Walking Molecules

Artificial DNA walkers

Artificial small-molecule walkers

Lit. Seminar 11.5.31(Tue.) Katsuya SATO(M1)

Table of Contents

I. Introduction II.Biological Walker III.DNA Walker IV.Small-molecule Walker

V. Summary

prof. D. Leigh

see review : D. Leigh Chem. Soc. Rev. 2011, ASAP (DOI:10.1039/c1cs15005g)

I. Introduction

Introduction

• What is "walking" ?

She walks along the "road" to "forward".

But he walks back.

Why they walk on the "ground" not on the "wall" or "ceiling"?

Introduction

• Walking needs...

- a. **Processivity** : the ability to remain attached to the track
- b. Directionality : migration preferentially or exclusively towards one end of the track
- c. Repetitive operation : the ability to repeatedly perform similar mechanical cycles
- d. Progressive operation : the capability to be reset at the end of each mechanical cycle without undoing the physical task that was originally performed
- e. Autonomous operations : the ability to continually function as long as an energy input is present

Processivity

• To achieve processivity

- a) two different feet, two different fuels/conditions
- b) two identical feet, the fuel with asymmetric interaction
- c) one-legged walker with secondary interactions

D. Leigh Chem. Soc. Rev. 2011, ASAP

View Or

Directionality

Maxwell's "Demon"

a) temperature demon

b) pressure demon

Demon works against the second law of thermodynamics. (randomness -> direction)

Directionality Feynman's Brownian Ratchet

However, on the contrary, cooling the ratchet and pawl by external means makes it possible to rectify the random motion.

Directionality

• Energy-ratchet

http://www.s-graphics.co.jp/tankentai/news/molecularmotor2.htm

• Information-ratchet • $\Lambda \wedge \Lambda$

 ΔE b) C) d)

a) The particle starts in one of the identical-minima energy wells.

b) The position of the particle lowers the kinetic barrier.

c) The particle moves to the adjacent right-hand well by Brownian motion.

d) The particle can no longer go back to the starting well.

Directionality

To achieve directionality

- a) reversible foot exchange
- b) a "burnt-bridges" walker
- c) migration requiring energy input through switching stimulus
- d) irreversible, kinetically controlled migration

D. Leigh Chem. Soc. Rev. 2011, ASAP

View Online

II.Biological Walker

2011年6月4日土曜日

Motor Proteins

• Myosin-V

J. R. Sellers Curr. Opin. Cell Biol. 2006, 18, 68; K. Kinoshita Science, 2007, 316, 208

• Kinesin-I

P.R.Selvin Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 12717

2011年6月4日土曜日

V/C1CS15005G

III.DNA Walker

Artificial DNA walkers

Non-autonomous DNA Walker

N. C. Seeman Nano Lett. 2004, 4, 1203

:10.1039/C1CS15005G

Non-autonomous DNA Walker

N. A. Pierce J. Am. Chem. Soc. 2004, 126, 10834

• Two-dimensional Walker

N. C. Seeman Nature 2010, 465, 202

View Online

Autonomous DNA Walker

This journal is © The Royal Society of Chemistry 2011

A. J. Turberfield Angew. Chem. Int. Ed. 2004, 43, 4906

A. J. Turberfield Phys. Rev. Lett. 2008, 101, 238101

IV.Small-molecule Walker

Artificial small-molecule walkers

D. Leigh Chem. Soc. Rev. 2011, ASAP

Walking Small Molecule

• Synthetic Walker

Synthesized small molecule walker

Reversible reactions that connect various pairs of the positional isomers

D. Leigh J. Am. Chem. Soc. 2010, 132, 16134

Walking Small Molecule View Online

Distribution of the walker

D. Leigh J. Am. Chem. Soc. 2010, 132, 16134

Walking Small Molecule Light-driven small-molecule walker

energy ratchet

D. Leigh Angew. Chem. Int. Ed. 2011, 50, 285

V. Summary

Walking Molecules

• Difference between respective walkers

Biological

- efficient
- need ATP as fuel
- only in aqueous environment
- modest stability

DNA

- automated synthesize
- designed by a computer
- complex tracks(DNA origami)
- need DNA as fuel

Small-molecule

- small size
- low efficient
- more stable
- in various environments
- not need ATP

Walking Molecules

• What is a role of "walker"?

Walker is employed for driving chemical systems away from equilibrium.

Life is or isn't a complex system of equilibrium.

a new chemical system mimicking life