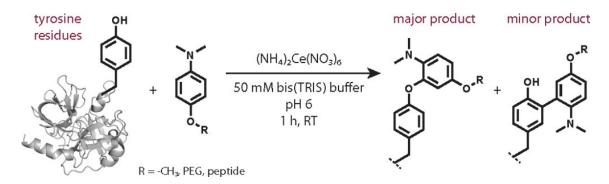
Activation by One Electron Oxidation

B4 Kimihiro Miyauchi 2021/12/17

Introduction

Examples of one electron oxidation

Initiating cycloaddition


MeO

R¹

$$R^3$$
 R^3
 R^2
 R^2
 R^2
 R^3
 R^3
 R^2
 R^3
 R^3
 R^2
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3

Ishihara, K. et al. J. Am. Chem. Soc. 2019, 141, 1877-1881

Bioconjugation

Francis, M. et al. *J. Am. Chem. Soc.* **2011**, *133*, 16970–16976

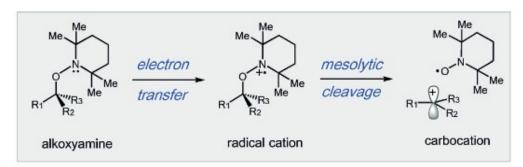
Contents

- ■Mesolytic Cleavage of Radical Cation
- ■Oxidative S_NAr Pathway
- ■Application to Biomolecular
- **■**Summary

Contents

- ■Mesolytic Cleavage of Radical Cation
- ■Oxidative S_NAr Pathway
- ■Application to Biomolecular
- **■**Summary

Mesolytic Cleavage of Radical Cation


- Conventional Alkylation Strategies
- Strong acids or Lewis acids required for generating carbocation.

Alkylation reagents are very reactive.

$$Me^{-1}$$
 $H_2C_{\sim}N_{\sim}^{\oplus}$
 Me^{-1}
 $H_2C_{\sim}N_{\sim}^{\oplus}$
 Ne^{-1}
 Me^{-1}
 $Me^{$

Mesolytic Cleavage of Radical Cation

Previous works

Knowles, R. et al. Angew. Chem. Int. Ed. 2016, 55, 9969-9973.

Ciampi, S., Coote, M. et al. J. Am. Chem. Soc. 2018, 140, 766-774.

- Generating carbocation by mesolytic cleavage of radicalcation
- Under mild conditions without Lewis/strong acid

Electrochemically activated methylation

> Stable and unreactive in neutral form without electrochemical stimuli.

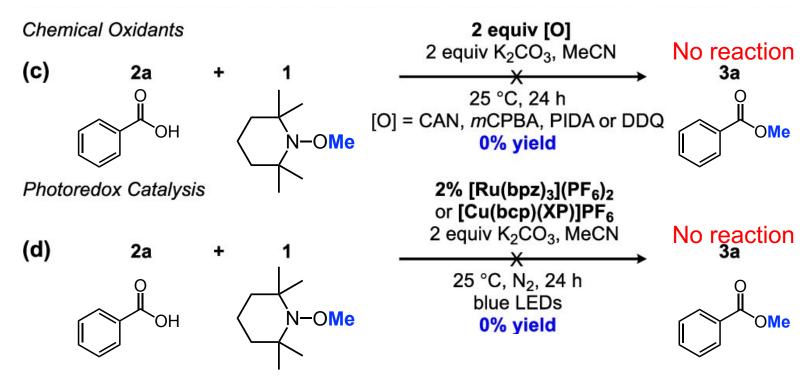

Optimization

Table 2. Electrochemical Methylation of Benzoic Acid Using TEMPO-Me: Influence of Reaction Parameters^a

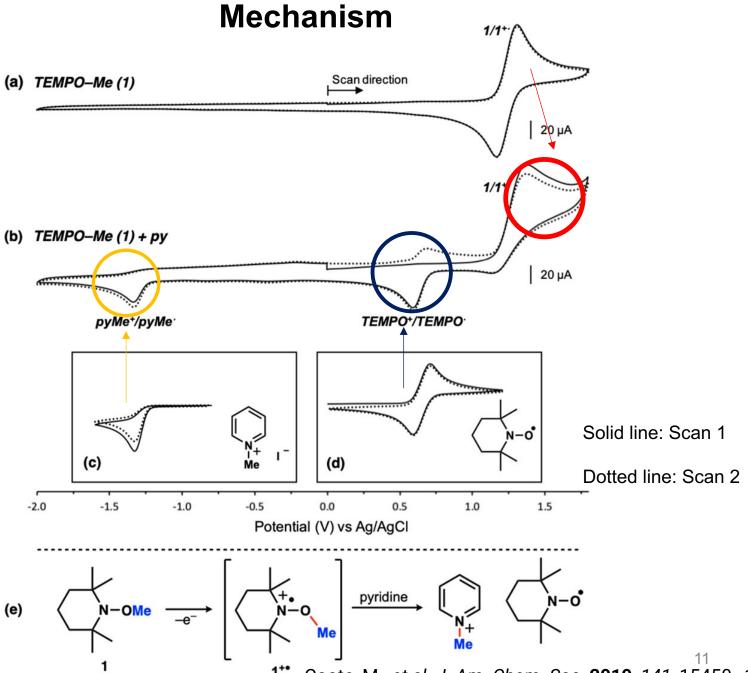
entry	electrolyte	solvent	base (eq)		electrolytic conditions (mA)	F·mol ⁻¹	isolated yield (%) ^b
1	Bu_4NBF_4	MeCN	Cs_2CO_3	(1.1)	10	12.2	0 (13) ^c
2	Bu_4NBF_4	MeCN	K ₂ CO ₃	(1.1)	10	12.2	$0 (21)^c$
3	Bu_4NBF_4	MeCN	$2,6-(t-Bu)_2C_5H_3N$	(1.1)	10	12.2	37
4	Bu_4NBF_4	CH_2Cl_2	$2,6-(t-Bu)_2C_5H_3N$	(1.1)	10	12.2	22
5	Bu_4NBF_4	THF	$2,6-(t-Bu)_2C_5H_3N$	(1.1)	10	12.2	0
6	Bu_4NBF_4	DMSO	$2,6-(t-Bu)_2C_5H_3N$	(1.1)	10	12.2	0
7	Bu ₄ NPF ₆	MeCN	$2,6-(t-Bu)_2C_5H_3N$	(1.1)	10	12.2	44
8	Bu ₄ NClO ₄	MeCN	$2,6-(t-Bu)_2C_5H_3N$	(1.1)	10	12.2	51
9	Bu ₄ NClO ₄	MeCN	$2,6-(t-Bu)_2C_5H_3N$	(0.25)	10	12.2	50
10	Bu ₄ NClO ₄	MeCN	$2,6-(t-Bu)_2C_5H_3N$	(0.10)	10	12.2	51
11	Bu ₄ NClO ₄	MeCN	none		10	12.2	22
12	Bu ₄ NClO ₄	MeCN	$2,6-(t-Bu)_2C_5H_3N$	(0.10)	5	6.1	46
13	Bu ₄ NClO ₄	MeCN	$2,6-(t-Bu)_2C_5H_3N$	(0.10)	15	18.3	25
14	Bu ₄ NClO ₄	MeCN	$2,6-(t-Bu)_2C_5H_3N$	(0.10)	10	6.7	91 ^d

^aReactions consisted of **2a** (0.5 mmol), **1** (0.55 mmol, 1.1 equiv), and base (stated equivalents) in an electrolyte solution (10 mL; 0.1 M) electrolyzed in a 10 mL undivided cell at room temperature open to air for 18 h using an IKA Electrasyn 2.0 and two graphite electrodes, unless otherwise specified. ^bYield with respect to **2a**. ^cYield obtained when the cell polarity was reversed every 10 min. ^d2.0 equiv of **1**.

Optimization

- Neither stoichiometric oxidants nor PC facilitated methylation
 - Electrochemistry is crucial for this reaction

Substrate scope


undivided cell: 0.5 mmol 2, 2,6-di(*Bu)pyridine (10 mol%)

CO₂Me CO₂Me CO₂Me CO₂Me CO₂Et 3e 73% yield 3f 92% yield 3g 57% yield 3h 65% yield

Methylation achieved in moderate to high yield

divided cell: 1.0 mmol 2, Cs2CO3 (1.1 equiv.)

Bearing functional groups susceptible to reduction → divided cells

Coote, M., et al. J. Am. Chem. Soc. 2019, 141, 15450-1545

Short Summary

- Electrochemically activated methylation under mild condition.
- > TEMPO-Me is stable in neutral form.
- ➤ There is still some room for improvement of the substrate scope and the reactivity of the donor.

Contents

- ■Mesolytic Cleavage of Radical Cation
- ■Oxidative S_NAr Pathway
- ■Application to Biomolecular
- **■**Summary

Oxidative S_NAr Pathway

Common S_NAr pathway

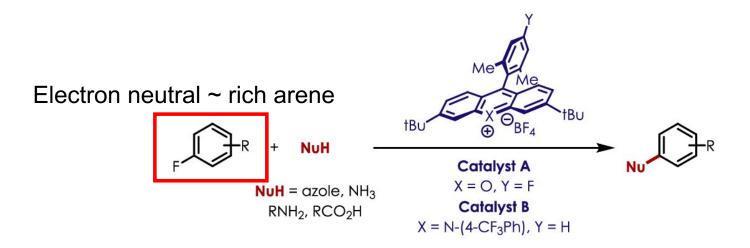
Cannot be applied to electron-rich arenes

Attempts to facilitate S_NAr with electron neutral/rich arenes

High temperature is needed

Diness, F. & Fairlie, D. Angew. Chem. Int. Ed. 2012, 51, 8012-8016

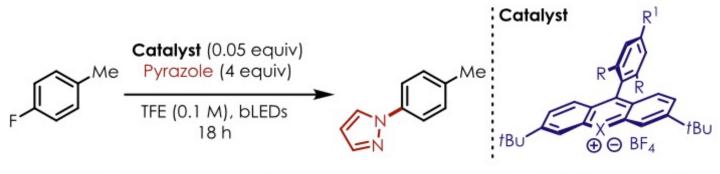
Oxidative S_NAr Pathway


- Previous reports
 - Substitution at C-OMe

Nicholas. T., & Nicewicz. D. J. Am. Chem. Soc. 2017, 139, 16100–16104

Defluorinative substitution

Huang, H., & Lambert, T. H. Angew. Chem. Int. Ed. 2020, 59, 658-662


Oxidative S_NAr Pathway

- > S_NAr reaction with electron rich or neutral arene under mild condition
- Amine or carboxylic acid can be used as nucleophile

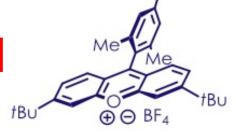

Optimization (Heteroarene)

Table 1. Catalyst Development for Fluorotoluene S_NAr

entry	R	\mathbb{R}^1	X	$E^*_{1/2}^{\text{red}} (V)^a$	yield b
1	Me	Me	NPh	+2.10	0%
2	Cl	Н	NPh	+2.21	8%
3	Me	Me	O	+2.51	<5%
4	Cl	Н	О	+2.66	35%
5	Me	F	0	+2.57	55%

^aSaturated calomel electrode (SCE) as reference. ^bYield determined by ¹H NMR using HMDSO as an internal standard.

Catalyst A

Optimization (Heteroarene)

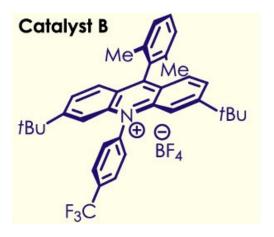
Table 2. Optimization of Fluorotoluene S_NAr using Pyrazole

entry	deviations from the above conditions	yield ^a
1	none	55%
2	DCM	4%
3	MeCN	10%
4	HFIP as solvent	72%
5	3 equiv of pyrazole	68%
6	2 equiv of pyrazole	51%
7	1 equiv of pyrazole	45%
8	0.01 equiv of catalyst	48%
9	0.075 equiv of catalyst: HFIP	72%
10	456 nm Kessils	63%
11	427 nm Kessils	62%
12	427 nm Kessils with foil barrier	82%

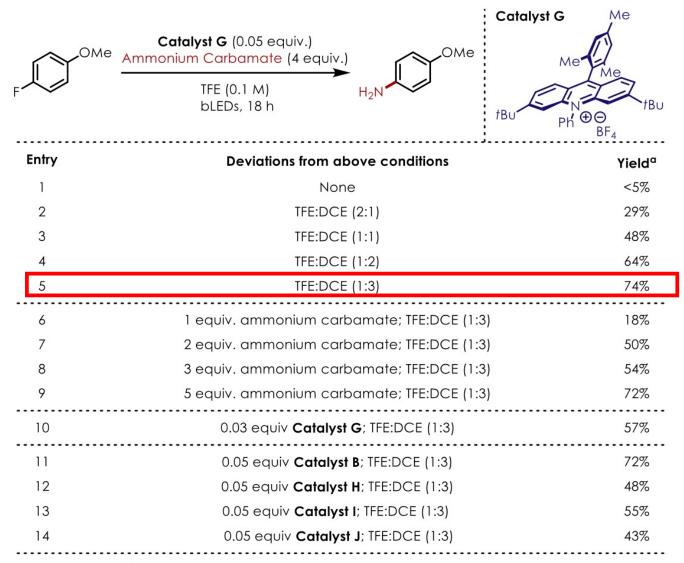
Using HFIP as solvent gave higher yield

Nicewicz, D. et al. J. Am. Chem. Soc. 2020, 142, 17187-17194

^aYield determined by ¹H NMR using HMDSO as an internal standard

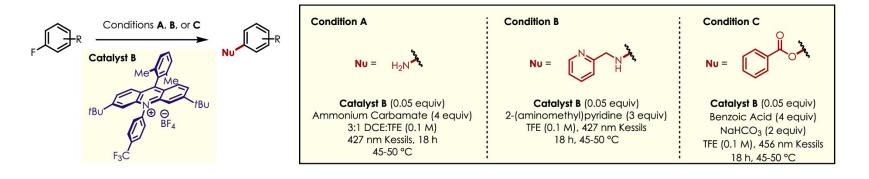

Substrate Scope (Heteroarene)

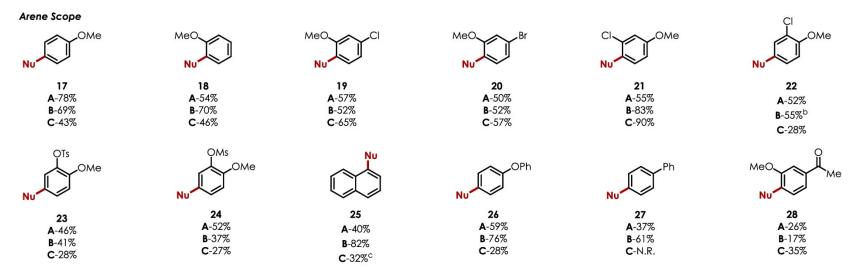
Optimization (Amine, Carboxylic acid)


Xanthylium salt catalyst is not compatible with amine as nucleophile

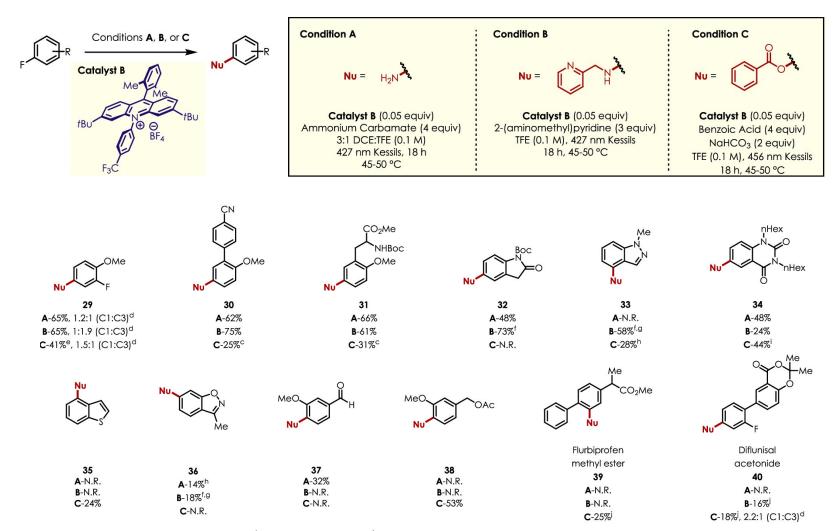
Nicewicz, D. et al. Synlett. 2019, 30, 827-832

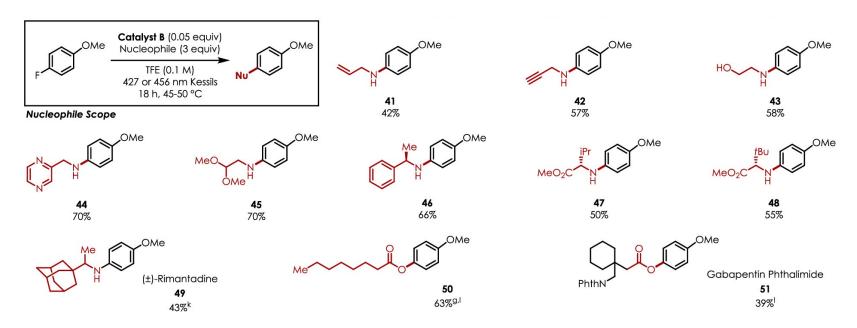
Using acridinium salt catalyst (Catalyst B) instead




Optimization (Amine, Carboxylic acid)

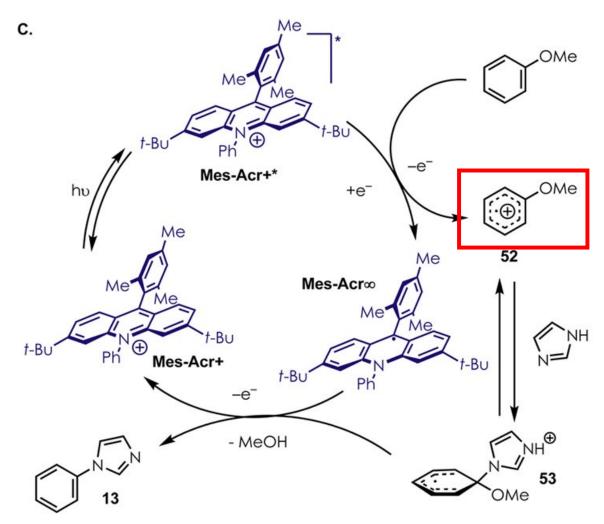
^aYield determined by ¹H NMR using HMDSO as an internal standard


Substrate Scope (Amine, Carboxylic acid)


^aAverage isolated yields are reported (0.3–0.5 mmol, n = 2); 45–50 °C represents the ambient temperature of the light setup using external fan cooling. ^bEleven percent C–O substitution product. ^c0.10 equiv of Catalyst B used. ^dRatio determined by ¹H NMR. ^eNine percent disbustitution observed. ^f3 equiv of benzyl amine as nucleophile ^gIsolated yield (0.150 mmol, n = 1). ^hYield determined by ¹H NMR using HMDSO as an internal standard. ⁱIsolated yield (0.050 mmol, n = 1). ^j0.075 equiv of Catalyst B used. ^kDCE used as in place of TFE. ^l4 equiv of carboxylic acid and 2 equiv of NaHCO₃ employed.

Substrate Scope (Amine, Carboxylic acid)

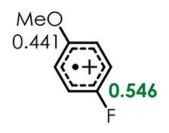
^aAverage isolated yields are reported (0.3–0.5 mmol, n = 2); 45–50 °C represents the ambient temperature of the light setup using external fan cooling. ^bEleven percent C–O substitution product. ^c0.10 equiv of Catalyst B used. ^dRatio determined by ¹H NMR. ^eNine percent disbustitution observed. ^f3 equiv of benzyl amine as nucleophile ^gIsolated yield (0.150 mmol, n = 1). ^hYield determined by ¹H NMR using HMDSO as an internal standard. ⁱIsolated yield (0.050 mmol, n = 1). ^j0.075 equiv of Catalyst B used. ^kDCE used as in place of TFE. ^l4 equiv of carboxylic acid and 2 equiv of NaHCO₃ employed.

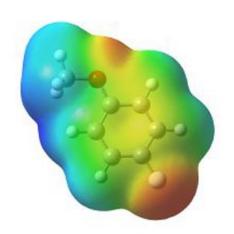

Substrate Scope (Amine, Carboxylic acid)

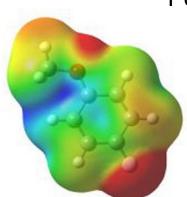
^aAverage isolated yields are reported (0.3–0.5 mmol, n = 2); 45–50 °C represents the ambient temperature of the light setup using external fan cooling. ^bEleven percent C–O substitution product. ^c0.10 equiv of Catalyst B used. ^dRatio determined by ¹H NMR. ^eNine percent disbustitution observed. ^f3 equiv of benzyl amine as nucleophile ^gIsolated yield (0.150 mmol, n = 1). ^hYield determined by ¹H NMR using HMDSO as an internal standard. ⁱIsolated yield (0.050 mmol, n = 1). ^j0.075 equiv of Catalyst B used. ^kDCE used as in place of TFE. ^l4 equiv of carboxylic acid and 2 equiv of NaHCO₃ employed.

- ➤ Modification without racemizing → 46~48
- Applicable to drug compound, but resulted in low to moderate yield.

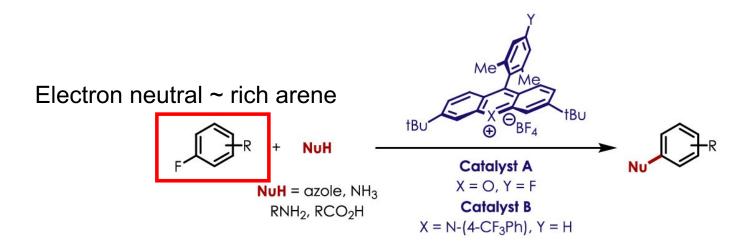
Proposed Mechanism


J. Am. Chem. Soc. 2017, 139, 16100-16104


Rational for regioselectivity


A. Computed Electron Density of 4-fluoroanisole (ground state and cation radical)

B3LYP/6-31+G(d,p)



Positive charge resides on C-F

Short Summary

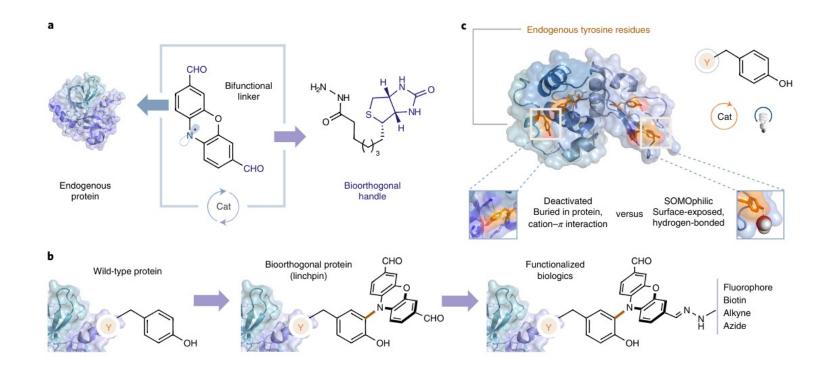
- ➤ Reverse the reactivity of electron-rich arene with single-electron oxidation.
- Late-stage functionalization of pharmaceutical compounds

Contents

- ■Mesolytic Cleavage of Radical Cation
- ■Oxidative S_NAr Pathway
- ■Application to Biomolecular
- **■**Summary

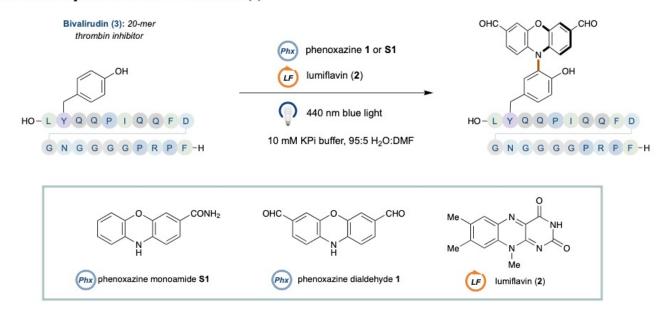
Application to Biomolecular

- Previous reports
 - Decarboxylative C term modification


MacMillan, D. et al. Nat. Chem. 2018, 10, 205-211

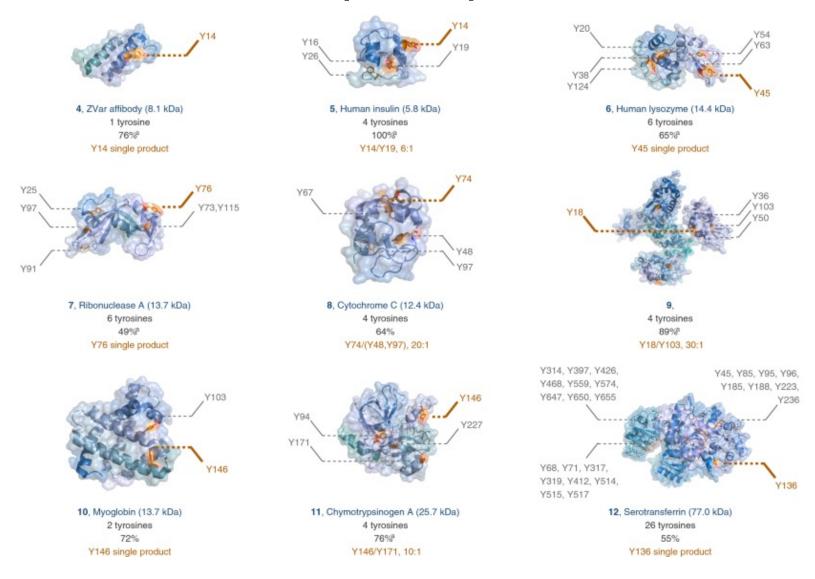
Ligand directed Tyr modification

Sato, S., & Nakamura, H. Angew. Chem. Int. Ed. 2013, 52, 8681-8684


Site-selective Tyr Modification

- > Tyrosine selective modification
- Further functionalization with versatile handle

Optimization


II. Reaction optimization with bivalirudin (3)

entry	phenoxazine (equiv.)	lumiflavin	reaction time	conversion
1	phenoxazine monoamide S1 (10 equiv.)	1 equiv.	3 hours	65%
2	phenoxazine dialdehyde 1 (10 equiv.)	3 equiv.	3 hours	46%
3	phenoxazine dialdehyde 1 (10 equiv.)	3 equiv.	5 hours	74%
4	phenoxazine dialdehyde 1 (100 equiv.)	3 equiv.	5 hours	95%
5	phenoxazine dialdehyde 1 (100 equiv.)	0 equiv.	5 hours	0% (sm recovered)
6	phenoxazine dialdehyde 1 (100 equiv.)	3 equiv.	5 hours (dark)	0% (sm recovered)

MacMillan, D. et al. Nat. Chem. 2021, 13, 902-908

Substrate Scope of Peptide or Protein

Site-selective Tyr modification was achieved

Rational for Site-selectivity

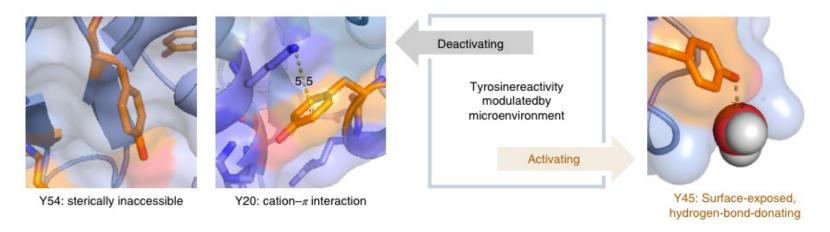
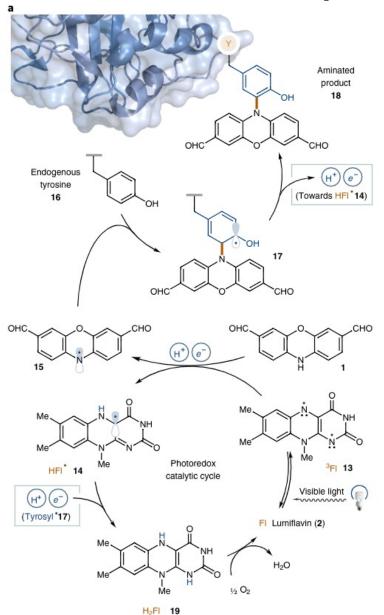
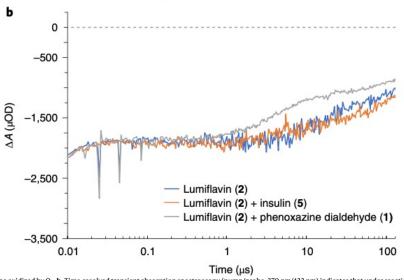
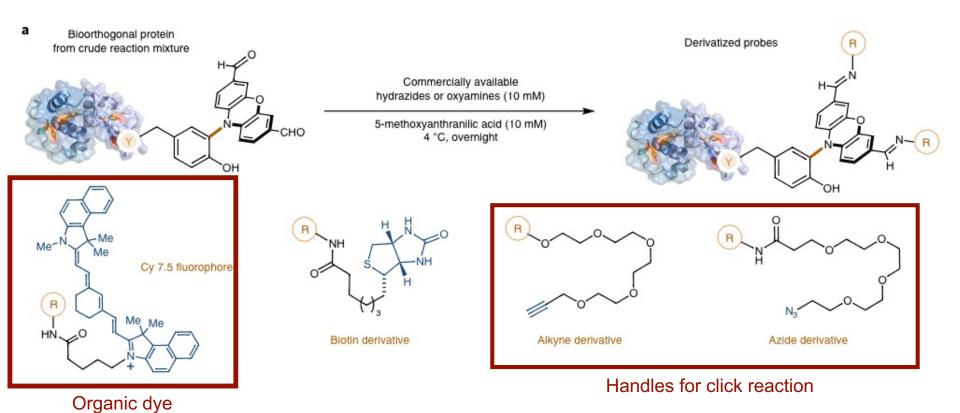




Fig. 2 | Tyrosine microenvironments. Representative tyrosines from human lysozyme (6) in their respective microenvironments. Y20 and Y54 are not reactive due to steric constraints or deactivating cation– π interactions, whereas Y45 is labelled with high efficiency because it is surface-exposed and hydrogen-bond-donating to surrounding aqueous media.

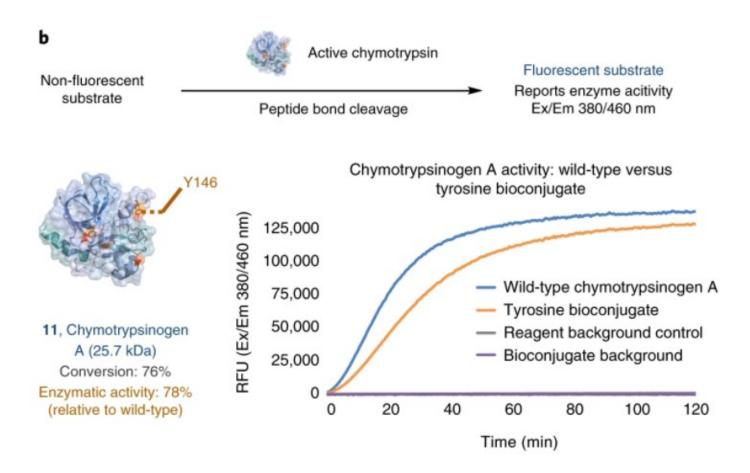
- A residue surface-exposed and activated is modified.
- Sterically hindered or deactivated Tyr did not react.
- \triangleright Cation- π interaction reduces π electron density.

Proposed Mechanism



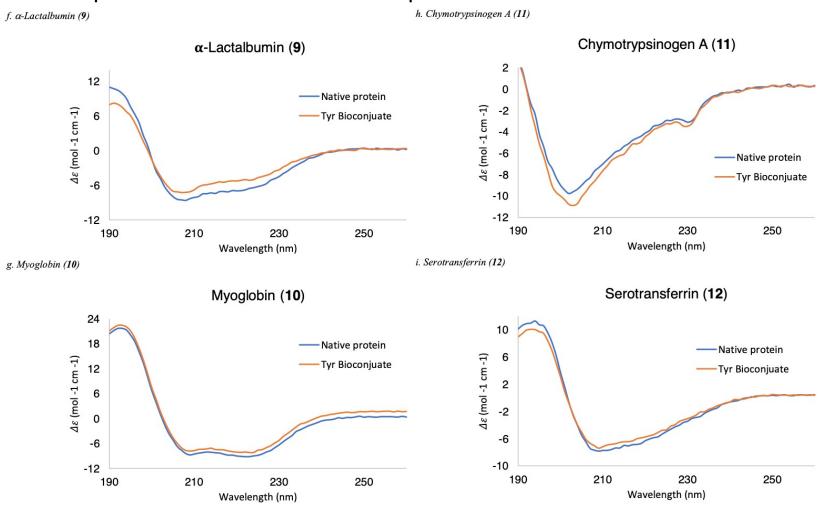
can be oxidized by Q_2 . **b**, Time-resolved transient absorption spectroscopy (pump/probe, 370 nm/433 nm) indicates that under reaction conditions (10 mM KPi buffer, pH 7, 95:5 H_2 O/dimethylformamide), the lumiflavin excited state is quenched by $\underline{1}$ and not by insulin (**5**). This offers support for the formation of **15** versus protein oxidation. ΔA , change in absorbance; μ OD, optical density units. See Supplementary Section $\underline{7}$ for additional experimental details.

➤ From excited state absorption, flavin oxidates phenoxiazine not Tyr.

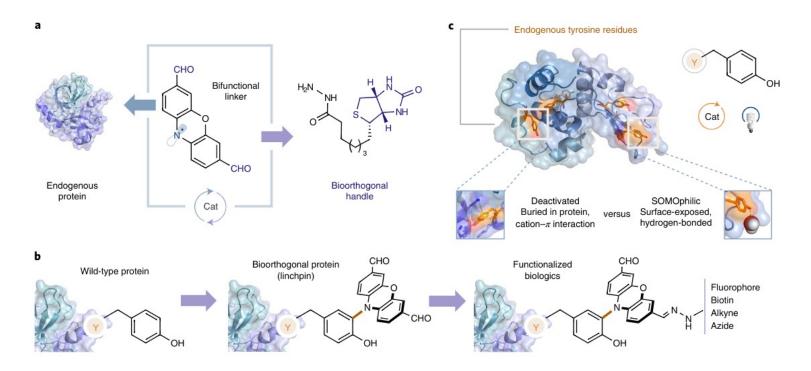

MacMillan, D. et al. Nat. Chem. 2021, 13, 902-908

Further Functionalization

➤ Aldehyde selective and one-pot transformation


Influence on Protein Structure

> 78% of the native activity was retained.


Influence on Protein Structure

CD spectra of native and modified protein

Secondary structures were generally retained

Short Summary

- > Reactive Tyr residue is functionalized selectively.
- > Further functionalization with various biorthogonal moieties
- Retaining 3D structure or enzymatic activities

Summary

Reaction proceeds generally under mild condition

 Reversing reactivity of the substrates unreactive in conventional pathways

Applicable to biomolecular modification