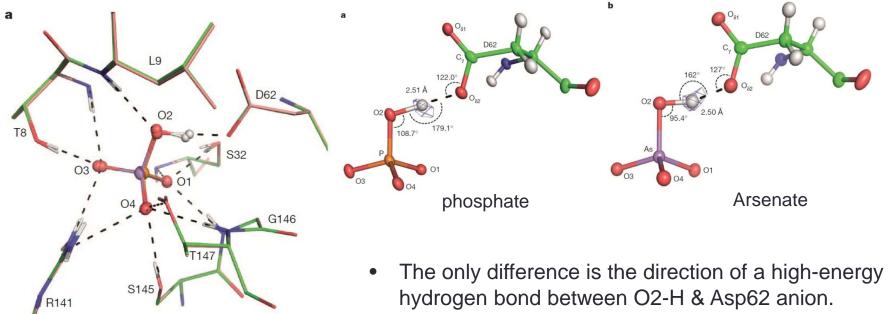
+As/-P: After 80 h, small numbers of As-torelant cells appeared and then started to increase.

Deutscher, M. P. et al. J. Biol. Chem. 2012, 287, 28816.

Supposed Conclusion

Summary of Objections

- GFAJ-1 used contaminated phosphate in medium for growth.
- Higher intracellular As is due to the inadequate purification of DNA.
- Metabolomics & elemental analysis showed no incorporation of As into DNA or other microorganisms.
- The reason arsenate stimulated the growth of GFAJ-1 might be either massive ribosome breakdown or induced Pst system or both.


➢ GFAJ-1 is still phosphate-dependent.

• Although As was found to be inessential for that strain to grow, still we cannot deny the possibility that GFAJ-1 is using As for some purposes.

Appendix: How Life differentiate P & As

• PBP (Phosphate Binding Proteins):

- The important unit for recognition of phosphate in Pst system (more selective one)
- Discrimination of phosphate from arsenate is generally *ca.* 500-fold.
- GFAJ-1 has two types of PBPs, one of which has >4500-fold discrimination ability.

PBP of *P. fluorescens* (pH 8.5) As (red & violet sphere), As-bound (green) P (orange & red sphere), P-bound (pink) • Asp62 enables phosphate to bind more selectively than arsenate.

Elias, M. et al. Nature, 2012 (doi:10.1038/nature11517)

4. Conclusion

Conclusion

- The answer to the title question,
 "Can life use arsenic instead of phosphorus ?" --- is still unclear.
- At least, GFAJ-1 is not arsenic-dependent bacterium. It still needs a small amount of phosphorus to grow.
- It is very important also for us to select the proper methods to make the things confirmed, to think whether alternative explanations for results are impossible, and to conduct control experiments strictly.
- And, it seems that life system is much mightier than I thought.