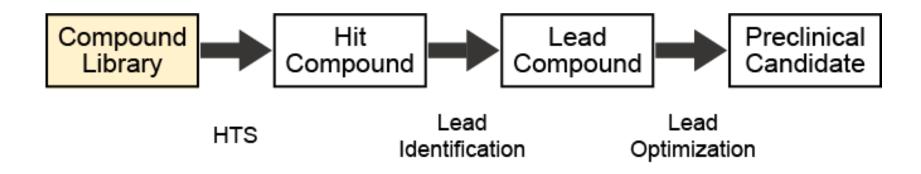
Deep Generative Model for De Novo Drug Design

2019/11/14 M2 Koki Sasamoto

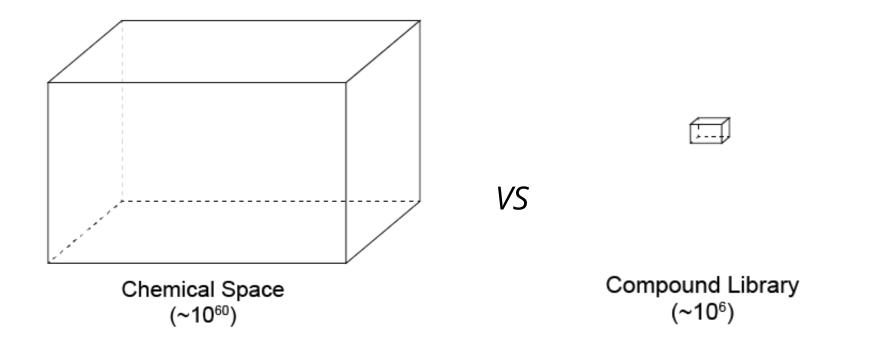
Drug discovery

Flow chart of drug discovery process



- Compound library is used to screen hit compound.
- Good hit compound reduces time and money.
- Diverse and high-quality compound library is needed.

Chemical space

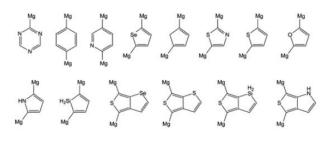


 Chemical space is vast, and only a tiny fraction was collected as compound libraries.

J. Comput.- Aided Mol. Des. 2013, 27, 675–679. 3

Construction of virtual library

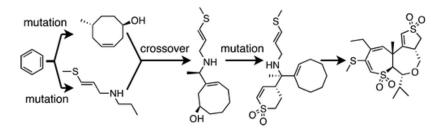
Building block



Genetic algorithm

Known chemical universe

uncharted chemical space



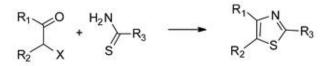
combination

J. Phys. Chem. Lett., 2011, 2, 2241-2251.

J. Am. Chem. Soc., 2013, 135, 7296-7303.

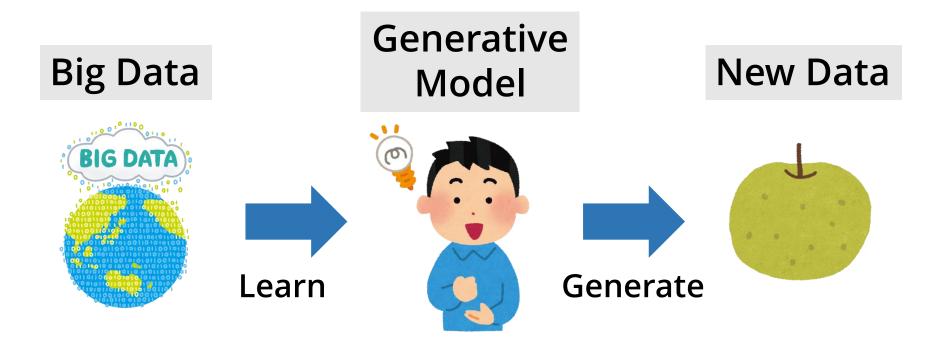
Reaction-based rule

[#6:6]-[C;R0:1](=[OD1])-[CH1;R0:5](-[#6:7])-[*;#17,#35,#53].[NH2:2]-[C:3]=[SD1:4]>> [c:1]2(-[#6:6]):[n:2]:[c:3]:[s:4][c:5]([#6:7]):2



J. Chem. Inf. Model, 2011, 51, 3093-3098.

Deep generative model



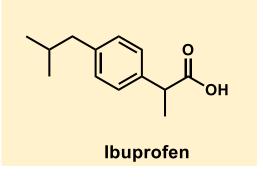
- Generative model generates realistic data from feature of data.
- → Drug-like molecules can be generated by generative model learning features of biologically-active compounds.

Contents

- 1. Deep learning methods in drug design
 - RNN
 - RNN with RL (ReLeaSE)
 - VAE
 - Graph / GAN (MolGAN)
- 2. Application in drug discovery (GENTRL)
- 3. Summary

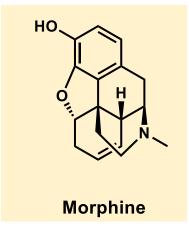
Examples of SMILES representation





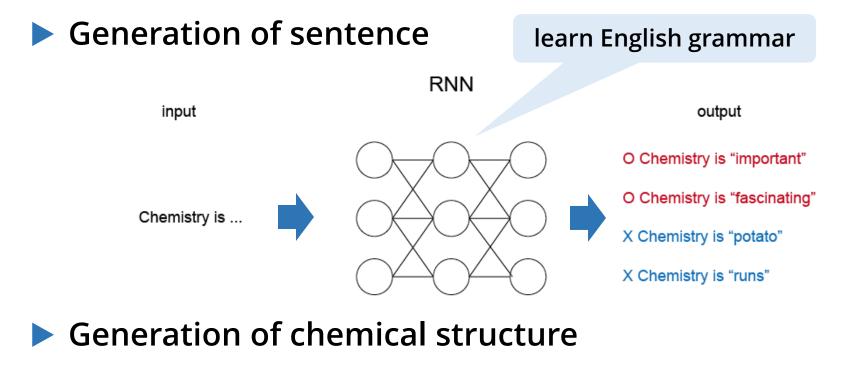
CN1c2ncn(C)c2C(=O)N(C)C1=O

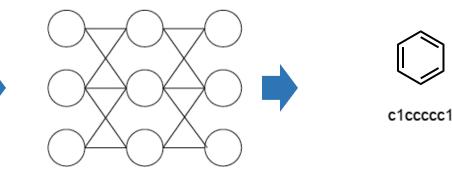
CC(C)Cc1ccc(cc1)C(C)C(O)=O



[H][C@]12C=C[C@H](O)[C@@H]3Oc4c5c(C[C@H]1N(C)CC[C@@]235)ccc4O

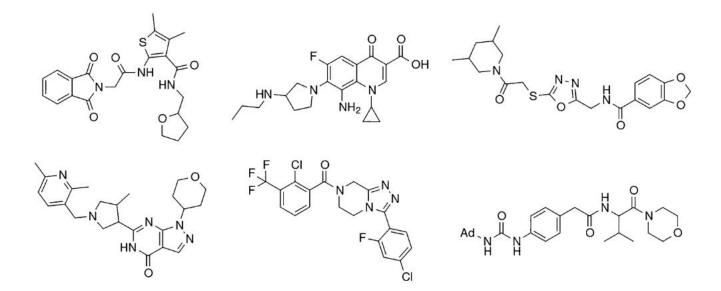
M. H. S. Segler et al., ACS Cent. Sci., 2018, 4, 120-131. ⁷





M. H. S. Segler et al., ACS Cent. Sci., 2018, 4, 120-131.⁸

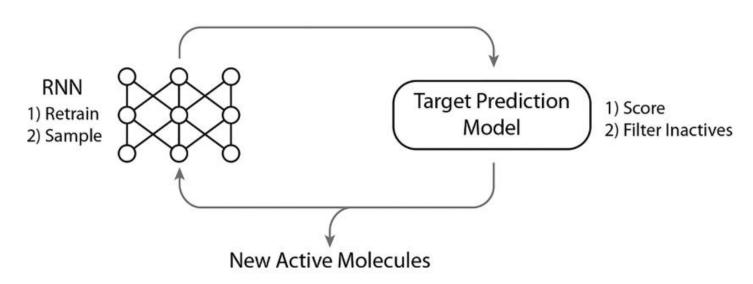
Examples of generated novel molecules



- 976327 molecules were generated.
- 847955 molecules were novel.
- 75% of new molecules were highly scored ("core" or "backup") by AstraZeneca filter.

M. H. S. Segler et al., ACS Cent. Sci., 2018, 4, 120-131. ⁹

De novo design cycle



"Synthesis" ... molecule generation

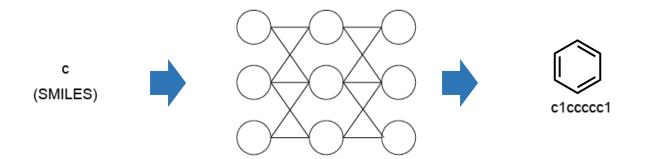
"Virtual Assay" ... best molecule selection by machine learning

"Design" ... retraining RNN model by best molecules

6% of known active molecules were re-generated.

M. H. S. Segler et al., ACS Cent. Sci., 2018, 4, 120-131.¹⁰

RNN



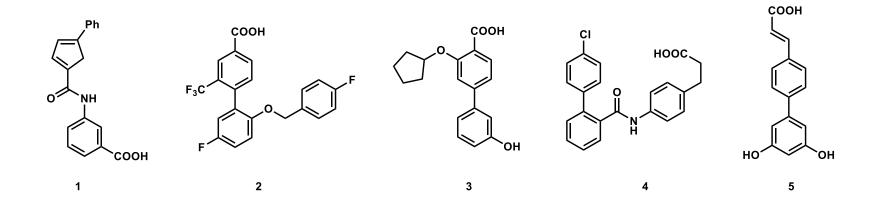
Data 541555 bioactive molecules

- Fine-tune25 molecules with known agonistic activity
on RXR (retinoid X receptor) and/or
PPAR (peroxisome proliferator-activated receptor)
- **Result** 1000 molecules (90% were valid and novel)

5 molecules were **synthesized** and **tested** in vitro.

G. Schneider et al., Mol. Inf., 2018, 37, 1700153.11

Synthesized novel molecules and these bioactivity



Bioactivity (EC₅₀ / uM)

Compound no.	RXRα	RXRβ	RXRγ	PPARα	PPARγ	PPARð
1	0.13±0.01	1.1±0.3	0.06 ± 0.02	inactive	2.3 ± 0.2	inactive
2	13.0 ± 0.1	9±2	8.0 ± 0.7	inactive	2.8 ± 0.3	inactive
3	inactive	inactive	inactive	4.0 ± 1.0	10.1 ± 0.3	inactive
4	inactive	inactive	inactive	inactive	9±3	14 ± 2
5	inactive	inactive	inactive	inactive	inactive	inactive
reference agonists ^{a)}	0.033 ± 0.002	0.024 ± 0.004	0.025 ± 0.002	0.006 ± 0.002	0.6 ± 0.1	0.5 ± 0.1

^{a)} Reference agonists, literature data: bexarotene^[17] for RXRs, GW7647^[18] for PPARa, pioglitazone^[19] for PPARy, L165,041^[19] for PPARb

G. Schneider et al., Mol. Inf., 2018, 37, 1700153.12

Pros

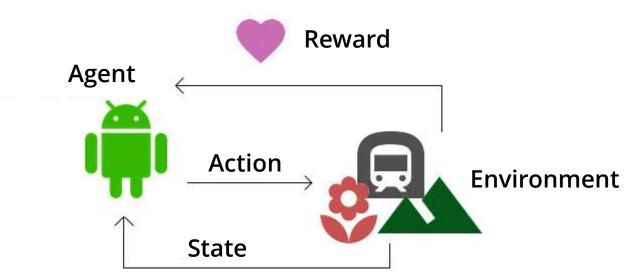
- Diverse set of molecules could be generated.
- Generated molecules had drug-like properties.

Cons

- Chemical space was restricted by training set.
- Properties of generated molecules couldn't be controlled.

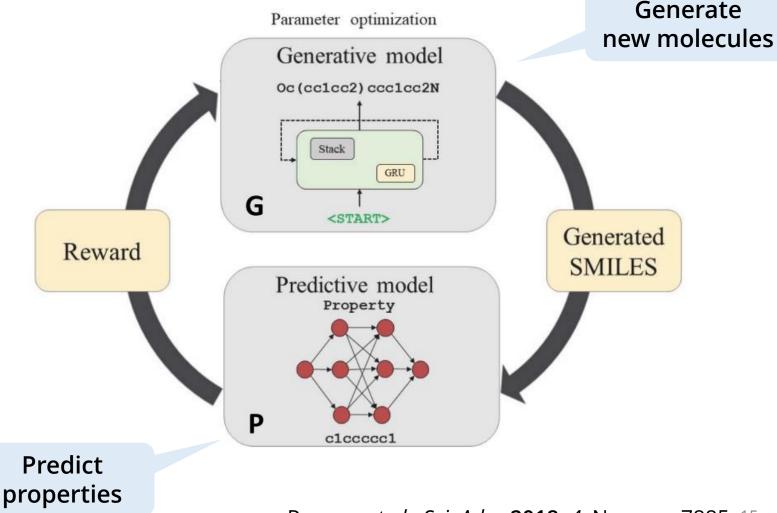
Reinforcement Learning (RL)

Scheme of Reinforcement Learning



Application

Scheme of "ReLeaSE"

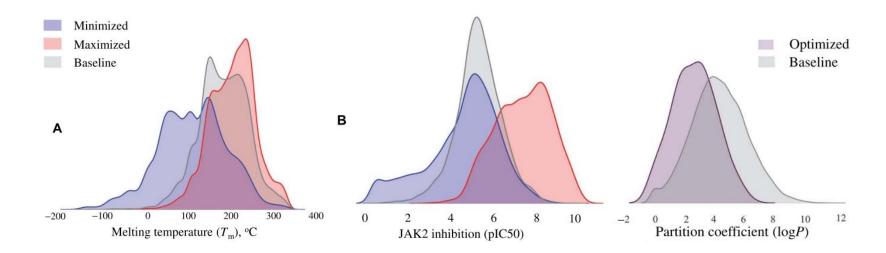


Popova et al., Sci. Adv., 2018, 4, No. eaap7885. 15

Target Properties

- Tm (Melting point)
- logP (n-octanol / water partition coefficient)
- pIC₅₀ for JAK2 (janus protein kinase 2)

Distribution of predicted properties



Popova et al., Sci. Adv., 2018, 4, No. eaap7885. 16

Analysis of generated molecules

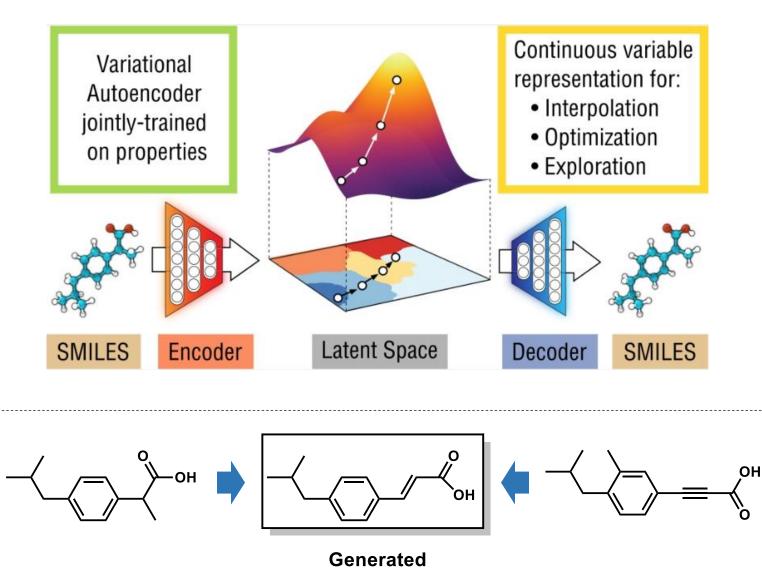
Property		Valid molecules (%)	Mean SAS	Mean molar mass	Mean value of target property
	Baseline	95	3.1	435.4	181
T _m	Minimized	31	3.1	279.6	137
	Maximized	53	3.4	413.2	200
Inhibition of JAK2	Baseline	95	3.1	435.4	5.70
	Minimized	60	3.85	481.8	4.89
	Maximized	45	3.7	275.4	7.85
LogP	Baseline	95	3.1	435.4	3.63
	Range- optimized	70	3.2	369.7	2.58

(SAS = synthetic accessibility score)

With reinforcement learning, the proportion of valid molecules was lowered.

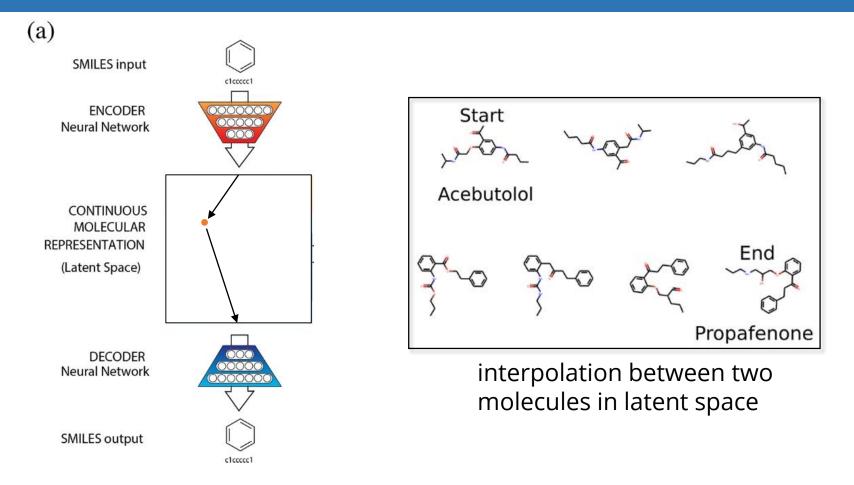
Popova et al., Sci. Adv., 2018, 4, No. eaap7885. 17

De novo drug design by VAE



R. Gómez-Bombarelli et al., ACS Cent. Sci, 2018, 4, 268-276. 18

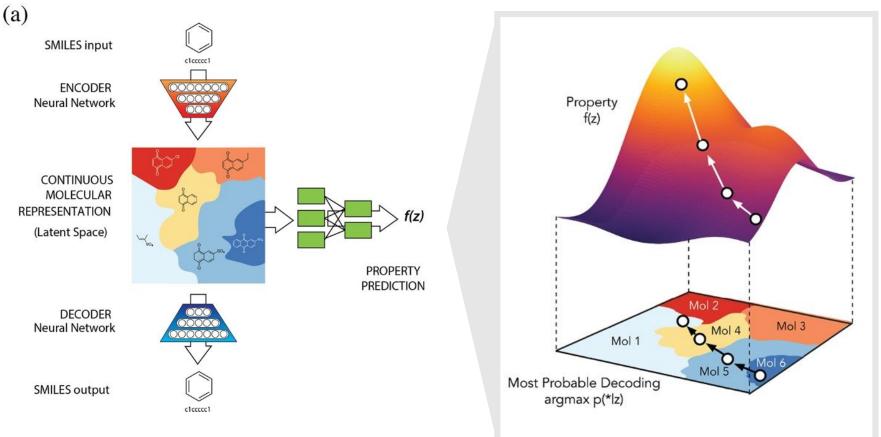
Encoder and Decoder



- VAE learns about characteristic feature of a training set.
- Similar molecules were mapped close together in latent space.

R. Gómez-Bombarelli et al., ACS Cent. Sci, 2018, 4, 268-276. ¹⁹

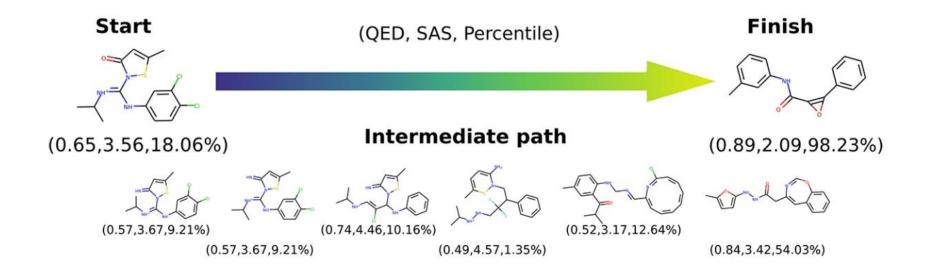
Predictor



- VAE was jointly trained with Predictor.
- 7,500,000 molecules were generated from 250,000 samples.

R. Gómez-Bombarelli *et al., ACS Cent. Sci*, **2018**, *4*, 268-276. ²⁰

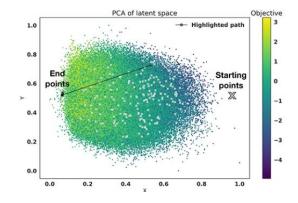
De novo drug design by VAE



• VAE optimized (5 * QED – * SAS).

(QED = Qualitative Estimate of Drug-likeness, SAS = Synthetic Accessibility Score)

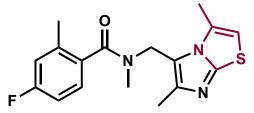
• Molecular optimization was achieved efficiently by gradient-based search.

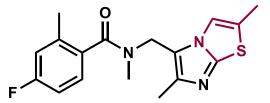


R. Gómez-Bombarelli *et al., ACS Cent. Sci*, **2018**, *4*, 268-276. ²¹

Problems of SMILES representation

SMILES is not designed to capture molecular similarity.





Cc1cn(CN(C)C(=O)c3ccc(F)cc3C)c(C)c(C)nc2s1

Cc1cc(F)ccc1C(=O)N(C)Cc1c(C)nc2scc(C)n12

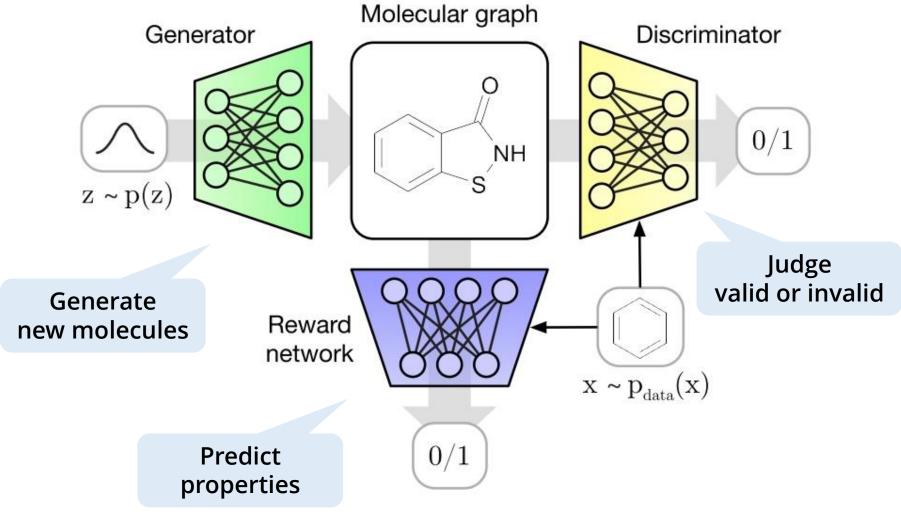
SMILES is not robust to small molecules.

CN1c2ncn(C)c2C(=O)N(C)C1=O

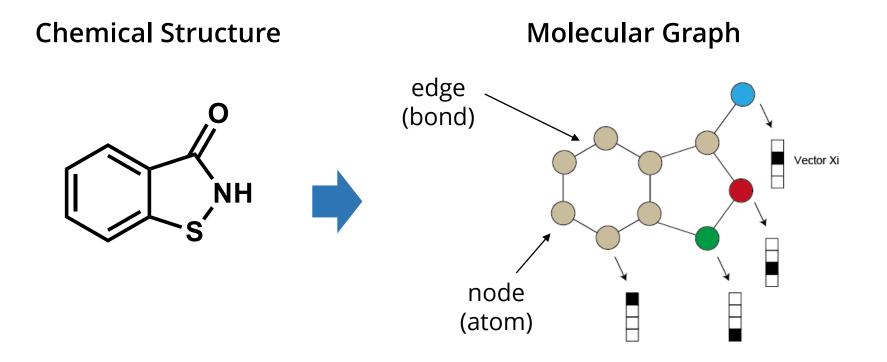
CN1c2ncn(C)c2C(=O)N(C)C=O

Molgan

Scheme of MolGAN

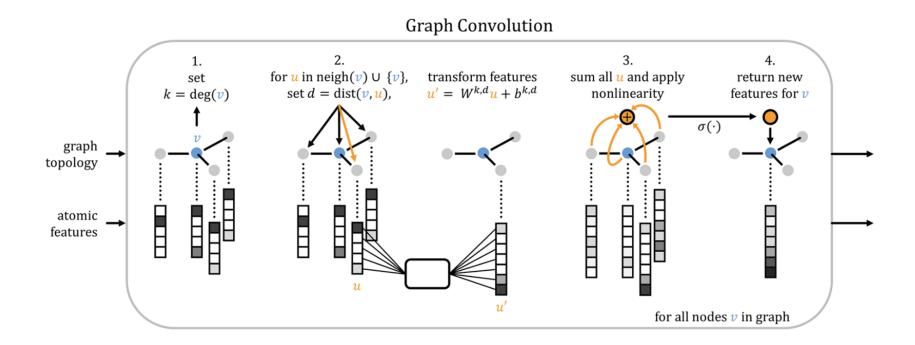


Graph representation



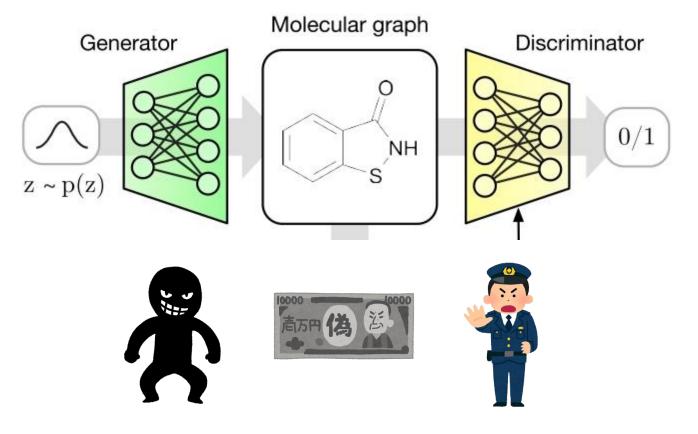
- Graph ... collection of nodes and edges
- Machine learning model don't have to learn rules of molecular representations.

Graph convolution



- New vector = self +adjacent vector
- \rightarrow New vector **includes** the information of **the surrounding environment**.

Scheme of Generative Adversarial Network (GAN)



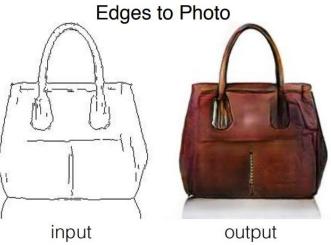
Manufacture of counterfeit money vs Police

https://arxiv.org/abs/1809.11096

input



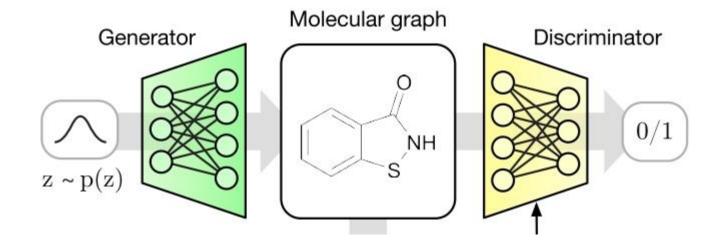
output



https://arxiv.org/abs/1611.07004

BW to Color

Scheme of Generative Adversarial Network (GAN)

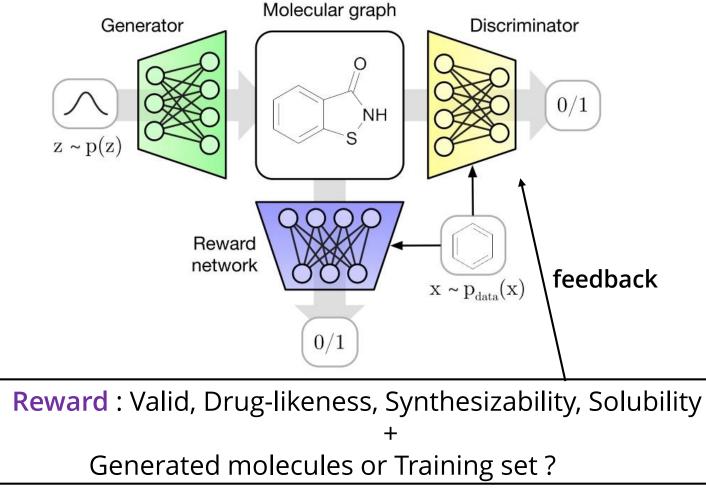


Generator : generate molecules similar to training set

Discriminator : discriminate generated molecules from training set

Reward network

Scheme of Reinforcement Learning (RL)



Performance of MolGAN

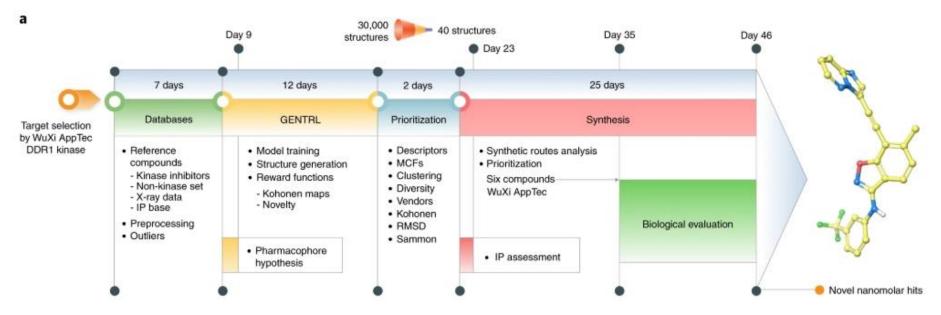
Results

Objective	Algorithm	Valid (%)	Unique (%)	Druglikeness	Synthesizability	Solubility
Druglikeness	ORGAN	88.2	69.4	0.52		
	Naive RL	97.1	97.1	0.57		
	Molgan	99.9	2.0	0.61		
Synthesizability	ORGAN	96.5	45.9		0.83	
	Naive RL	97.7	13.6		0.83	
	Molgan	99.4	2.1		0.95	
Solubility	ORGAN	94.7	54.3			0.55
	Naive RL	92.7	100.0			0.78
	Molgan	99.8	2.3			0.89
All	ORGAN	96.1	97.2	0.52	0.71	0.53
	Molgan	97.4	2.4	0.47	0.84	0.65

ORGAN (SMILES instead of graph), Naïve RL (without GAN)

- MolGAN beats other models in terms of optimizing property.
- Unique score of generated molecules was very low.

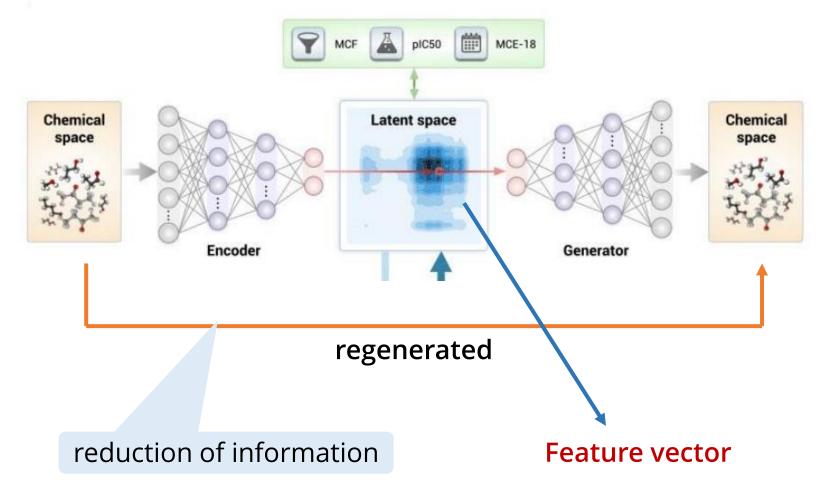
Identification of DDR1 kinase inhibitor by GENTRL



- Day 19 ... 30000 molecules were generated by GENTRL.
- Day 23 ... 6 molecules were selected by prioritization.
- Day 35 ... Synthesis was completed.
- Day 46 ... Activities of synthesized molecules were confirmed in cell-based assay.

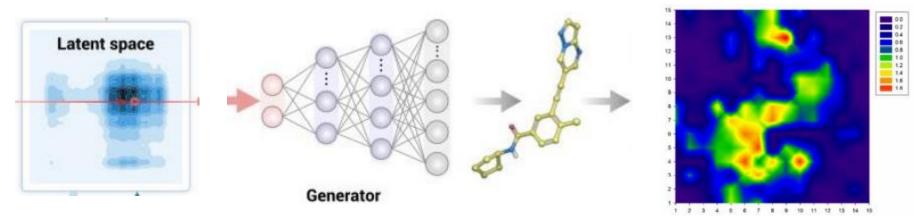
A. Zhavoronkov et al., Nat. Biotechnol., 2019, 37, 1038-1040. 31

Creation of chemical space



A. Zhavoronkov *et al.*, *Nat. Biotechnol.*, **2019**, *37*, 1038-1040.

Molecular generation by Reinforcement Leaning



SOM (Self Organizing Map)

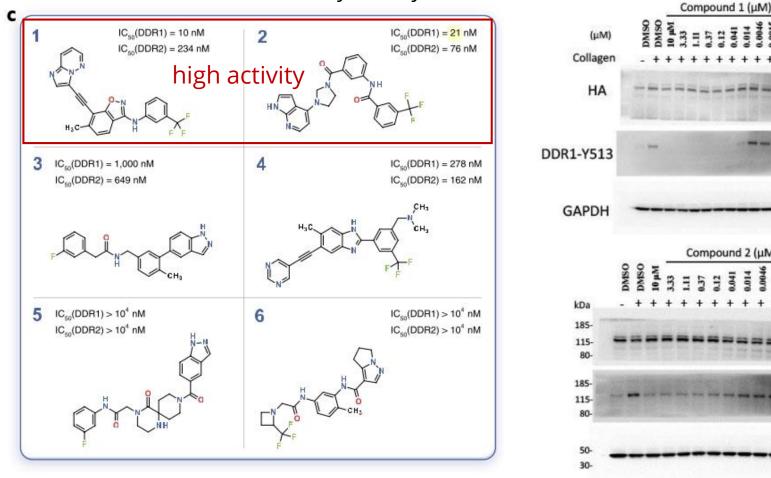
Reinforcement Leaning

Agent : generator State : generated molecules Reward : novelty, kinase inhibition activity, DDR1 inhibition activity

SOM : predict properties of molecules

A. Zhavoronkov et al., Nat. Biotechnol., 2019, 37, 1038-1040. 33

Selected molecules and inhibitory activity in vitro and vivo



A. Zhavoronkov et al., Nat. Biotechnol., 2019, 37, 1038-1040. 34

kDa

-185

-115 -80 -185 -115

-80

-50

-30

Compound 2 (µM)

Summary

Chemical Space

- Chemical space is vast (~10⁶⁰) compared to compound library size (~10⁶, 10⁸).
- Generative model can generate $10^3 \sim 10^5$ drug-like compounds.
- Generative model can control properties of generated molecules by RL.
- The role of generative model is to capture the underlying rules of a data distribution.
- Generative model only reconstruct the training data set.

Molecular representation

- SMILES is not robust to small changes or mistakes.
- By using graph representations , generative model don't need to learn complex syntax, but this method is not perfect.
- There is still a need for research on the optimal molecular representation.
 - Junction Tree (arXiv:1802.04364)
 - 3D (arXiv:1810.11347)

Summary

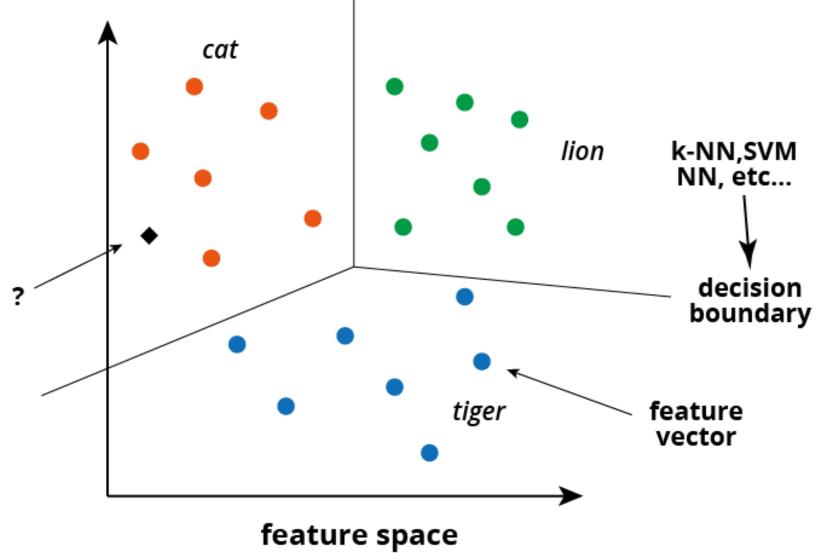
Evaluation of Model

- The performance of each generative model is evaluated by different methods.
 - Number of generated molecules
 - Distribution on 2D map.
 - Properties of generated molecules.
 - Experimental activity.
- Evaluation method of model is needed.
- Several benchmarks are being developed. (J. Chem. Inf. Model, 2019, 59, 1096)

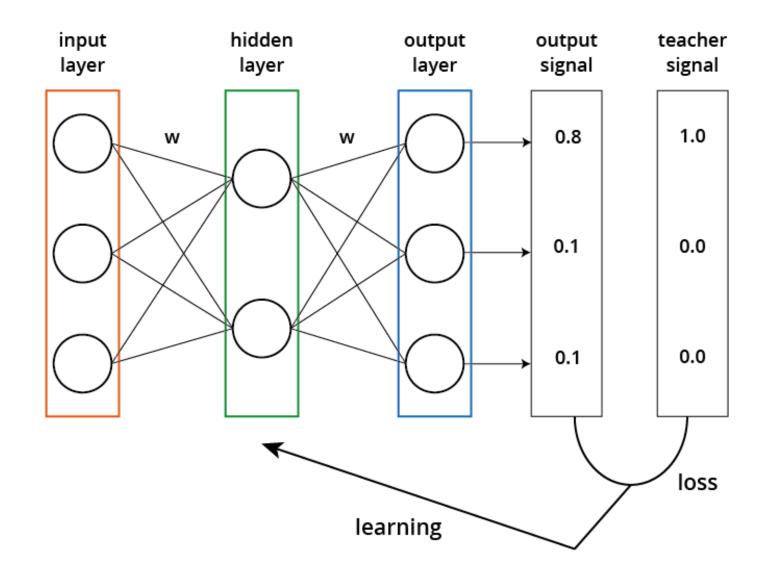
Application in drug discovery

- The generated molecules must be reduced to the number that can be synthesized.
- The generated molecules are necessarily synthesizable.
- SAS (synthetic accessibility score) may prevent generation of molecular diversity.
- Generative model may prove valuable in combination with retrosynthesis AI or virtual screening AI.

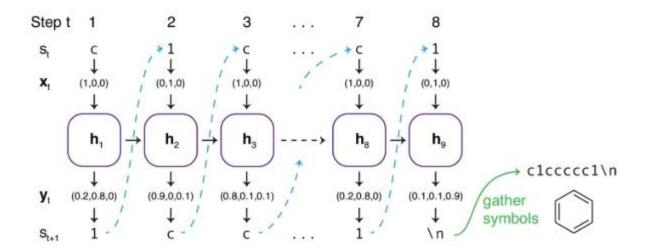
Feature space



NN



RNN

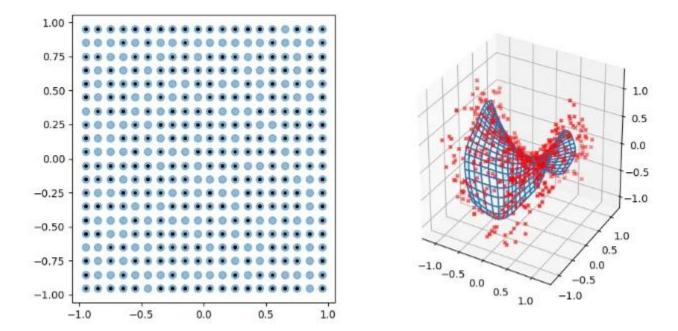


M. H. S. Segler et al., ACS Cent. Sci., 2018, 4, 120-131. 40

AZ filter

Class 1 : bland structures - Fewer than 4 carbon atoms etc. Class 2 : reactive structures - Anhydride etc. Class 3 : frequent hitters - Nitrophenols etc. Class 4 : dye-like structures Class 5 : unlike drug candidates or unsuitable fragments Class 6 : difficult series or natural compounds Class 7 : general ugly halogenated structures Class 8 : general ugly oxygen Class 9 : general ugly nitrogen Class 10 : general ugly sulphur

SOM



https://qiita.com/tohru-iwasaki/items/e51864269767ccc07254 42