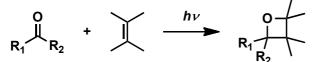
Asymmetric Catalytic Photoreactions in Solution

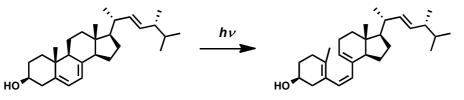
9th/Sep/2013 (Mon) Ozawa Jun (M2)


	Prochiral <i>cat., hv</i> Substrate	Enantiopure Product
1. 2.	Introduction Asymmetric Photoreactions	

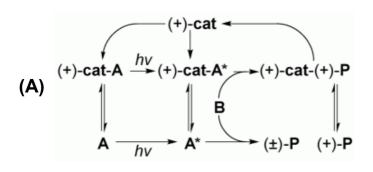
- 2-1. Chiral Template
- 2-2. Chiral Catalyst Involved in Photoactivation
- 2-3. the Combination of Chiral Catalyst and Photosensitizer
- 2-4. the Reactions of EDA Complex
- 3. Summary

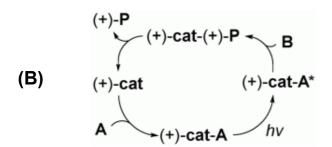

1. Introduction

Photoreaction is a powerful approach to the chemical synthesis that cannot be replaced by thermal reactions.

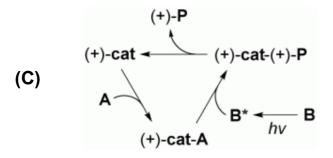

Paternò-Büchi reaction

Barton reaction


photopericyclic reactions


There has been, however, very limited success in developing asymmetric catalytic photoreactions, mainly because of the low-barrier, very rapid process that proceed from short-lived electronic excited states.

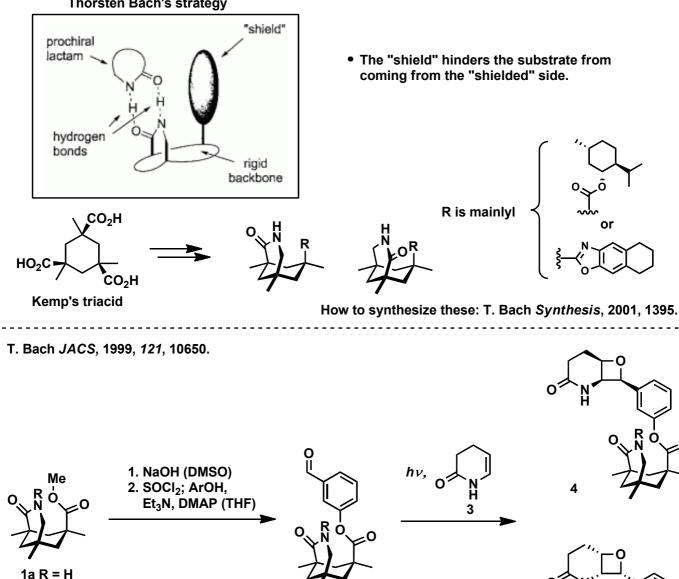
→ A chiral catalyst has to have a high ability to bias and organize the molecular architecture of fleetingly excited state of photoreactions.


How can the asymmetric reactions be achieved?

Chiral reagent (+)-cat, which is electronically inert, gives an environment where the photoreaction proceeds enantioselectively.

Chiral reagent (+)-cat is involved in the photoactivation step of the substrate A to produce (+)cat-A*, which subsequently reacts with B to produce a chiral product (+)-P. A alone isn't photoactivated.

Association of (+)-cat with the substrate A changes the electronic properties , facilitating a reaction with the photoactivated B*. B* doesn't react with A alone.


An efficient catalyst must not cause the background or side reactions: what is necessary is the situation where no reaction proceed without the catalyst, and in the presence of the catalyst the desired reaction then proceeds.

→ The catalysts categorized as type (B) or (C) seem to be promising . (Racemizing backgroun reactions are problematic with type (A) catalysts.)

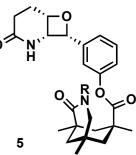
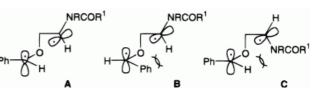
2. Asymmetric Photoreactions

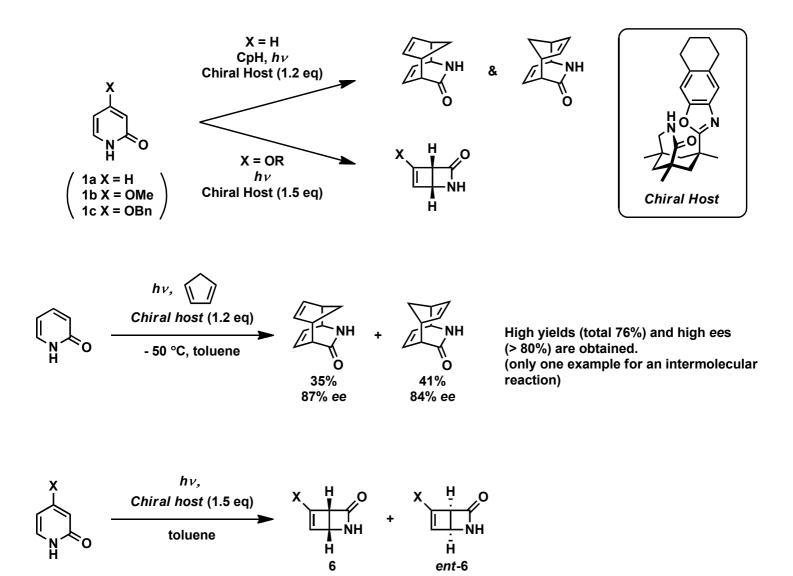
2-1. Chiral Template

Thorsten Bach's strategy

1b R = Me

2

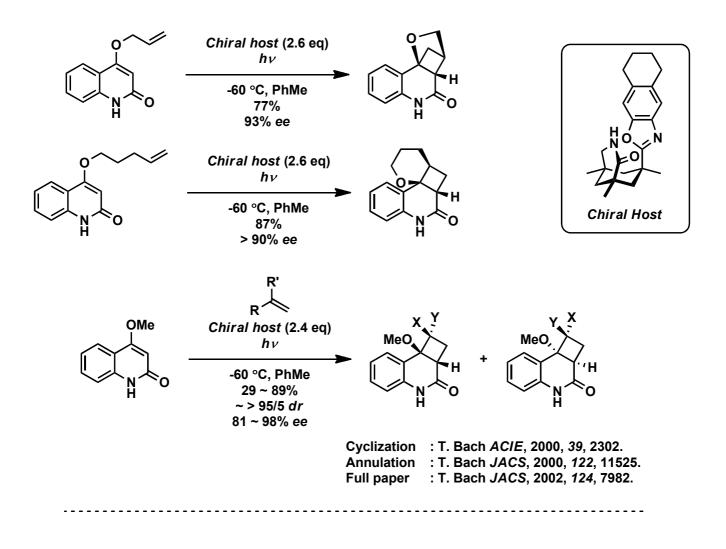




Table 1. Photocycloaddition of the Chiral Amides 2 and the Dihydropyridone 3

entry	aldehyde	solvent ^a	temp. [°C]	oxetane	yield [%]	$\mathrm{d} \mathrm{r}^b (4/5)$
1	2a	MeCN	65	4a/5a	56	50/50
2	2a	MeCN	30	4a/5a	С	50/50
3	2a	benzene	30	4a/5a	62	83/17
4	$2a^d$	benzene	30	4a/5a	50	89/11
5	2a	toluene	-10	4a/5a	56	95/5
6	2b	benzene	30	4b/5b	50	50/50

- ^a The reaction was conducted at 65 °C and 30 °C in a merry-goround apparatus Rayonet RPR-100 ($\lambda = 300$ nm; light source: Rayonet RPR 3000) and at -10 °C in an immerison apparatus (Duran filter; light source: Original Hanau TQ 150). ^b The diastereomeric ratio of oxetanes in the crude product was determined by integration of appropriate 1H NMR signals. ^c The yield of isolated product was not determined in this case. ^d An excess of the chiral aldehyde 2a was employed (3 equiv).
- 90% ee is obtained (entry 5).
- In entry 6 the ee is 0%, which indicates the two H-bonings between 2 and 3 are essential for this asymmetric reaction.

T. Bach ACIE, 1999, 64, 1265.

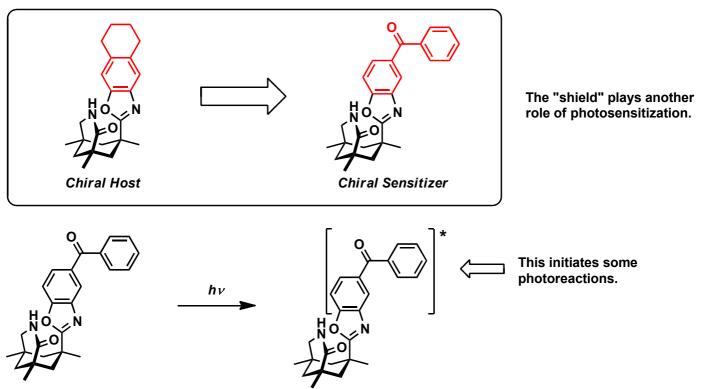

Table 1. Electrocyclic $[4\pi]$ -Ring Closure of Pyridones 1 in the Presence of the Chiral Lactam 2 (cf. Scheme 2)

entry	pyridone	Х	time ^a (h)	temp ^b (°C)	product	yield (%)	ee ^c (%)
1	1a	Н	4	30	6a	18	10
2	1b	OMe	2.5	30	6b	75	17
3	1b	OMe	96	-20	6b	44	20
4	1c	OBn	3.5	30	6c	75	19
5	1c	OBn	96	-20	6c	51	23

^{*a*} Time after which the irradiation was stopped. ^{*b*} Irradiation temperature. Irradiation source: Original Hanau TQ 150. ^{*c*} The evalues {ee = [(+)-6 - (-)-ent-6]/[(+)-6 + (-)-ent-6]} were determined by chiral HPLC (column, chiracel OD; eluent, *n*-hexane/2-propanol 92/8). Poor ees are obtained (max 23%);

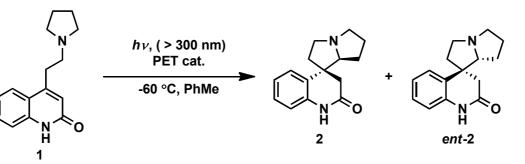
according to Bach, it's probably because

- a) the steric differences of the two cyclization mode are marginally, or
- b) the transition states are located very early on the reaction coordinate.

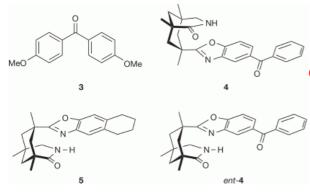


This Bach's Chiral templates enable highly efficient enantioselective photoreactions, but there are some disadvantages:

- 1. the stoichiometric use of the chiral hosts In this system ee cannot exceed the amount of the chiral host.
- 2. limited substrate scope
 - a) The substrates have to contain cyclic amide structure.
 - b) The reaction site has to be close to the cyclic amide enough to be "shielded".
- 3. The reaction temperature has to be low enough for the H-bonds to facilitate the tight binding between the substrate and the host.
- \rightarrow To overcome these problems, another strategies are necessary.


2-2. Chiral Catalyst Involved in Photoactivation

• Thorsten Bach's strategy 1

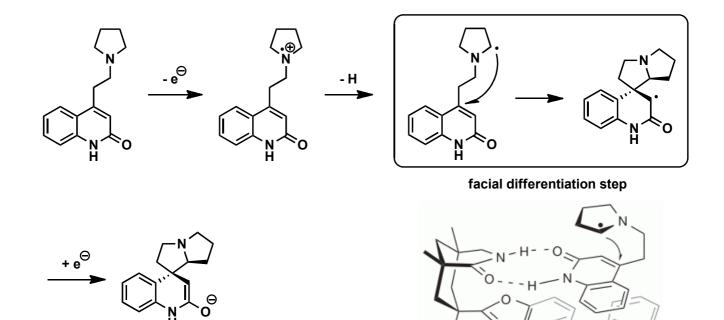


Substrates have to be close to the catalyst to be activated by the photoexited chiral sensitizer. \rightarrow It is possible that asymmetric photoreaction is achieved under catalytic amount of the catalyst.

T. Bach Nature, 2005, 436, 1139.

70% ee is obtained with a catalytic amount of the catalyst 4.

Table 1 | Enantioselective catalytic PET reactions of substrate 1 (see Figs 1 and 2)

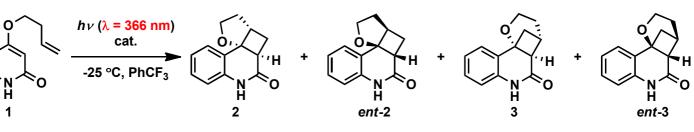

Entry no	Catalyst	Equiv.*	Time (h)	Product	e.r.†	e.e.‡ (%)	Yield§ (%)
1	3	0.1	3.5	2/ent-2	50/50	_	71
2	4	0.05	5	2	60/40	20	61
3	4	0.1	2.5	2	69/31	38	55
4	ent-4	0.1	3	ent-2	31/69	38	52
5	4	0.2	2	2	77/23	54	57
6	4	0.3	1	2	85/15	70	64
7	3/5	0.1/1.2	2	ent-2	14/86	72	39

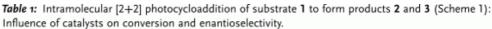
* The reactions were carried out in deaerated toluene as the solvent at -60 °C (irradiation source: Orginal Hanau TQ 150) and with a substrate concentration of 4 mM (see Supplementary Information page SI 5).

†The enantiomeric ratio (e.r.) was determined by ¹H-NMR shift experiments (see Supplementary Information page SI 9)¹⁵.

The enantiomeric excess (e.e.) was calculated from the e.r. based on the uncertainty of the ¹H-NMR integration, the variance of e.e. data are estimated as ±2%. § Yield of isolated product.

A stoichiometric amount (1.2 equiv.) of the chiral complexing agent 5 was added to the reaction mixture.

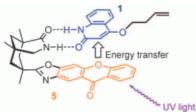

You can control the photosensitizing ability by exchanging the benzophenone unit for other ones.

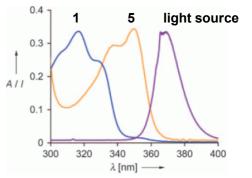

T. Bach ACIE, 2009, 48, 6640.

Ô

C

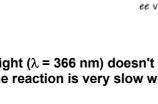
5

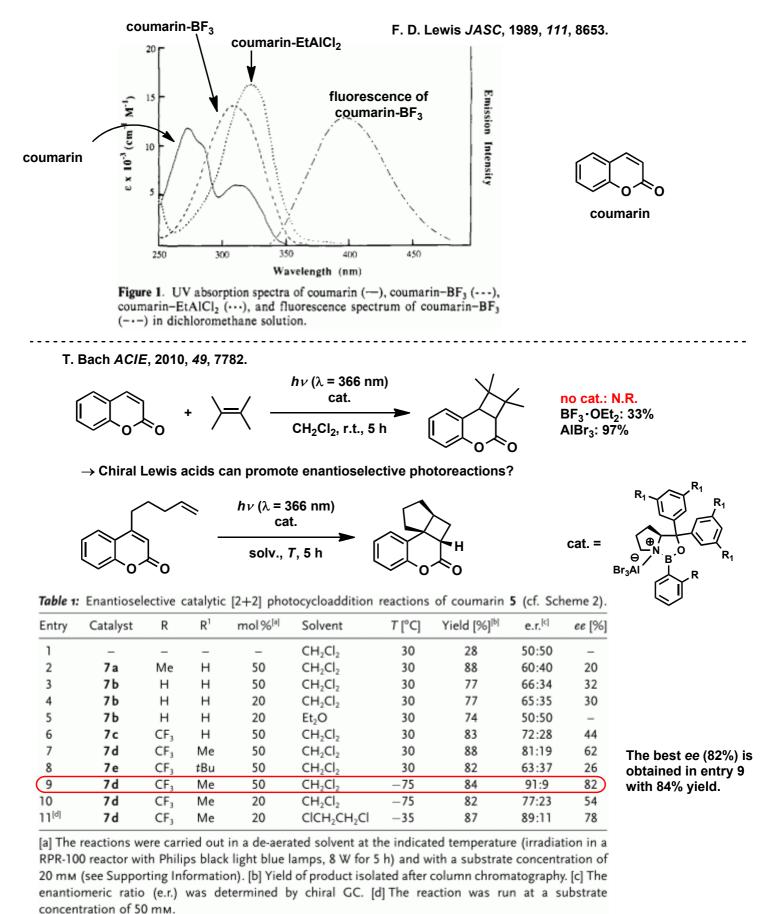




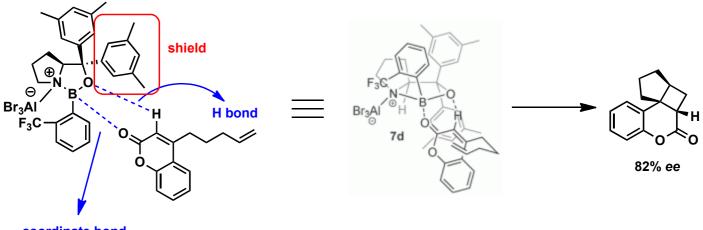
	,				,			
Entry	Catalyst	Mol % ^[a]	t [h]	Conv. [%] ^[b]	Yield [%] ^[b]	r.r. ^[c]	ee (2) [%] ^[d]	ee (3) [%] ^[d]
1	-	-	1	14	-	86/14	-	_
2	4	10	1	57	90	75/25	39	17
3	5	10	1	64	90	78/22	92	90
4	5	10	2	78	89	77/23	91	91
5	5	10	4	90	55	> 99/1	91	_
6	5	5	1	50	95	78/22	90	n.d. ^[e]
7	5	20	1	73	78	79/21	94	94
8	xanthone	10	1	39	77	79/21	-	-

[a] Reactions were carried out under argon in deaerated trifluorotoluene as solvent at -25 °C (irradiation at 366 nm) and with a substrate concentration of 5 mm (see Supporting Information). [b] The conversion and yield were determined gravimetrically after separation of substrate (1) and products (2,3). Conversion and yield are calculated based on recovered starting material. [c] The 2/3 regiomeric ratio (r.r.) was determined by HPLC. [d] The enantiomeric excess (*ee*) was determined by HPLC. [e] The *ee* value could not be determined in this case.


The light (λ = 366 nm) doesn't activate the starting olefins. \rightarrow The reaction is very slow when 1 is far from 5.


HO

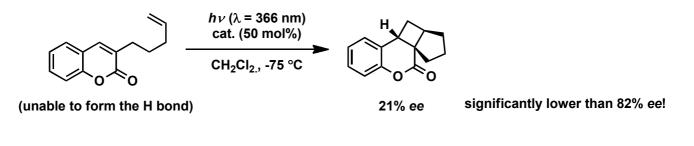
normalized absorption spectra (1,5) normalized emission spectra (light source)



• Thorsten Bach's strategy 2

Lewis acids can form a complex with coumarin and are able to promote [2 + 2] photocycloadditions by increasing a) the absorption at longer wavelengths, b) the singlet-state lifetime, and c) the electrophilicity.

the review of the utility of cationic oxazaborolidines: E. J. Corey ACIE, 2009, 48, 2100.



coordinate bond

Two bonds fix the conformation of the coumarin.

• Without the H at C3, the ee significantly decreases.

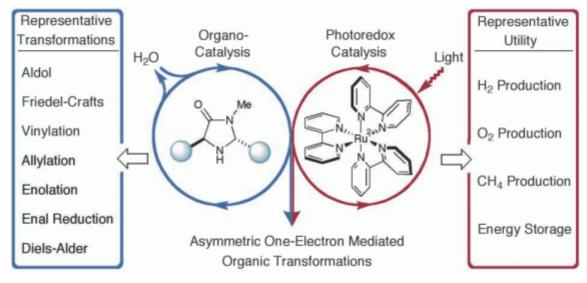
T. Bach Chem. Eur. J., 2012, 18, 7552.

_ _ _ _ _ _ _ _ _ _ _ _ _ _

Catalytic reaction has been achieved, but there are yet few substrates the Bach's chemistry is applicable to. It's mainly because

1) the substrate scope is limited to finely-selected lactams and lactones, and

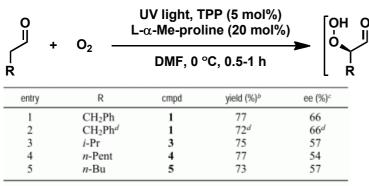
2) the reaction type is almost limited to photocyclizations.


 \rightarrow More general methods are desired:

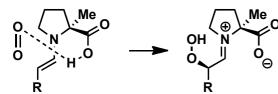
1) targeting ubiquitous functional groups

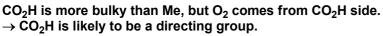
2) aiming intermolecular C-C, C-N, C-O bond formation

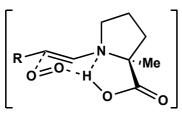
2-3. the Combination of Chiral Catalyst with Photosensitizer

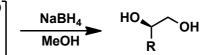

- asymmetric reactions assisted by chiral organocatalysts
- photoactivation assisted by photosensitizers
- \rightarrow The combination of these two enables asymmetric photoreactions.

D. W. C. MacMillan Science, 2008, 322, 77.

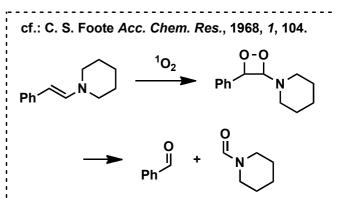

• α-oxygenation of aldehydes

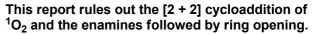

A. Córdova JACS, 2004, 126, 8914.

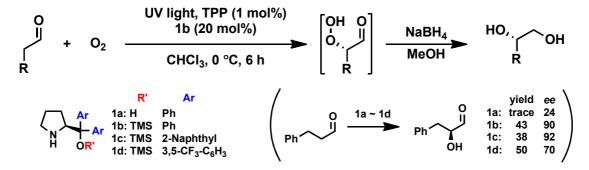



^{*a*} In a typical experiment, the amino acid (20 mol %) was stirred in the DMF (1 mL) for 20 min followed by addition of tetraphenylprophine (TPP) (5 mol %) and the aldehyde (1 mmol). The reaction was initiated and performed by bubbling a continuous flow of molecular oxygen or air for 0.5–3 h in the presence of visible light by a 250-W high-pressure sodium lamp. ^{*b*} Isolated yield after silica gel column chromatography. ^{*c*} Determined by chiral-phase HPLC or GC. ^{*d*} The reaction performed with air as the oxygen provider.

Supposed mechanism





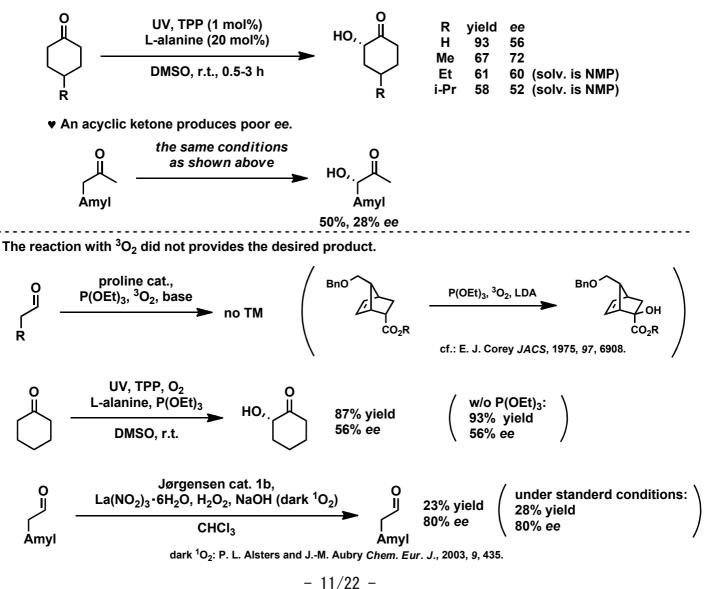

TPP: tetraphenylporphine

L-
$$\alpha$$
-Me-proline: $\bigwedge_{\substack{\mathsf{N}\\\mathsf{H}}} \underbrace{\mathsf{CO}_{2}\mathsf{H}}_{\mathsf{H}}$

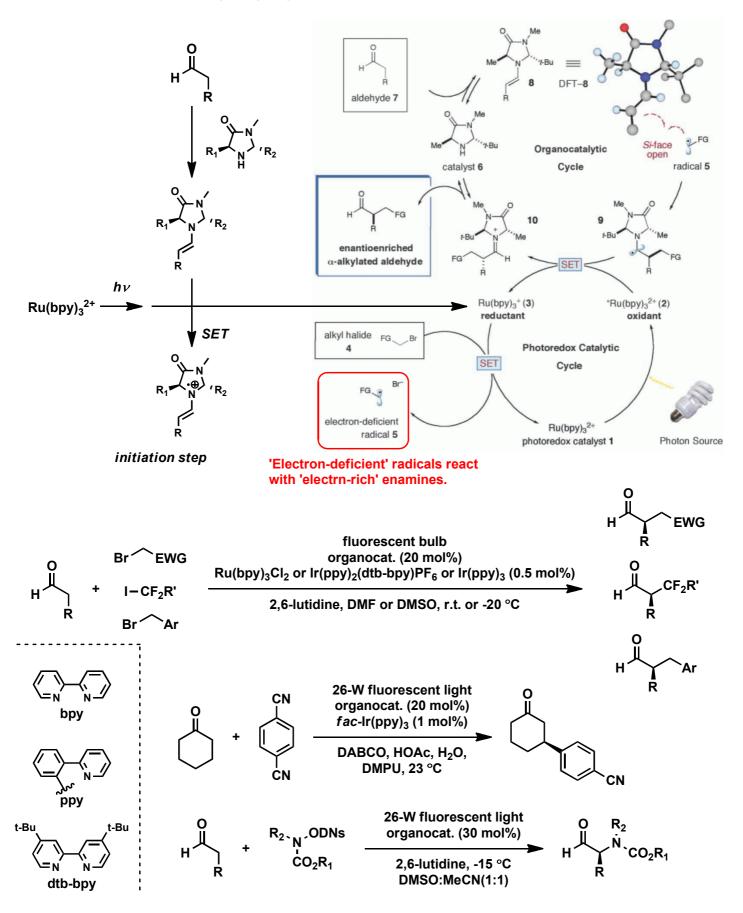
When a normal proline is used, the ees decrease $(16 \sim 48\% \text{ ee} \text{ for the same substrates}).$

(substrate scope)

Entry	Aldehyde	R	Prod.	Yield ^a (%)	ee ^b (%)
1	2a	Bn	4a	70	87
2	2a	Bn	4a	50°	90 ^c
3	2b	n-Pent	4b	67	75
4	2c	4-NO ₂ C ₆ H ₄ CH ₂	4c	64	98
5	2d	4-ClC ₆ H ₄ CH ₂	4d	71	98
6	2e	4-BrC ₆ H ₄ CH ₂	4 e	68	98
7	2f	n-Butyl	4f	76	74


^a Isolated yield of pure diacetylated 4a.

^b Ee as determined by chiral-phase HPLC or GC analyses.


^c 10 mol % catalyst.

Córdova also achieved to convert cyclic ketones into α -hydroxyketones with moderate ees by using Jørgensen-type catalyst (proline catalysis furnishes 18% ee).

A. Córdova ACIE, 2004, 43, 6532.

- α-alkylation of aldehydes (and ketones)
 - D. W. C. MacMillan Science, 2008, 322, 77.
 - \therefore : α -alkylation
 - D. W. C. MacMillan JACS, 2009, 131, 10875. : α-trifluoromethylation, perfluoroalkylation, ...
 - D. W. C. MacMillan JACS, 2010, 132, 13600. : α-benzylation
 - D. W. C. MacMillan Science, 2013, 339, 1593. : β -arylation (only one example for asymmetric reaction) D. W. C. MacMillan JACS, 2013, 135, 11521. : α -amination

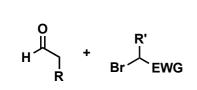
D. W. C. MacMillan Science, 2008, 322, 77.

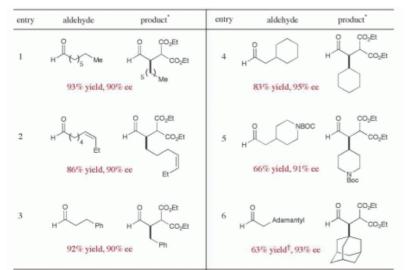
15-W fluorescent light 1 (20 mol%) Ru(bpy)₃Cl₂ (0.5 mol%)

2,6-lutidine, DMF, 23 °C

product[‡]

80% yield, 92% ee


80% yield, 88% ee


70% yield, 5:1 dr, 99% ee

OCH_oCF_o

CO₂Et

#Reactions

entry

10

11 EtO20

12

†40 mole percent of organocatalyst 6 was employed.

a-bromocarbonyl

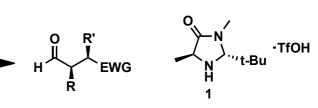
product[‡]

84% vield, 96% ee

87% yield, 96% cc

84% yield, 95% ee

-OMe

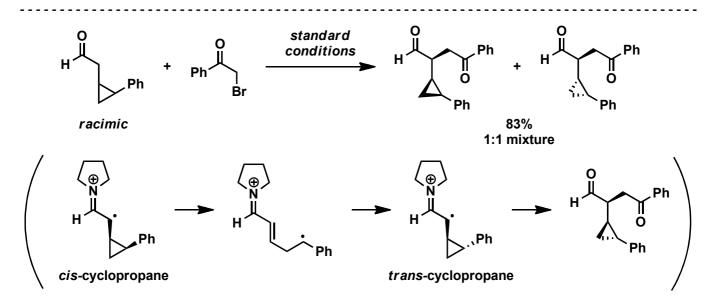

entry

8

α-bromocarbonyl

*Reactions performed with diethyl bromomalonate.

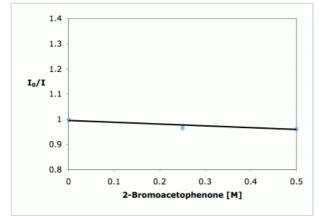
performed with octanal.

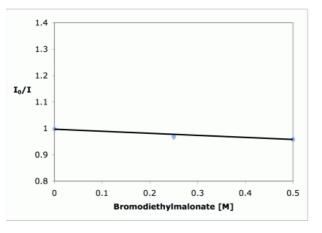

- 1,4-diketones are obtained.
- 2-bromodiethylmalonate (entry 1 to 6) and various α-bromocarbonyls (7 to 12) can effectively serves as alkylating agents.
- An olefin (entry 2), a benzylic C-H (entry 3), a carbamate (entry 5) are all tolerated under the reaction conditions.
- Quaternary carbons can be constructed effectively (entry 11 and 12) in good yields and excellent ees.
- When CF₃ is replaced with CH₃ in entry 10, the yield decreases to 53% with the same ee (94% ee).

Control Experiments

- no light \rightarrow N.R.
- no Ru(bpy)₃²⁺ –
- → < 10% yield unless UV (300 to 350 nm) is used
- 465-nm photon source is used instead.*
 - → Overall rate is accelerated as compared with the use of a fluorescent light (6 h → 90 min).

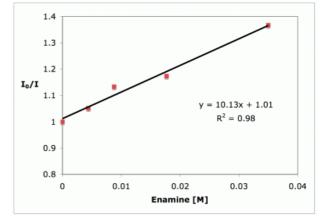
*Ru(bpy)₃²⁺ MLCT absorption band: 465 \pm 20 nm 15-W fluorescent bulb: ~ 400 to 700 nm


 \rightarrow Ru is surely involved in the catalytic cycle.


trans-substituted cyclopropanes are not detected.

 \rightarrow The radical doesn't generate at the $\alpha\text{-position}$ of the carbonyl group.

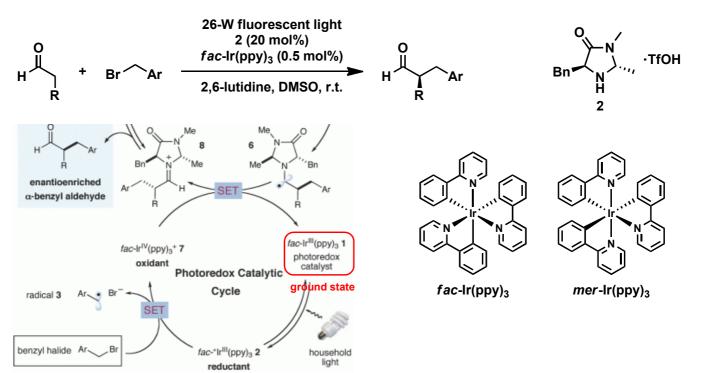
• luminescent quenching study of Ru(bpy)₃Cl₂

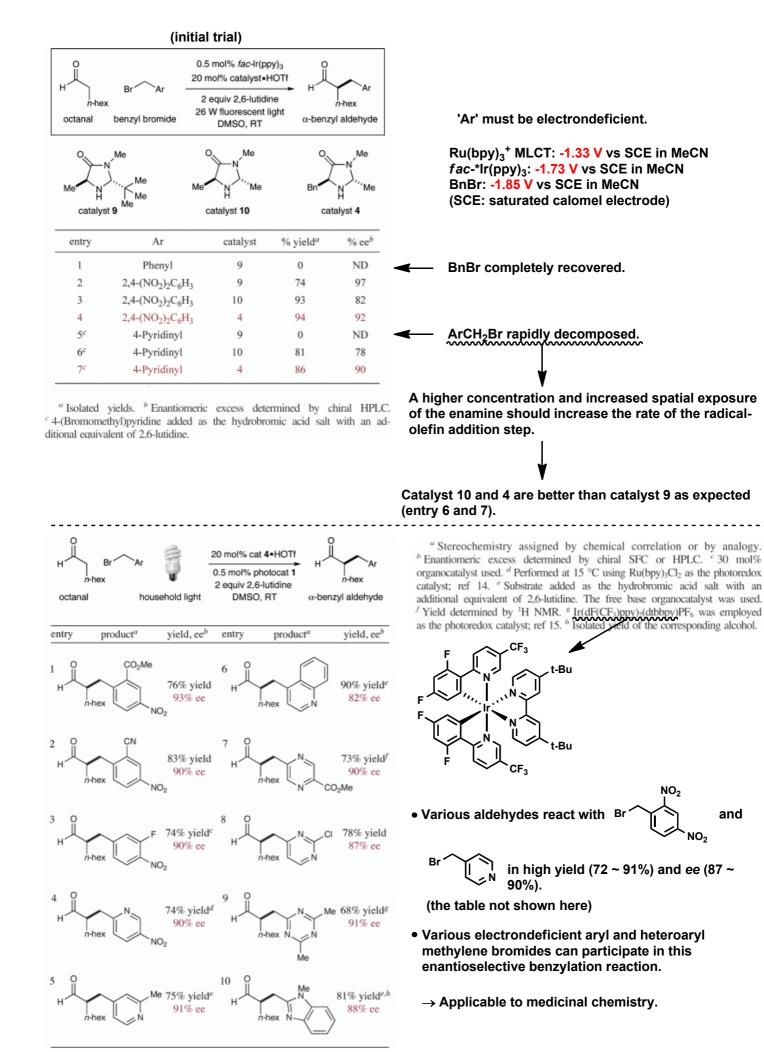


Ru(bpy)₃Cl₂ Emission Quenching by 2-Bromoacetophenone

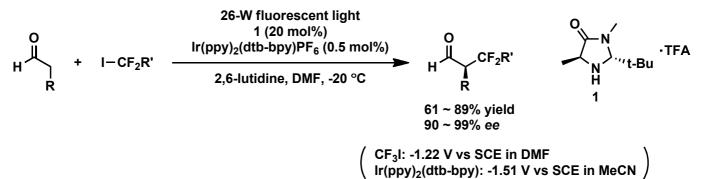
 $Ru(bpy)_3Cl_2$ Emission Quenching by Bromodiethylmalonate

D. W. C. MacMillan JACS, 2010, 132, 13600.

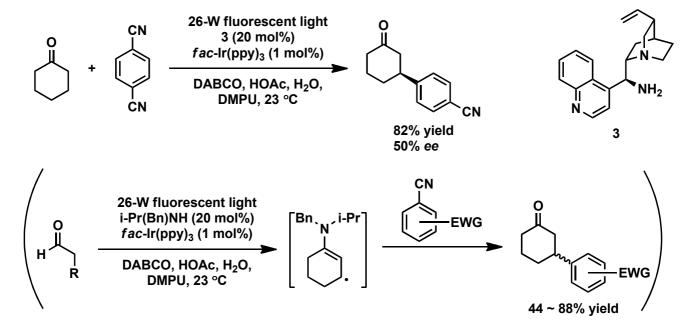


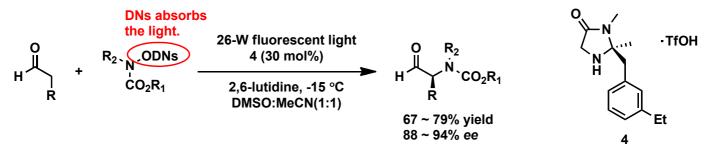

Ru(bpy)₃Cl₂ Emission Quenching by Enamine

Ru(bpy)₃Cl₂ doesn't oxidize $Br \leftarrow EWG$ but does enamine.

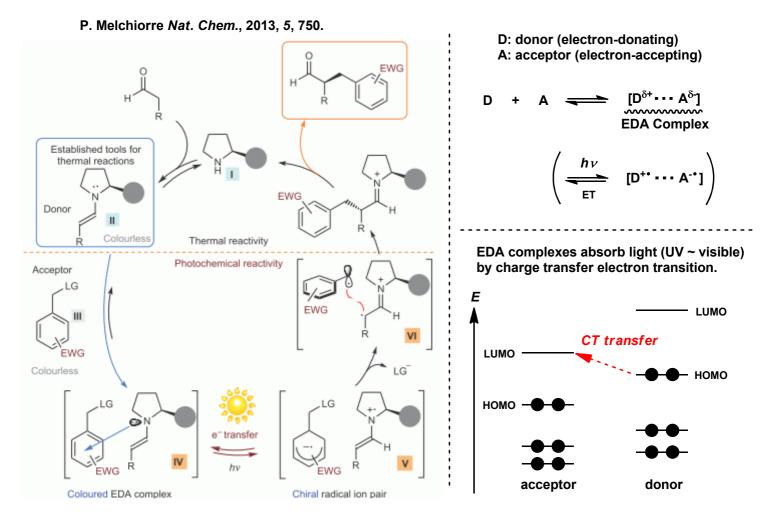

→ The reactions start with the oxidation of enamines by the photoactivated $Ru(bpy)_3Cl_2$ as shown in the previous page.

 I_0 = Emission intensity of Ru(bpy)₃²⁺ in the absence of quencher. I = Emission intensity of Ru(bpy)₃²⁺ in the presence of quencher.

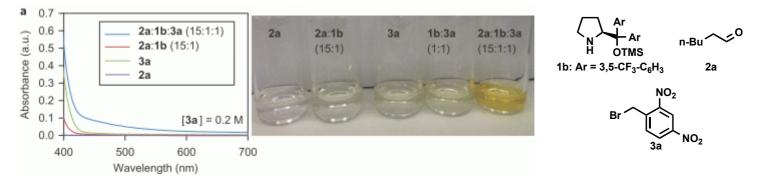



D. W. C. MacMillan JACS, 2009, 131, 10875.

D. W. C. MacMillan Science, 2013, 339, 1593.

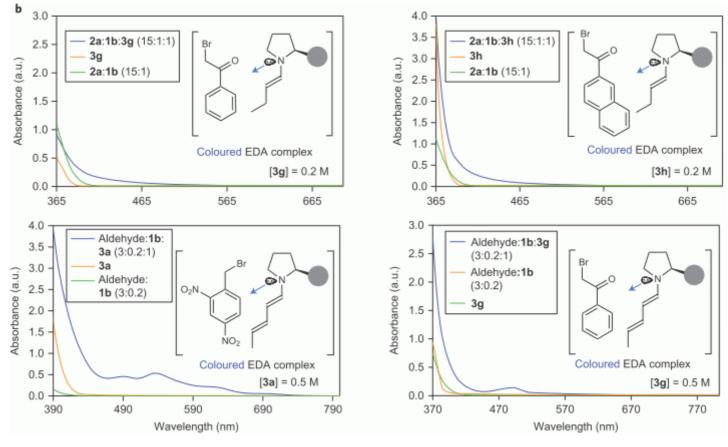


D. W. C. MacMillan JACS, 2013, 135, 11521.



2-4. the Reaction via EDA Pathway

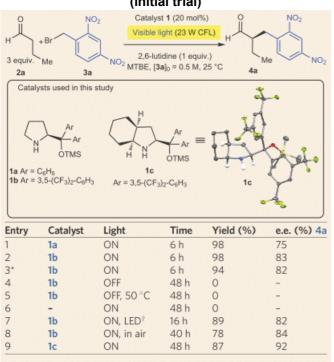
In contrast to Córdova and MacMillan's case, Melchiorre succeeded in asymmetric photoreaction WITHOUT photoredox catalysts by employing the chemistry of EDA complex (electron donor-acceptor complex, also called as charge transfer (CT) complex).


One of the most characteristic properties of EDA complex is its color charge-transfer bands (CT bands): a well-known example is the complex formed by iodine when combined with starch, which exhibits an intense blue color.

Some EDA complexes absorb visible light as shown above.

→ It is probably possible that visible light activates substrates that don't normally absorb visible light without external photosensitizers.

EDA complexes of tert-amines with electrondeficient arenes

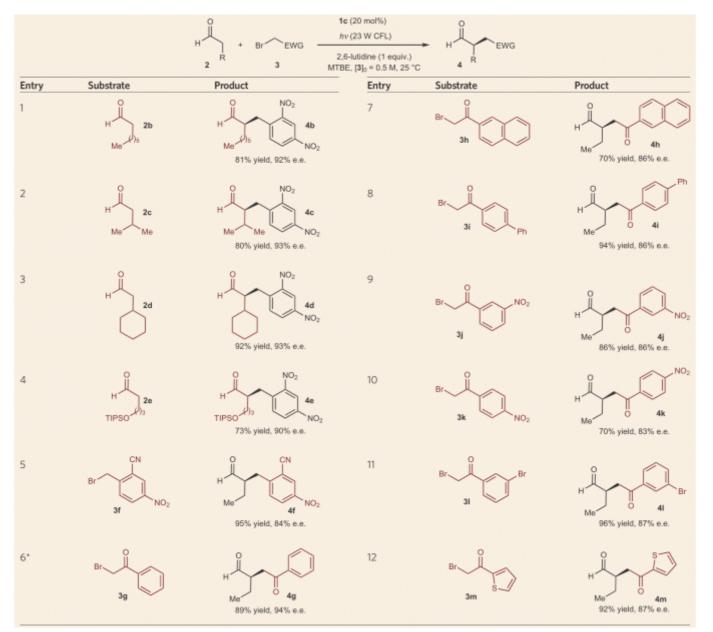


Representative optical absorption spectra of EDA complexes with enamines and extended enamines formed in situ (recorded in MTBE in 1 mm path quartz cuvettes using a Shimadzu 2401PC UV-visible spectrophotometer)

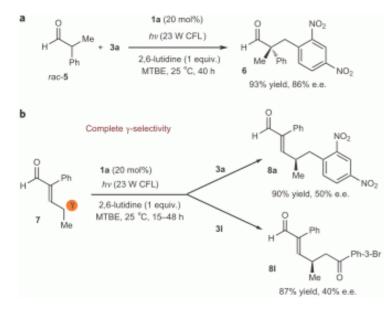
Main difficulty:

an unproductive, fast reverse ET, which restores the ground-state EDA complex and thus renders any further reactivity improbable.

 \rightarrow Suitable leaving group within the radical anion partner may trigger a fragmentation rapid enough to compete with the reverse ET.



(initial trial)


- The alkylation reactions indeed proceed without any photoredox catalysts in excellent yield and ee.
- The reaction doesn't proceed in the absence of aminocatalyst or light.

*Reaction performed using 1 equiv. NaOAc instead of 2,6-lutidine. [†]460 nm LED, irradiance 13.8 W m⁻². TMS, trimethylsilyl

MTBE: methyl tert-butyl ether

*Reaction performed under natural sunlight irradiation on the roof-top of the Institute of Chemical Research of Catalonia, Tarragona (Spain), on a partially cloudy day (27 Feb 2013, from 13:00 until 18:00).

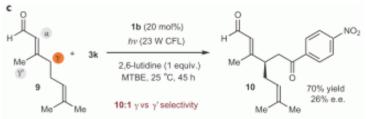
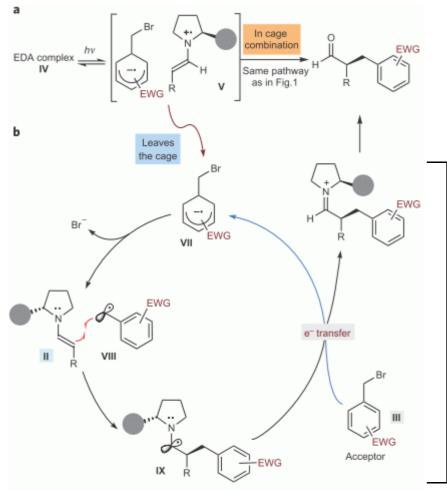
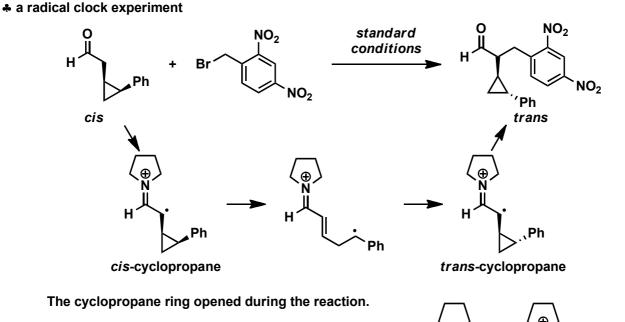
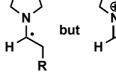



Figure 3 | Evaluating the scope and the strategy's potential to address synthetically relevant problems. a, Forging an all-carbon quaternary stereogenic centre. b, Remote stereocontrol and complete γ -site selectivity. c, Capacity to differentiate between three potential reactive centres.

- The substrate scope overlaps with that of MacMillan's alkylation.
- This method is also applicable to 1) quaternary carbon construction, and 2) γ-alkylation.

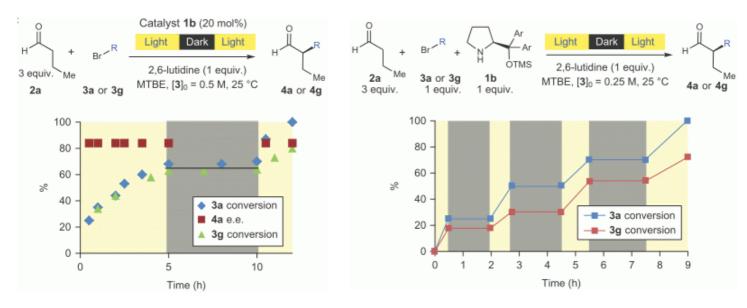
Mechanistic Consideration


another plausible mechanism

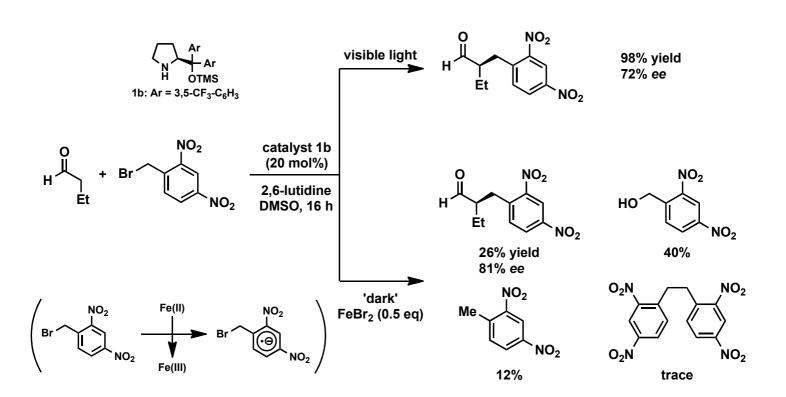

- 1) EDA complex (IV) is photoactivated to produce radical ion pair (V).
- (V) diffuses and the radical anion (VII) participates in the further step (the radical cation species is unproductive anymore).
- 3) (VII) reacts with enamine (II) to produce (IX).
- 4) (IX) gives the electron to alkyl bromide (III) to generate the radical anion (VII) and thus close the propagation cycle.

similar to MacMillan's benzylation

Figure 4 | Two possible reaction mechanisms. a, Our proposed mechanism based on the in-cage radical combination driven by EDA formation (see also Fig. 1). **b**, A plausible Kornblum-Russell alkylation pathway^{31,32} via a radical-chain S_{RN}1 mechanism.



 \rightarrow The radical species that generates during the reaction is not



R

experiments with successive intervals of irradiation and dark periods: does the radical chain propagation really occur?

- No reaction proceeds during the dark periods.
- \rightarrow There is no radical propagation, or the propagation is very short-lived without the light.

Under the 'dark' conditions, the ET from FeBr₂ to alkyl bromide is the only source of free radical that would be trapped by the enamine.

- → If the 'another plausible mechanism' really works well, the same results should be obtained under the both conditions shown above, but the outcome differed.
- \rightarrow The radical propagation mechanism should be ruled out.

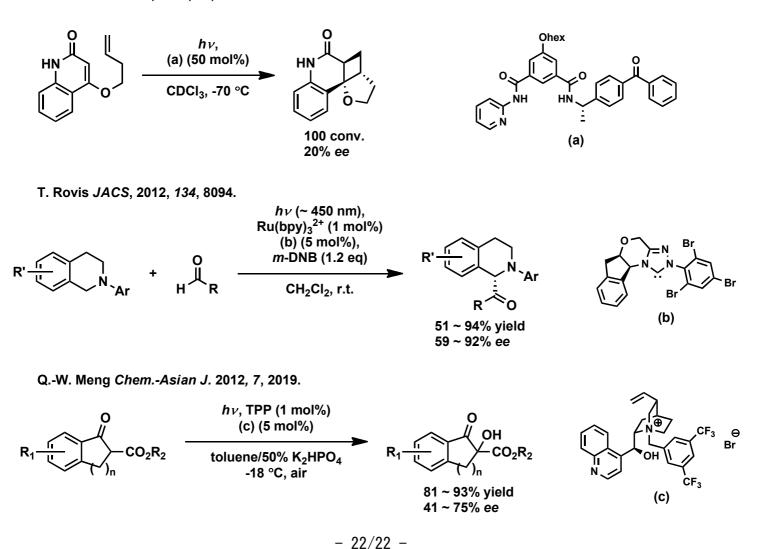
3. Summary

Some kinds of asymmetric photoreactions have been achieved:

a) intra- and intermolecular photocycloaddition by chiral photosensitizers or chiral Lewis acids,

b) α-functionalization (C-O, C-N, and C-C formation) of aldehydes, ketones and amines by the combinational use of chiral catalysts and photoredox catalysts.

The latter strategy, decoupling photochemistry from the enantiodifferentiation step, could be more suitable approach to utilizing photochemistry because the well-established ground-state asymmetric catalysis can be applied directly to the asymmetric photoreactions.


[the directions for designing efficient catalysts]

No reaction occurs in the absence of the catalyst, and the desired reaction proceeds in the presence of the catalyst.

The catalyst should change the electronic properties (e.g. electron-donating catalysts accelerate the oxidation of the substrate by photoredox catalysts), cause the bathochromic shift, and so on.

a catalysts unlisted in this seminar

M. J. Krische JOC, 2003, 68, 15.

