Walking Molecules

Biological protein walkers

Artificial DNA walkers

Artificial small－molecule walkers

Lit．Seminar 11．5．31（Tue．）
Katsuya SATO（M1）

Table of Contents

I．Introduction

II．Biological Walker
III．DNA Walker

prof．D．Leigh

IV．Small－molecule Walker
V．Summary
see review ：D．Leigh Chem．Soc．Rev．2011，ASAP（DOI：10．1039／c1cs15005g）

I．Introduction

Introduction

－What is＂walking＂？

But he walks back．

She walks along the ＂road＂to＂forward＂．
 not on the＂wall＂or＂ceiling＂？

Introduction

－Walking needs．．．

a．Processivity：the ability to remain attached to the track
b．Directionality：migration preferentially or exclusively towards one end of the track
c．Repetitive operation ：the ability to repeatedly perform similar mechanical cycles
d．Progressive operation：the capability to be reset at the end of each mechanical cycle without undoing the physical task that was originally performed
e．Autonomous operations：the ability to continually function as long as an energy input is present

Processivity

－To achieve processivity

a）

b）

c）

a）two different feet，two different fuels／conditions
b）two identical feet，the fuel with asymmetric interaction
c）one－legged walker with secondary interactions

Directionality

－Maxwell＇s＂Demon＂

a）temperature demon

b）pressure demon

Demon works against the second law of thermodynamics． （ randomness－＞direction ）

Directionality

－Feynman＇s Brownian Ratchet

However，on the contrary，cooling the ratchet and pawl by external means makes it possible to rectify the random motion．

Directionality

－Energy－ratchet

a）
b） \qquad
\dagger Potential＂on＂
c）

Relax
d）

Directionality

－Information－ratchet

a）The particle starts in one of the identical－minima energy wells．
b）

b）The position of the particle lowers the kinetic barrier．
c）

c）The particle moves to the adjacent right－hand well by Brownian motion．

d）The particle can no longer go back to the starting well．

Directionality

－To achieve directionality

a）reversible foot exchange
b）a＂burnt－bridges＂walker
c）migration requiring energy input through switching stimulus
d）irreversible，kinetically controlled migration

II．Biological Walker

Walker in Cell

－Motor Proteins

D．Leigh Chem．Soc．Rev．2011，ASAP

Walker in Cell

－Myosin－V

Walker in Cell

－Myosin－V

J．R．Sellers Curr．Opin．Cell Biol．2006，18，68；K．Kinoshita Science，2007，316， 208

Walker in Cell

－Kinesin－I

P．R．Selvin Proc．Natl．Acad．Sci．U．S．A．2009，106， 12717

III．DNA Walker

Artificial DNA walkers

DNA Walker

－Non－autonomous DNA Walker

N．C．Seeman Nano Lett．2004，4， 1203

DNA Walker

－Non－autonomous DNA Walker

N．A．Pierce J．Am．Chem．Soc．2004，126， 10834

DNA Walker

－Two－dimensional Walker

N．C．Seeman Nature 2010，465， 202

DNA Walker

－Autonomous DNA Walker

A．J．Turberfield Angew．Chem．Int．Ed．2004，43， 4906

DNA Walker

－Autonomous DNA Walker

A．J．Turberfield Phys．Rev．Lett．2008，101， 238101

IV．Small－molecule

Walker

Walking Small Molecule

－Migration of small molecule fragments
a）

$+>10^{3}$ further constitutional isomers

e）

$\stackrel{\mathrm{H}^{+}}{\rightleftharpoons}$

＋1，3 and 2，4 acetals，
but also in exchange with：

g）

h）

i）

D．Leigh Chem．Soc．Rev．2011，ASAP

Walking Small Molecule

－Synthetic Walker

Synthesized small molecule walker

I（acid）
$\mathrm{C}_{3} 10: 90$
C_{4} 15：85
C_{5}
$\mathrm{C}_{8} 13: 87$
$\mathrm{C}^{2}: 87$

Reversible reactions that connect various pairs of the positional isomers
D．Leigh J．Am．Chem．Soc．2010，132， 16134

Walking Small Molecule

－Distribution of the walker

conditions：（i） $0.1 \mathrm{mM}, \mathrm{TFA}, \mathrm{CHCl}_{3}, \mathrm{rt}$（ii） $0.1 \mathrm{mM}, \mathrm{DTT}(10 e q), \mathrm{DBU}(40 e q)$ ，dimethyl $3,3^{\prime}$－disulfanediyldipropionate（20eq）， $\mathrm{CHCl}_{3}, \mathrm{rt}$（iii）a． $1.0 \mathrm{mM}, \operatorname{DTT}(6 e q), \mathrm{DBU}(3 e q), \mathrm{CDCl}_{3}$ ，reflux；b． $0.1 \mathrm{mM}, \mathrm{Et}_{3} \mathrm{~N}(x s)$ ，methyl 3－mercaptopropionate（8eq）， I_{2}
（12eq）， $\mathrm{CDCl}_{3} / \mathrm{MeOH}, \mathrm{r} \dagger$

D．Leigh J．Am．Chem．Soc．2010，132， 16134

Walking Small Molecule

－Light－driven small－molecule walker

$\underset{\substack{\mathrm{I}_{2}, \text { hv } \\ \mathrm{CD}_{2} \mathrm{Cl}_{2}}}{\text {（iii）}}\left|\left\lvert\, \begin{array}{l}\text { equilibrium ratio：} \\ 75: 25(E: Z)\end{array}\right.\right.$

energy ratchet

D．Leigh Angew．Chem．Int．Ed．2011，50， 285

V．Summary

Walking Molecules

－Difference between respective walkers

Biological
－efficient
－need ATP as fuel
－only in aqueous environment
－modest stability
DNA
－automated synthesize
－designed by a computer
－complex tracks（DNA origami）
－need DNA as fuel
Small－molecule
－small size
－low efficient
－more stable
－in various environments
－not need ATP

Walking Molecules

－What is a role of＂walker＂？

Walker is employed for driving chemical systems away from equilibrium．

Life is or isn＇t a complex system of equilibrium．

a new chemical system mimicking life

