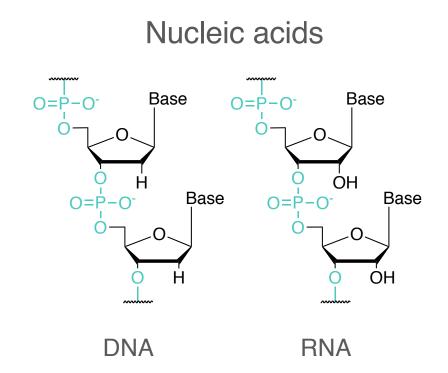
Metal complexes as hydrolytic catalysts of phosphate diester cleavage

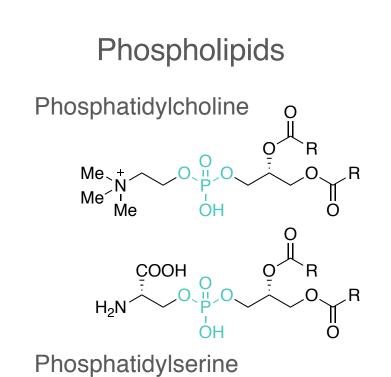
2020/5/14

Literature Seminar

M1 Fujiyoshi

Contents


- Introduction
- Examples of artificial catalyst ligand
- Ligand with hydroxy group
- DNA plasmid cleavage
- Summary


Contents

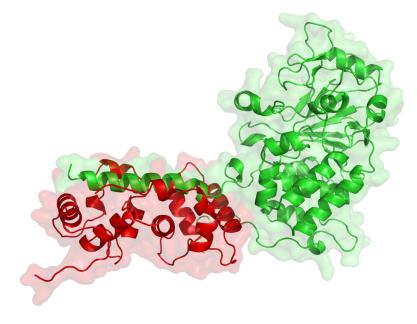
Introduction

- Examples of artificial catalyst ligand
- Ligand with hydroxy group
- DNA plasmid cleavage
- Summary

Phosphate diester in nature

Enzymes cleave phosphate ester

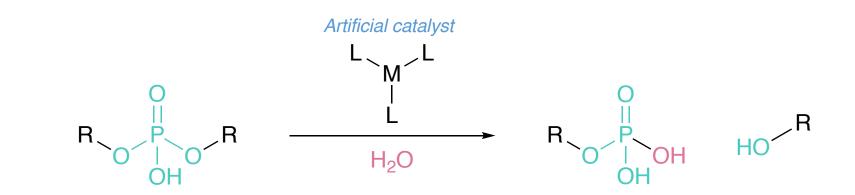
Protein phosphatases Remove phosphate group from Ser/Thr/Tyr


Nucleotidases

Nucleotide to nucleoside DNA cleavage (DNase, Topoisomerase)

In gluconeogenesis

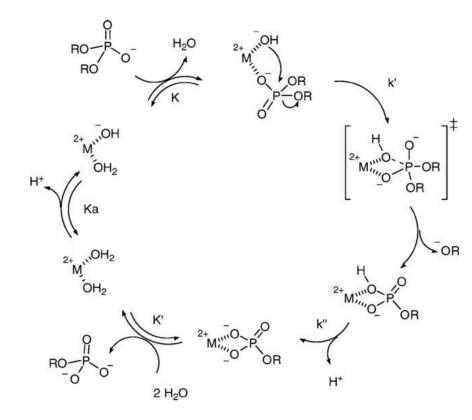
Remove phosphate group from six-carbon phosphate intermediate



Calcineurin (PP2B) is a protein phosphatase enzyme involved in immune system function.

2020/5/14

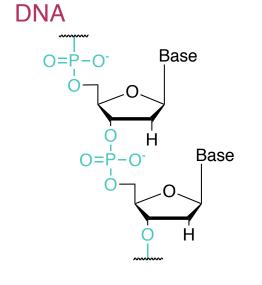
Artificial catalyst mimicking phosphatase



What is the motivation of studies in this field?

- 1. For a better understanding of the chemistry of the corresponding hydrolytic enzymes
- 2. For the detoxification of pesticides and chemical weapons (which often have phosphate ester-like structures)
- 3. For employments as artificial restriction enzymes for molecular biology

2020/5/14


Hydrolysis catalyzed by a metal ion

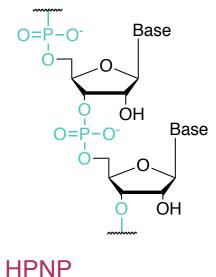
- 1. Deprotonation of coordinated water
- 2. Ligand exchange between water and phosphate diester
- 3. Intramolecular nucleophilic attack of OH-
- 4. Pentavalent intermediate
- 5. Departure of leaving group
- 6. Deprotonation of phosphate monoester
- 7. Ligand exchange between water and phosphate monoester

2020/5/14

DNA model substrate

$\begin{array}{c} \mathsf{BNP} \\ \mathsf{O}_2\mathsf{N} & \bigcirc \\ \mathsf{O}_2\mathsf{N} & \bigcirc \\ \mathsf{O}_2\mathsf{O}$

DNA


Half-life time ($t_{1/2}$): 100,000~100,000 years (in water, 25 °C, pH = 7) DNA is tremendously resistant to hydrolysis due to its polyanionic nature.

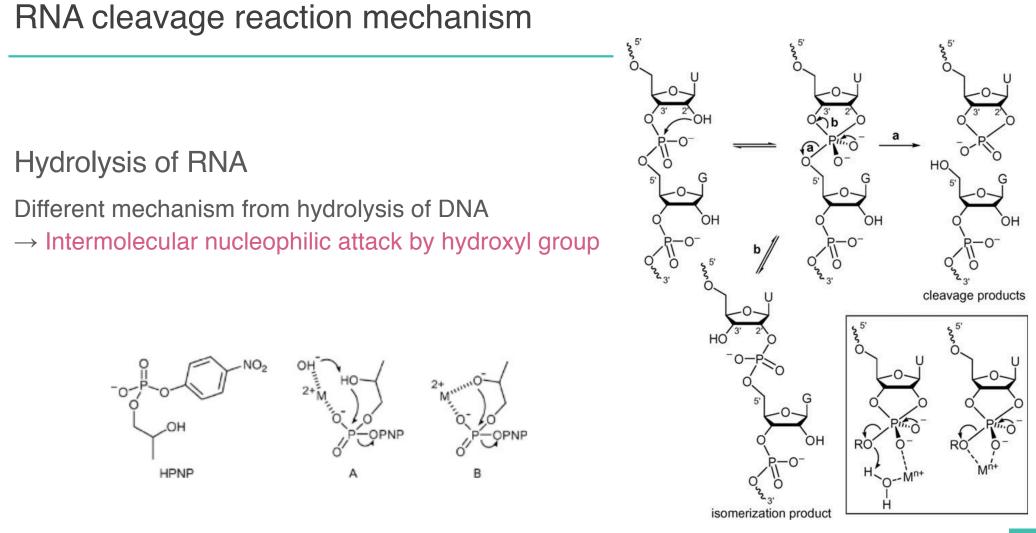
Bis para-nitrophenyl phosphate (BNP) Rate of sponteneous hydrolysis: 1.6×10^{-11} s⁻¹ $t_{1/2}$: 1300 years (in water, 25 °C, pH = 7) \rightarrow rate-limiting step is nucleophile attack (not leaving group departure)

2020/5/14

RNA model substrate

RNA

 NO_2


RNA

Half-life time: 110 years (in water, 25 °C, pH = 7) RNA is less resistant to hydrolysis than DNA due to the presence of the 2'-hydroxyl group on the ribose ring, which acts as internal nucleophile in the cleavage reaction.

2-hydroxypropyl-para-nitrophenyl phosphate(HPNP) The pseudo-first-order rate constant for the cleavage of HPNP: $2.0 \times 10^{-8} \text{ s}^{-1}$ (in water, at 25 °C, pH = 7.0) (Half-life time: about 1 year)

2020/5/14

OH

F. Mancin, et al., New J. Chem., 2007, 31, 800-817

2020/5/14

What metal ion is suitable for this catalyst?

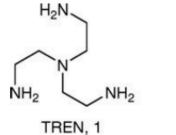
In Nature Mg²⁺, Zn²⁺, Ca²⁺, Fe²⁺ In Artificial system Zn²⁺, Cu²⁺, Co³⁺, Fe³⁺ and lanthanide ions (Eu³⁺, Ce⁴⁺) better Lewis acid and better reactivity

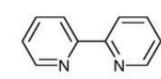
Zn²⁺ is the only metal frequently encountered in both natural and artificial agents.

- · A good Lewis acid
- Exchange ligands rapidly
- Not toxic
- Not redox active
- No ligand field stabilization energy

Contents

Introduction


• Examples of artificial catalyst ligand


- Ligand with hydroxy group
- DNA plasmid cleavage
- Summary

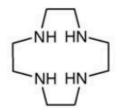
The first study of Zn complex catalyst for hydrolysis of BNP

TREN (1): $k_{BNP} = 5.1 \times 10^{-8} \text{ s}^{-1}$

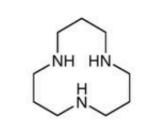
(×2 over background reaction)

_/ pH =

Bpy, 2


Bpy (2): $k_{BNP} = 1.4 \times 10^{-6} \text{ s}^{-1} (\times 53)$

pH = 7.0, 75 °C, 1 mM catalyst, 0.1 M NaNO₃ M. A. De Rosch and W. C. Trogler, *Inorg. Chem.*, 1990, 29, 2409–2416.


The different activity of the two ligands

 \rightarrow The availability of free binding sites in the complexes

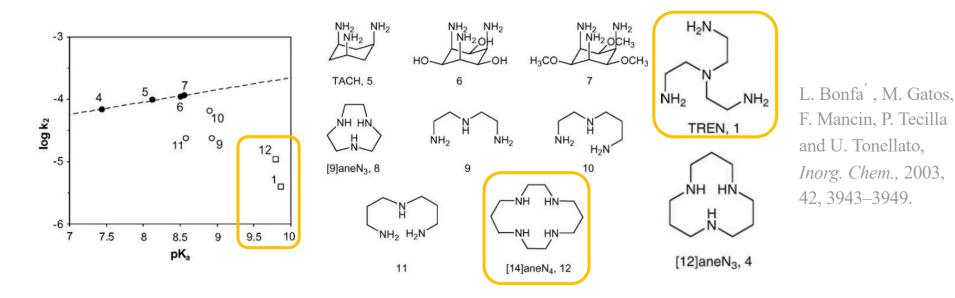
The number of ligand bindings to a metal ion

[12]aneN₄, 3

[12]aneN₃, 4

[12]aneN₄ (3): $k_{BNP} = 2.8 \times 10^{-9} \text{ s}^{-1} (\times 46)$

[12]aneN₃ (4): $k_{BNP} = 3.3 \times 10^{-8} \text{ s}^{-1} (\times 550)$


pH = 7, 35 °C, 1 mM catalyst, 0.2 M NaClO₄ T. Koike and E. Kimura, *J. Am. Chem. Soc.*, 1991, 113, 8935–8941.

Tridendate ligand > Tetradendate ligand

 \rightarrow The occupation of binding sites on the metal ion

 \rightarrow The acidity of the metal-bound water molecule

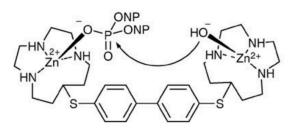
Tetradentate ligand

[14]aneN₄ (12) > TREN (1) (3-fold) Common: Tetradentate and pK_a of water TREN (1) wraps around the metal in a trigonal bipyramidal geometry Less space for additional ligands than the facial coordination mode of [14]aneN₄ (12)

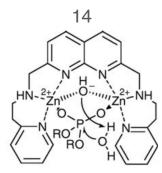
Tridentate ligand

Tripodal ligand (5, 6, 7) > Linear ligand (9, 10, 11)

A linear correlation with a slope value (β_{nuc}) of 0.20 (5, 6, 7)

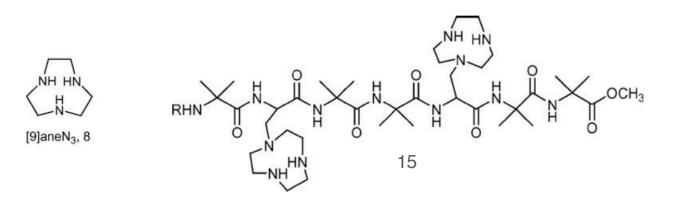

- 1. A strongly acidic metal ion activates the substrate toward nucleophilic attack
- 2. The correlated increase in acidity of the metal-bound water decreases its nucleophilicity

[12]aneN3 (4): the most reactive Zn-based monometallic agent at pH 7


2020/5/14

Bimetallic complex for BNP hydrolysis

13

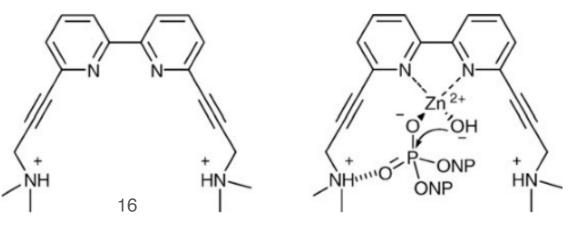


(13): $k_{BNP} = 6.4 \times 10^{-6} \text{ s}^{-1}$, (×2000) (×5 over monometallic system) in water 20 % DMSO, 55 °C, pH = 8.36 W. H. Chapman, Jr and R. Breslow, J. Am. Chem. Soc., 1995, 117, 5462–5469 substrate binds to one Zn²⁺, OH⁻ to the other Zn²⁺

BPAN (14): $k_{BNP} = 3.7 \times 10^{-7} \text{ s}^{-1} (\times 9200)$ (×1.8 over monometallic system) in water 10 % DMSO, pH 7, 40 °C N. V. Kaminskaia, C. He and S. J. Lippard, *Inorg. Chem.*, 2000, 39, 3365–3373. μ -hydroxo bridge \rightarrow general base catalyst

Plasmid DNA cleaving bimetallic system

(15): cleavage of pBR322 DNA (12 μ M bp) k = 1.0×10⁻⁵ s⁻¹ (×20 over monometallic system) in 20 mM HEPES, pH 7.0, 37°C, 3.6 μ M (complex)


3₁₀-helical conformation

 \rightarrow bind to DNA by inserting the two macrocycles within three adjacent phosphate groups

C. Sissi, P. Rossi, F. Felluga, F. Formaggio, M. Palumbo, P. Tecilla, C. Toniolo and P. Scrimin, *J. Am. Chem. Soc.*, **2001**, 123, 3169–3170.

2020/5/14

Cooperation between Zn²⁺ ions and organic functional groups

(16): Zn²⁺ complex (×5 over Bpy) (in MeCN/water 19 : 1) E. Kovari and R. Kra[¨]mer, *Chem. Ber.*, **1994**, 127, 2151–2157

Cu²⁺ complex is more reactive (×4×10⁷ over the background reaction) pH = 7, 20 °C \rightarrow The square planar coordination geometry of this metal placed the substrate in a better position to interact with the ammonium groups.

E. Kovari and R. Kra"mer, J. Am. Chem. Soc., 1996, 118, 12704–12709.

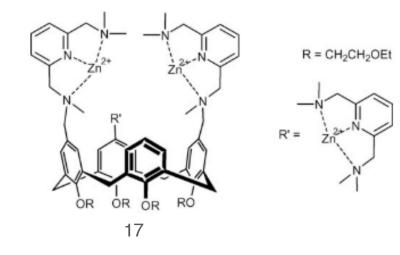
Bimetallic complex for HPNP

13

(13): ×1072 for HPNP

×39 for UpU

×5 over the monometallic complex One metal ion binds the phosphate oxygen \rightarrow Lewis acid activation


The second coordinates to the substrate hydroxyl group

→ Promote deprotonation and subsequent nucleophilic attack

 π -stacking between ligand and substrate

W. H. Chapman, Jr and R. Breslow, *J. Am. Chem. Soc.*, **1995**, 117, 5462–5469

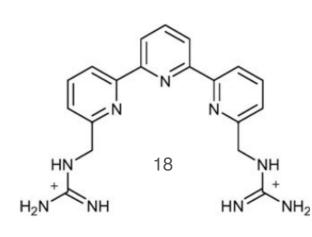
Calixarene-based trimetallic complex

P. Molenveld, et al., *Chem. Soc. Rev.*, 2000, 29, 75–86;
P. Molenveld, et al., *J. Org. Chem.*, 1999, 64, 3896–3906;
P. Molenveld, et al., *Angew. Chem.*, Int. Ed., 1999, 38, 3189–3191;
P. Molenveld, et al., *Eur. J. Org. Chem.*, 1999, 3269–3275;
P. Molenveld, et al. *J. Am. Chem. Soc.*, 1997, 119, 2948–2949.
R. Cacciapaglia, et al., *J. Am. Chem. Soc.*, 2006, 128, 12322–12330.
R. Cacciapaglia, et al., *J. Org. Chem.*, 2005, 70, 624–630

Calix[4]arene (17) HPNP transesterification ×32000 ×35 over monometallic system in 50% water/CH₃CN, pH 7, 25 °C

Hydrophobic pocket \rightarrow the binding of the substrate Flexibility \rightarrow ajustment of the intermetallic distance

Not active for simple phosphate ester


 \rightarrow One Zn²⁺ activates phosphate and second promotes deprotonation of hydroxyl group.

RNA UpU: \times 8600, UpU and GpG > ApA

 \rightarrow Third Zn²⁺ ion binds acidic amide of U or G

2020/5/14

Guanidinium group promotes the reaction

The terpyridine-like ligand bearing two guanidinium groups (18) Hydrolysis of RNA ApA

 \times 6 magnitude (pH = 7.4, 37 °C)

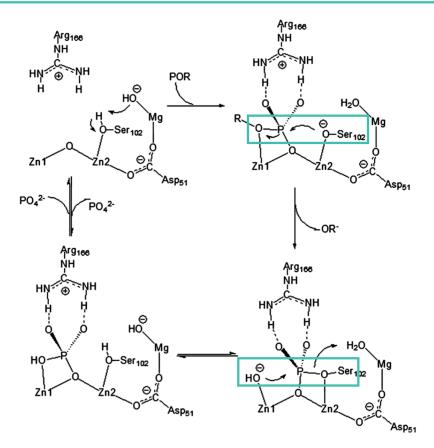
×3300 over complex without guanidium group
×9 over complex substituted for ammonium group

① Hydrogen bonding

2 Electrostatic interactions

③ Acid catalysis by the two guanidinium groups

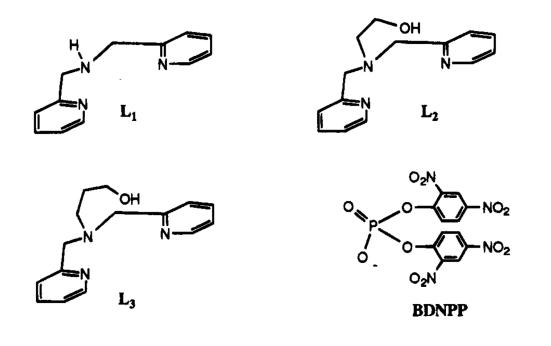
- \rightarrow additional substrate activation
- \rightarrow transition state stabilization
- \rightarrow possibly leaving group assistance


H. Ait-Haddou, J. Sumaoka, S. L. Wiskur, J. F. Folmer-Andersen and E. V. Anslyn, *Angew. Chem., Int. Ed.*, **2002**, 41, 4014–4016.

2020/5/14

Contents

- Introduction
- Examples of artificial catalyst ligand
- Ligand with hydroxy group
- DNA plasmid cleavage
- Summary

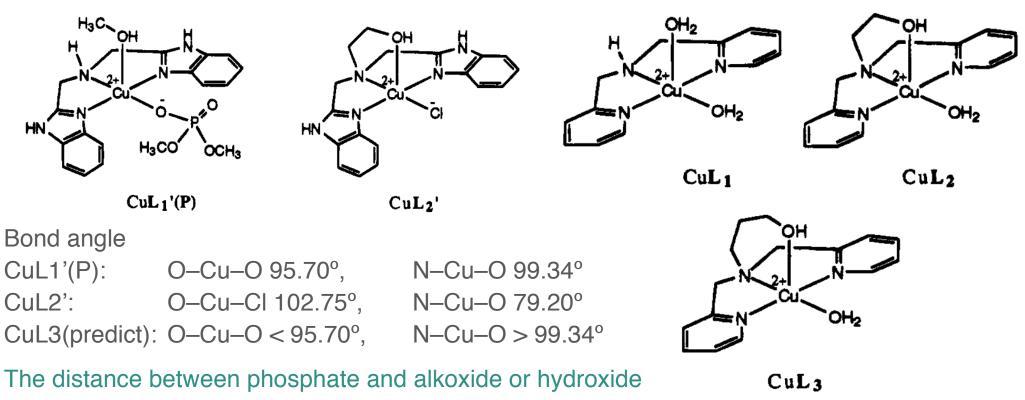

Serine at the active site of alkaline phosphatase

 $\label{eq:Fig.1} Fig.1 \ \ \ Proposed \ mechanism \ of three-metal \ ion \ catalysis \ in the hydrolysis \ of \ phosphate \ monoesters \ by \ AP. \ Most \ of \ the \ ligands \ of \ Zn1, \ Zn2 \ and \ Mg \ are \ not \ shown$

Zhang, H., Yang, L., Ding, W., et al., J. Biol. Inorg. Chem., 2018, 23, 277-284

Cleavage of phosphodiester catalysed by Cu complex with -OH group

Reactivity						
CuL ₃	×100	over CuL ₂				
	×30	over CuL ₁				


CuL₁: direct hydrolysis CuL₂: mainly hydrolysis & some transesterification CuL₃: mainly transesterification

 \rightarrow similar pKa (~ 8.8)

 \rightarrow The difference between CuL₃ and CuL₂ is derived from the structure.

Structual insight of Cu complex with –OH group

 $CuL_3 > CuL_2 > CuL_1$ (= reactivity)

×M. J. Young, D. Wahnon, R. C. Hynes, J. Chin, *J. Am. Chem. Soc.,* **1995**, 117, 9441–9447.

2020/5/14

Pyridine amino group promote hydrolysis

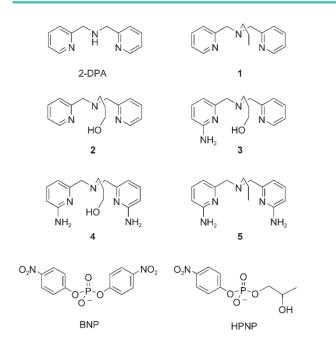
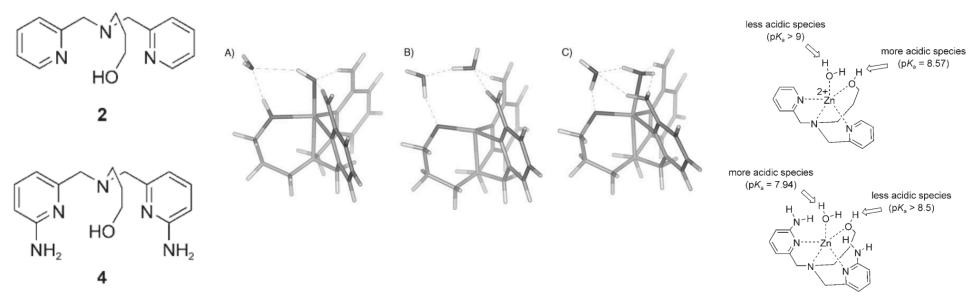


Table 3. Kinetic acid dissociation constants for the coordinated species (pK_a^n) and second-order rate constants (k_2) for BNP and HPNP cleavage by using Zn^{II} complexes of ligands **1–5** in water at 25 °C.^[a]

BNP			HPNP			
Ligand	$\mathrm{p}K_{\mathrm{a}}^{1}$	pK_a^2	$k_2 [\mathrm{m}^{-1} \mathrm{s}^{-1}]$	$\mathrm{p}K_\mathrm{a}^1$	pK_a^2	$k_2 [\mathrm{M}^{-1}\mathrm{s}^{-1}]$
1	_[b]	_[b]	_[b]	9.1	10.9	3.9×10^{-2}
2	8.3 ^[d]	$10.9^{[d]}$	$4.2 \times 10^{-4[d]}$	8.8	10.9	2.1×10^{-2}
3	8.6	11.0	3.8×10^{-3}	_[c]	_[c]	_[c]
4	7.9 ^[d]	$10.2^{[d]}$	$9.7 \times 10^{-2[d]}$	7.2	10.4	2.8×10^{-1}
5	$8.1^{[d]}$	10.3 ^[d]	$5.6 \times 10^{-3[d]}$	7.7	10.5	2.8×10^{-1}


[a] [Buffer] = 5.0×10^{-2} M, estimated errors in the values of these kinetic constants are within 10%. [b] No reactivity observed. [c] Not determined. [d] See ref. [13].

BNP cleavage: $4 > 5 \sim 3 > 2$

Pyridine amino group promotes hydrolysis of phosphate diester.

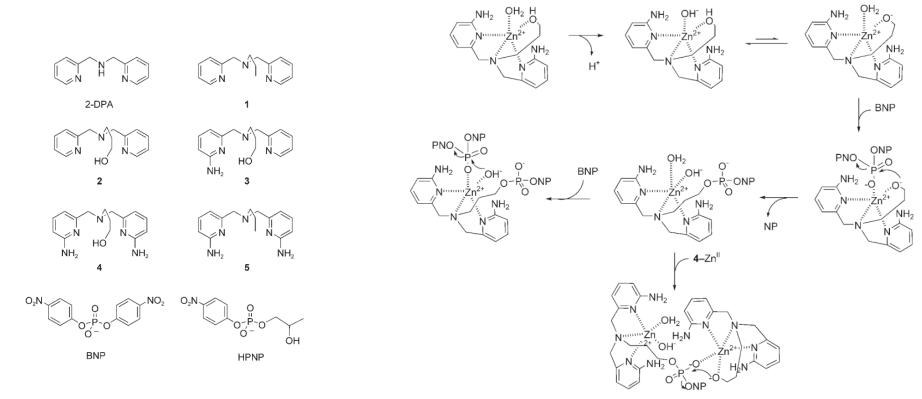
 \rightarrow Increase of the acidity of metal bound water

Structures of hydroxide (A) and alkoxide (B, C) complexes

Trigonal-bipyramid geometry

Scheme 1. Tentative identification of the microscopic pK_a values of the metal-bound species in Zn^{II} -**2** and Zn^{II} -**4**.

Equatorial: the two pyridine nitrogen atoms and the hydroxyl group

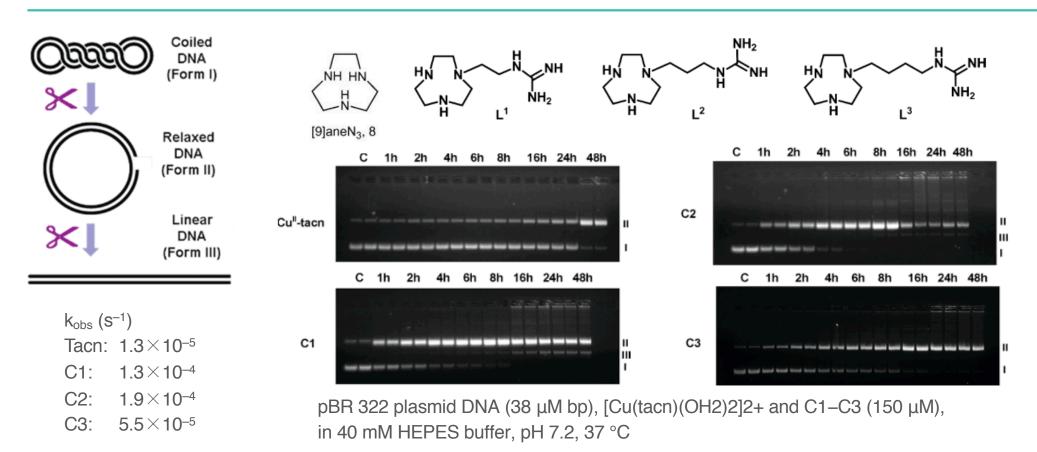

Apical: the tertiary amino group and the water molecule

The energy of the hydroxide species is about 5–6 kcal mol⁻¹ lower than that of the alkoxide.

2020/5/14 M. Livieri, F. Mancin, G. Saielli, J. Chin and U. Tonellato, *Chem. Eur. J.*, **2007**, 13, 2246–2256. _{M1 Fujiyoshi}

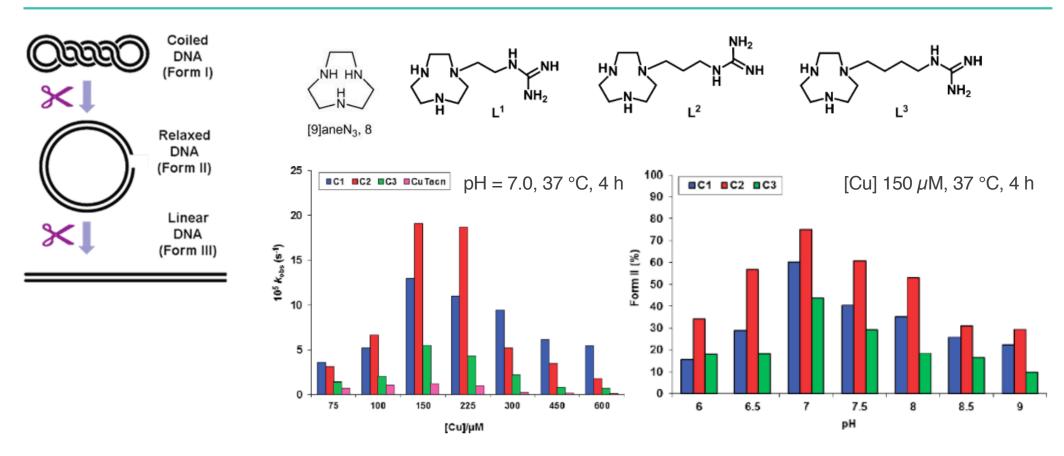
27

Proposed mechanism for BNP cleavage by using Zn²⁺–4 complex.

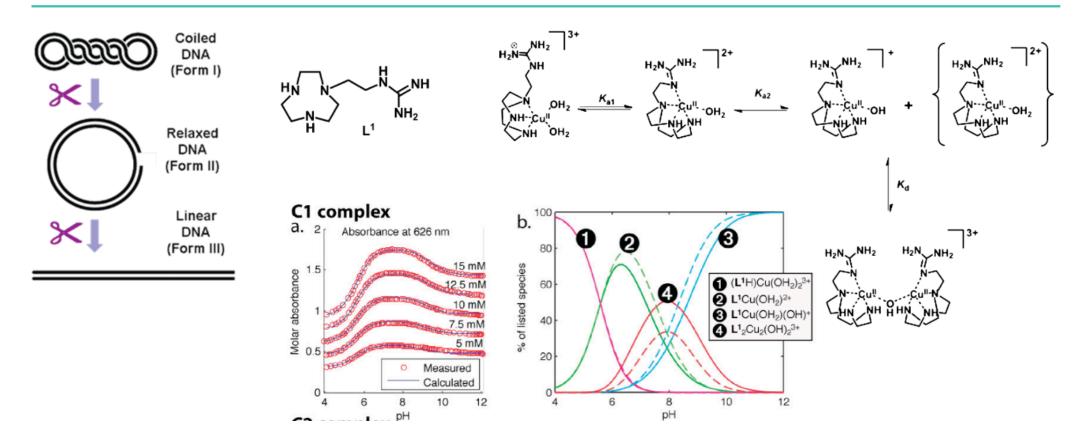

Scheme 2. Proposed mechanism for BNP cleavage by using Zn^{II}-4 complexes.

2020/5/14 M. Livieri, F. Mancin, G. Saielli, J. Chin and U. Tonellato, *Chem. Eur. J.*, **2007**, 13, 2246–2256. M1 Fujiyoshi 28

Contents

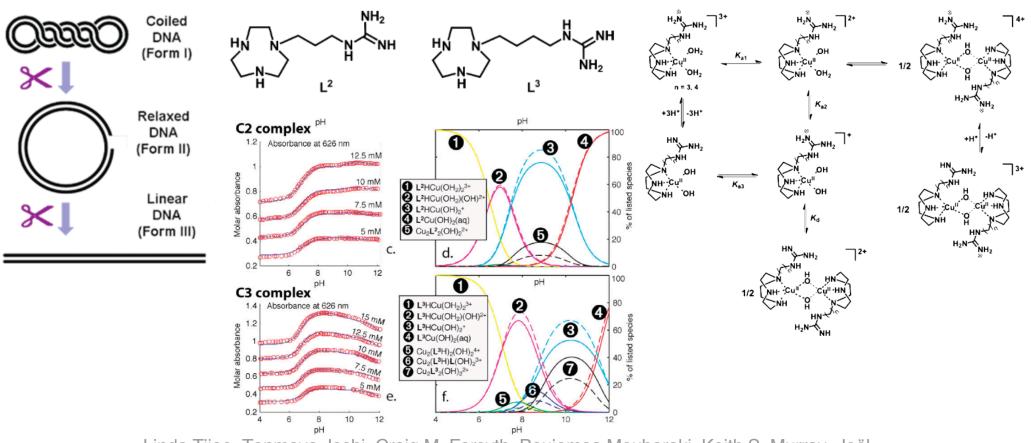

- Introduction
- Examples of artificial catalyst ligand
- Ligand with hydroxy group
- DNA plasmid cleavage
- Summary

DNA cleavage by Cu complex catalyst: pBR 322 plasmid DNA


Linda Tjioe, Tanmaya Joshi, Craig M. Forsyth, Boujemaa Moubaraki, Keith S. Murray, Joël Brugger, Bim Graham, and Leone Spiccia, *Inorganic Chemistry*, **2012** 51 (2), 939-953

DNA cleavage by Cu complex catalyst: Concentration and pH

Linda Tjioe, Tanmaya Joshi, Craig M. Forsyth, Boujemaa Moubaraki, Keith S. Murray, Joël Brugger, Bim Graham, and Leone Spiccia, *Inorganic Chemistry*, **2012** 51 (2), 939-953


DNA cleavage by Cu complex catalyst: L₁

Linda Tjioe, Tanmaya Joshi, Craig M. Forsyth, Boujemaa Moubaraki, Keith S. Murray, Joël Brugger, Bim Graham, and Leone Spiccia, *Inorganic Chemistry*, **2012** 51 (2), 939-953

2020/5/14

DNA cleavage by Cu complex catalyst: L₂ and L₃

Linda Tjioe, Tanmaya Joshi, Craig M. Forsyth, Boujemaa Moubaraki, Keith S. Murray, Joël Brugger, Bim Graham, and Leone Spiccia, *Inorganic Chemistry*, **2012** 51 (2), 939-953

2020/5/14

Contents

- Introduction
- Examples of artificial catalyst ligand
- Ligand with hydroxy group
- DNA plasmid cleavage
- Summary

Summary

- This system is one of "nanozymes" and has been developed since 1990's.
- Zn²⁺ ion is one of the suitable metal ion for artificial catalyst of phosphate diester hydrolysis.
- Zn²⁺ complex reactivity depends not only on Lewis acidity but also on structure.
- Functional groups increase the reactivity of metal complexes.
- Cu-tacn ligand with guanidinium group can cleavage the phosphate diester of plasmid DNA.