Applications of PIP -Pyrrole-Imidazole Polyamide-

Literature seminar #1 2024/1/25 B4 Mayo Yamazaki

Contents

Contents

Introduction

•KR12 (DNA alkylating agent with PIP)

- •Bi-PIP (Brd inhibitor with PIP)
- •PIP-HoGu (Integration of PIP and cooperative systems)
- •ePIP-HoGu (PIP-HoGu with epigenetic modulator)

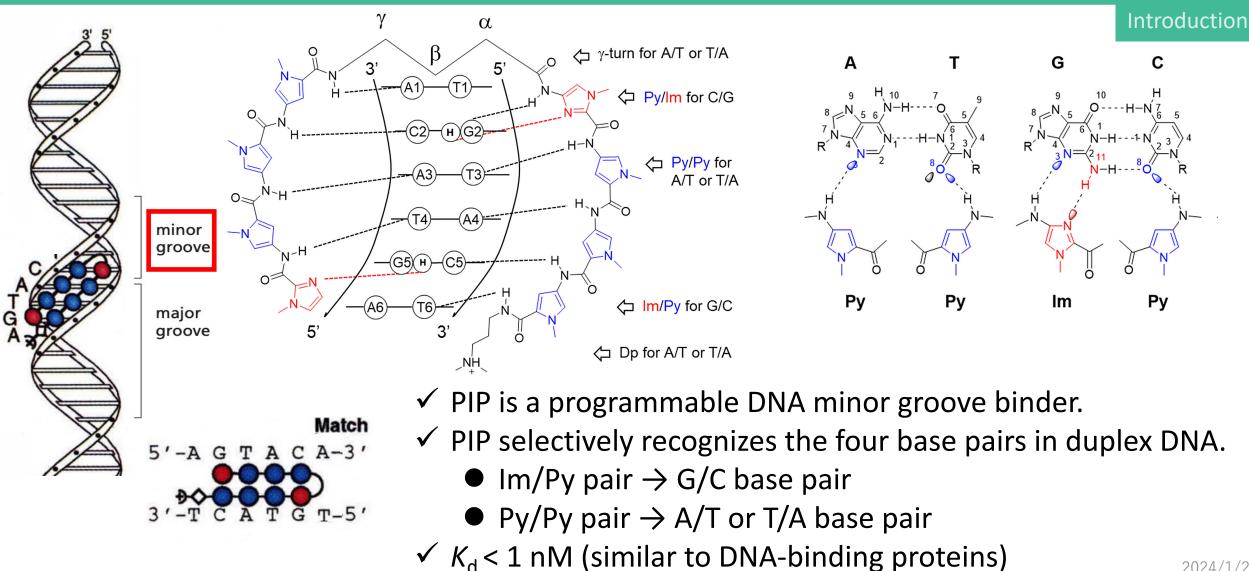
Summary & Discussion

Contents

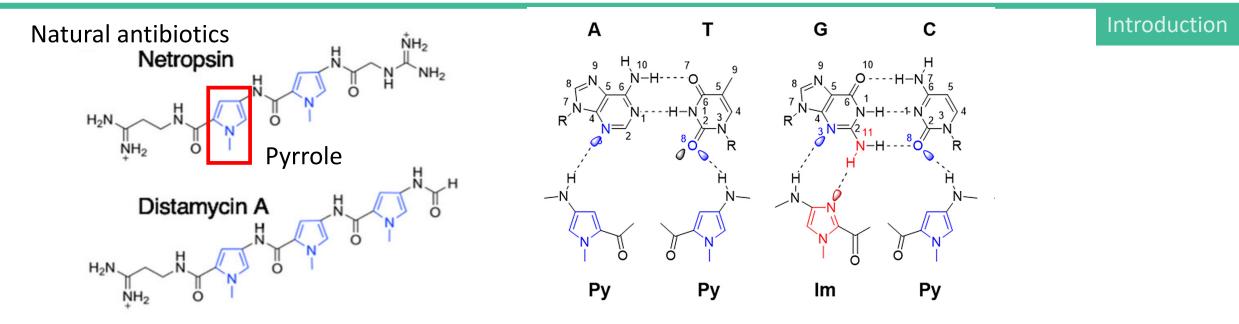
Contents

Introduction

•KR12 (DNA alkylating agent with PIP)


•Bi-PIP (Brd inhibitor with PIP)

• PIP-HoGu (Integration of PIP and cooperative systems)

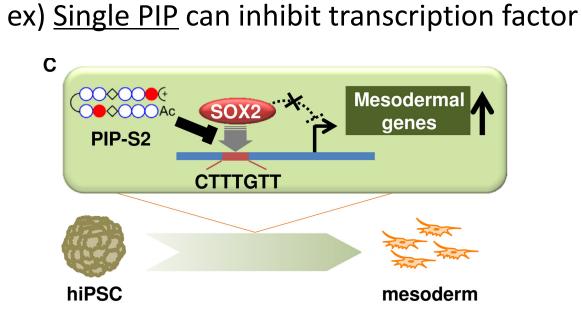

•ePIP-HoGu (PIP-HoGu with epigenetic modulator)

Summary & Discussion

What is PIP (pyrrole-imidazole polyamide)?

A Brief History of PIP

✓ Netropsin binds to A/T sequences in the DNA minor groove by forming a 1:1 complex. (1985) Dickerson, R. E. *et al. J. Mol. Biol.* 1985, 183, 553–563


✓ Distamycin A binds to A/T sequences in the DNA minor groove by forming 2:1 complex. (1989)

Wemmer, D. E. et al. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 5723-5727

 \checkmark Replacing Py with Im enabled the recognition of G/C sequences.


Dickerson, R. E. et al. Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 1376–1380

Applications of PIPs

- Designing PIP to bind to SOX2 target sequence
- The PIP inhibited SOX2 and promoted the transcription of Mesodermal genes

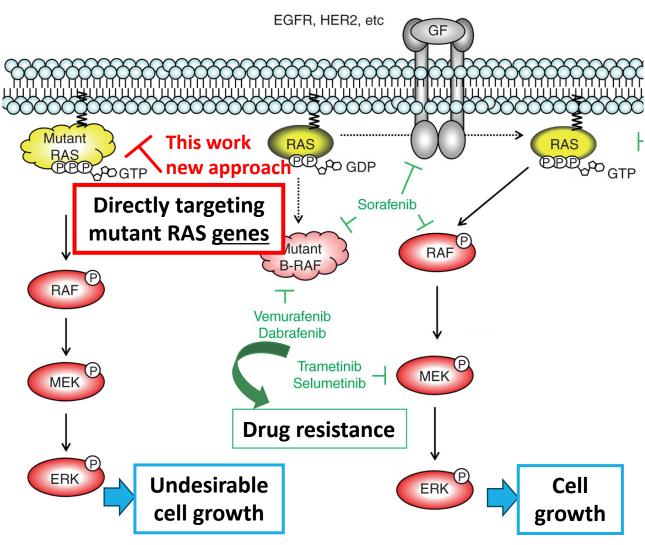
Taniguchi, J., Sugiyama, H. et al. Nucleic Acids Res. 2017, 45, 9219–9228

Contents

Contents

Introduction

•KR12 (DNA alkylating agent with PIP)


•Bi-PIP (Brd inhibitor with PIP)

- PIP-HoGu (Integration of PIP and cooperative systems)
- •ePIP-HoGu (PIP-HoGu with epigenetic modulator)

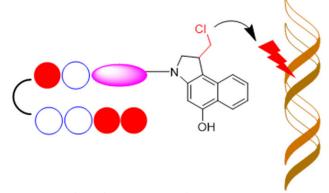
Summary & Discussion

A novel approach directly targeting the mutant DNA

Takashima, A. et al. Expert Opin. Ther. Targets. 2013, 17, 507-531

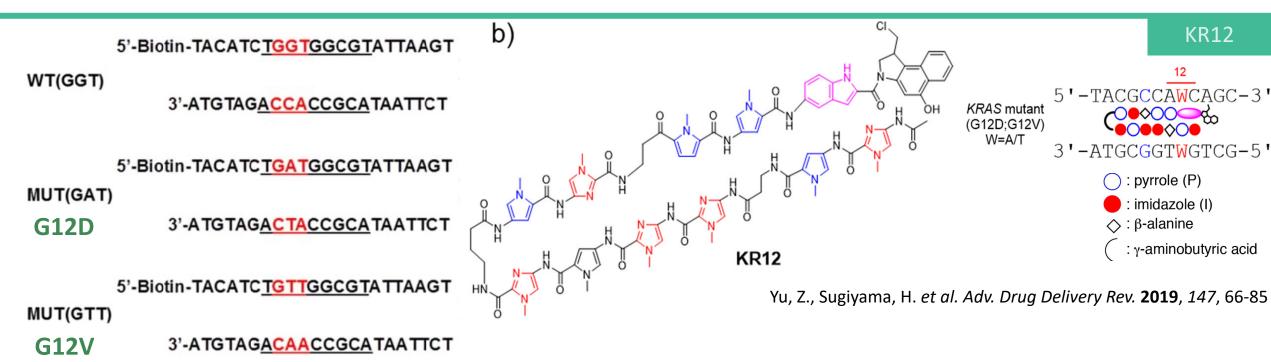
Hiraoka, K., Sugiyama, H., Nagase, H. et al. Nat. Commun. 2015, 6, 6706

•Oncogenic driver mutations = Target for therapy


KR12

ex) KRAS mutation

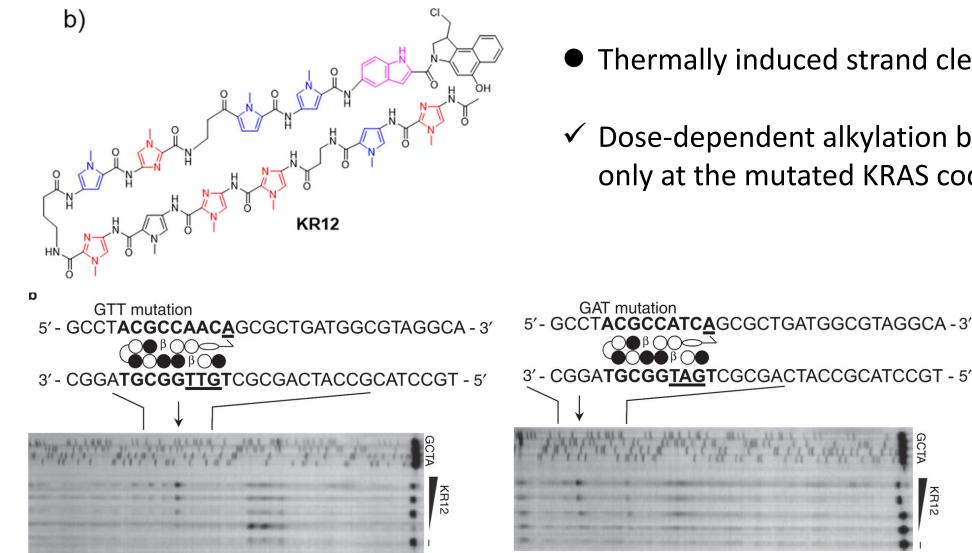
Many colon cancer patients have the KRAS (G12D)
 mutation or the (G12V) mutation.


• <u>Direct</u> pharmacological targeting of activated KRAS has **not** led to clinical application.

 Development of PIP-indole-seco-CBI conjugates targeting KRAS codon 12 mutations

Yu, Z., Sugiyama, H. et al. Adv. Drug Delivery Rev. 2019, 147, 66-85 2024/1/25

KR12 targets KRAS codon 12 (G12D and G12V) mutants


Summary table of the dissociation constants

PI-Polyamide	Sequence	KD(10 ⁻⁹ M)		
	WT(GGT)	114.0		
KR12-Dp	MUT(GAT)	8.5		
	MUT(GTT)	17.1		

✓ KR12 preferentially bound to the mutant
 KRAS sequences compared to the wild type.

KR12 alkylated at mutated KRAS codon 12 sites

Thermally induced strand cleavage procedure

✓ Dose-dependent alkylation by KR12 was detected only at the mutated KRAS codon 12 target sites

KR12

DNA alkylation was visualized by thermal cleavage of the 5'-Texas Red labeled DNA strands at the alkylated sites, which displayed cleavage bands quantitatively on the polyacrylamide gel.

KR12

5'-Texas Red-labelled DNA fragments containing the indicated KRAS codon 12 mutations were incubated with the indicated concentrations of KR12 for **10 h** at room temperature, followed by the addition of calf thymus DNA. The reaction mixtures were then incubated at 90 $^{\circ}$ C for 5 min to cleave DNA strands at their specific alkylated sites. DNA fragments were then recovered by vacuum centrifugation, dissolved in loading dye, denatured at 95° C for 20 min and subjected to electrophoresis on a 6% denaturing polyacrylamide gel. 2024/1/25

KR12 inhibited cell growth of KRAS mutated human cancer cell

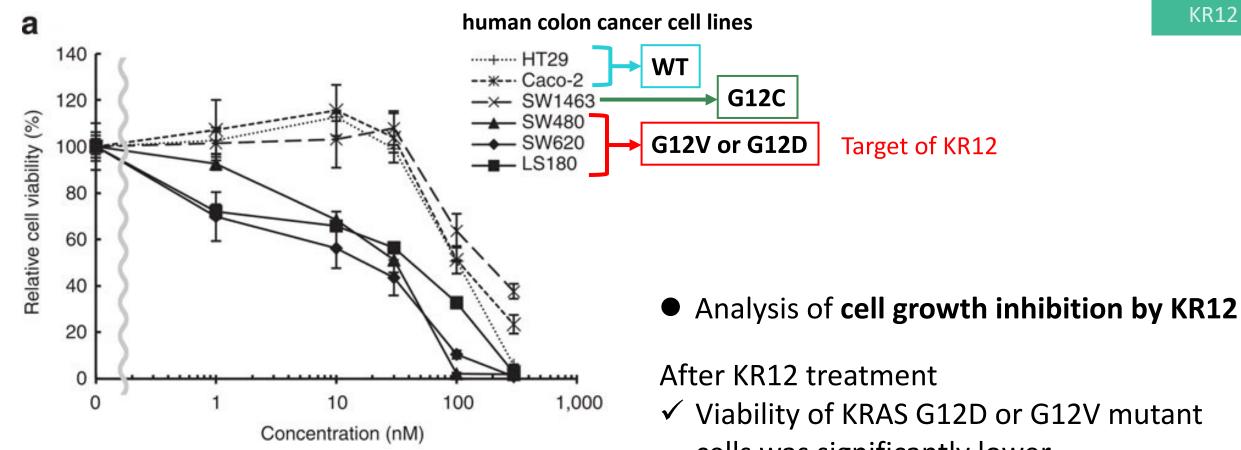
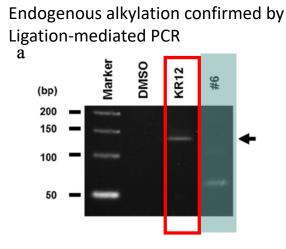
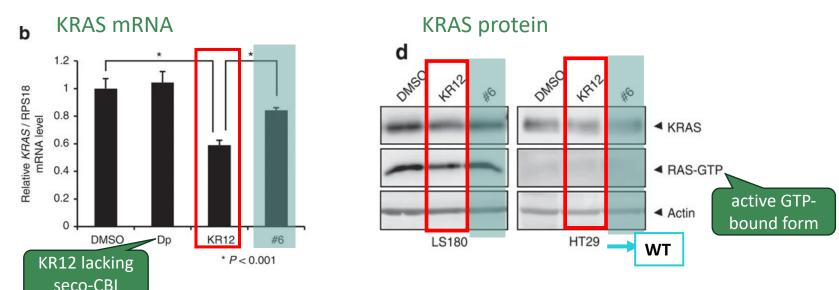


Figure 2 | KR12-mediated specific suppression of KRAS codon 12 mutants in human colon cancer cells. (a) WST assay. Human colon cancer cells expressing wild-type KRAS, including HT29 and Caco-2 or human colon cancer cells harbouring KRAS codon 12 mutations, including SW1643, SW480, SW620 and LS180, were incubated with the indicated concentrations of KR12. 48 hours after treatment, the percent viable cells were examined by WST assay and depicted in a line graph. Error bars indicate the s.d. of the data from triplicate experiments.

✓ Viability of KRAS G12D or G12V mutant cells was significantly lower


2024/1/25

KR12

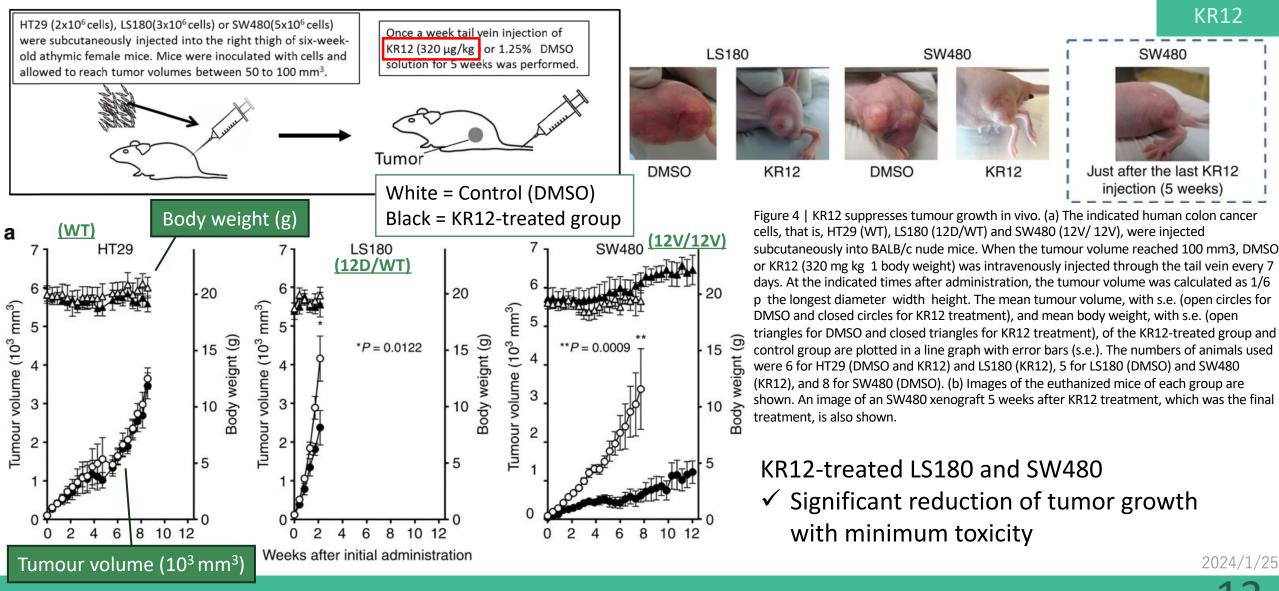

KR12 induced mutant KRAS suppression

Analysis of the specific alkylation and subsequent downregulation after KR12 treatment <u>Human colon cancer-derived, heterozygously mutated LS180 (12D/WT) cells</u>

<u>In Cell</u>

✓ KR12 induced DNA alkylation in LS180 cells.

(b) Quantitative reverse transcription-PCR analysis. Relative KRAS expression **48 h** after treatment with DMSO, KR12, #6 or Dp was plotted as a bar graph. Error bars indicate the s.d. of data from triplicate experiments. (d) Immunoblot analysis. Immunoblots for anti-KRAS or anti-actin antibody (top and bottom panels, respectively) for LS180 (12D/WT) and HT29 (WT) cells **48 h** after the treatment with either control DMSO solution, KR12 or #6. The GST-Raf-bound proteins from each treated group were pulled down and analysed by immunoblotting with anti-RAS antibody (middle panels).


- ✓ Significant downregulation of total KRAS RNA
- ✓ Specific reductions in activated KRAS protein levels in LS180 cells

#6 = **not** bound to the codon 12 mutant KRAS sequences

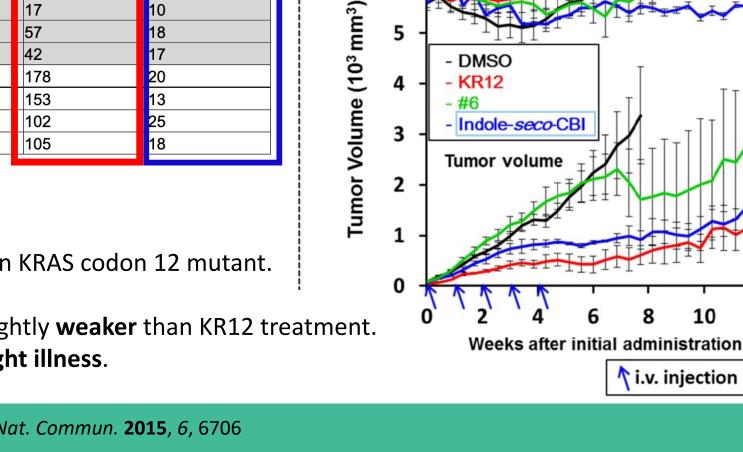
KR12

2024/1/25

KR12 showed tumor growth reduction in vivo

KR12 showed lower toxicity than CBI without PIP

In Cells cell lines with KRAS mutations recognized by KR12	
Cell lines KRAS KRAS P53 status KR12 IC50(nM) CB	BI IC50(nM)
SW480 MUT G12V MUT 31 10	
SW620 MUT G12V MUT 17 10	
SNU-C2B MUT G12D MUT 57 18	
LS180 MUT G12D WT 42 17	
SW1463 MUT G12C MUT 178 20	
DLD-1 MUT G13D MUT/WT 153 13	
HT-29 WT WT MUT 102 25	
Caco-2 WT WT MUT 105 18	


CBI itself treatment

In cells \geq

IC50 did **not** change depending on KRAS codon 12 mutant.

In vivo

Tumour growth reduction was slightly **weaker** than KR12 treatment. Mice showed weight loss and slight illness.

In vivo

6

KR12

20

15

10

5

0

2024/1/25

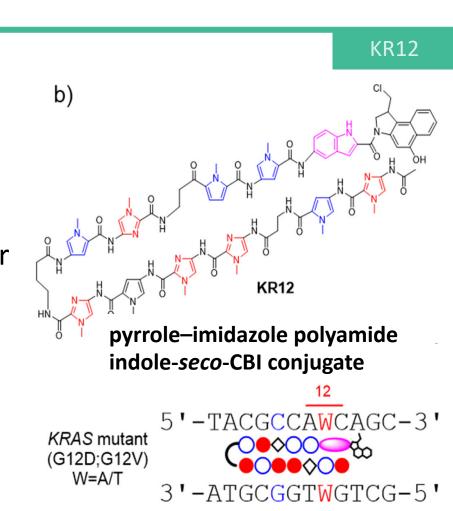
12

Body Weight (g

SW480 (G12V/G12V)

Body Weight

Summary of KR12 & Challenges


<u>Summary</u>

KR12...

- ✓ alkylated mutant DNA sequence selectively.
- ✓ downregulated active KRAS.
- ✓ suppressed the growth of KRAS G12V/G12D mutant tumor in vivo.
- \checkmark reduced the toxicity of the alkylating agent.
- ✓ produced effects that were not achieved by PIP alone or the DNA alkylating agent alone.

<u>Challenges</u>

- >Optimization to improve their specificity
- ▶9,121 target sites = Potential off-target of KR12

Yu, Z., Sugiyama, H. et al. Adv. Drug Delivery Rev. 2019, 147, 66-85

Contents

Contents

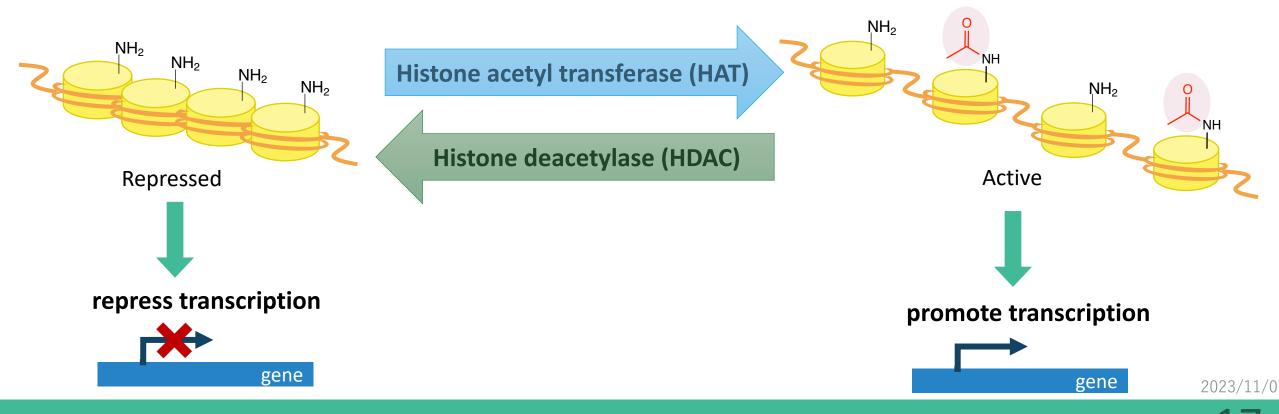
Introduction

•KR12 (DNA alkylating agent with PIP)

•Bi-PIP (Brd inhibitor with PIP)

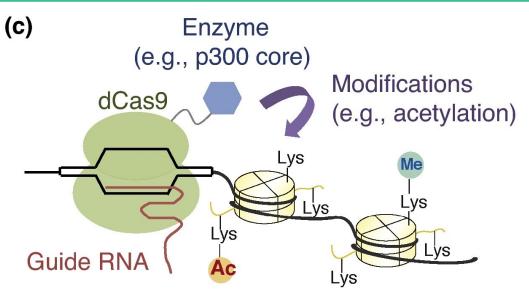
PIP-HoGu (Integration of PIP and cooperative systems)
 ePIP-HoGu (PIP-HoGu with epigenetic modulator)

Summary & Discussion



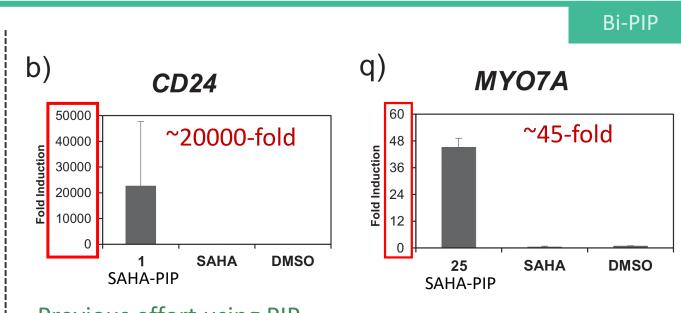
Acetylation of histone lysine residues regulates transcription

Bi-PIP


Acetylation of histone lysine residues is strongly correlated with transcriptional activation.

- •opening the chromatin structure
- recruiting proteins containing bromodomain (BD)

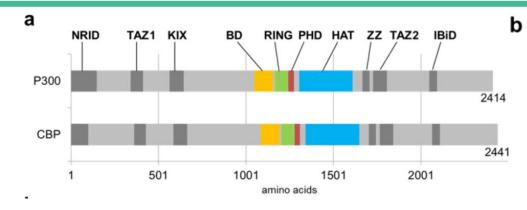
Taniguchi, J., Sugiyama, H. et al. J. Am. Chem. Soc. 2018, 140, 7108–7115


Previous design to achieve sequence-selective histone acetylation

<u>Recent</u>

- fusion of P300 (containing HAT) with CRISPR/Cas system
- imes need the **transfection**-based system
- \times enzymatic **degradation** in cell

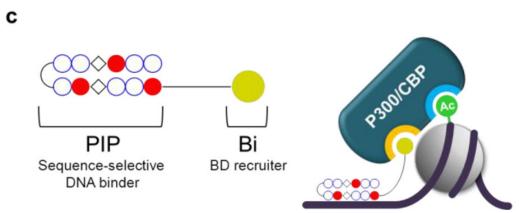
Hilton, I., Gersbach, C. *et al. Nat. Biotechnol.* **2015**, *33*, 510–517 Yamatsugu, Kawashima, Kanai *Curr. Opin. Chem. Biol.* **2018**, *46*, 10–17


Previous effort using PIP

SAHA (HDAC inhibitor) –PIP

→ inconsistent of the level of gene activation because of indirect manner

Pandian, GN., Sugiyama, H. et al. Sci. Rep. 2014, 4, 3843


Bi-PIP: Conjugates of a BD inhibitor (Bi) and PIP

- Some proteins have both HAT domain and bromodomain (BD).
- One acetyl mark causes acetylation of neighboring sites via BD-mediated recruitment of these proteins.

Bi-PIP

2024/1/25

Figure 1. Strategy of targeted histone acetylation utilizing the bromodomain (BD)-mediated propagation of acetylation. (a) Structure of P300/CBP coactivator proteins. NRID, nuclear receptor interacting domain; TAZ1, transcriptional adaptor zinc finger 1; KIX, KID-interacting; BD, bromodomain RING, really interesting new gene; PHD plant homeodomain; HAT, histone acetyltransferase; ZZ, ZZ-type zinc finger; TAZ2, transcriptional adaptor zinc finger 2; IBiD, interferon-binding domain. (b) BD-mediated propagation of histone acetylation by P300/CBP. Existing acetyl lysine (yellow) is recognized by BD of P300/CBP, and de novo acetyl modification (green) is introduced by HAT domain. (c) Design of artificial epigenetic code of acetylation named "Bi-PIP" (left) and model of targeted histone acetylation by Bi-PIP (right). Bi mimics acetyl lysine to recruit P300/CBP through its BD.

This work

Localization to a specific DNA sequence of a BD inhibitor by "Bi-PIP" \rightarrow Localization of a HAT-BD protein \rightarrow Locus-specific histone acetylation

Design of Bi-PIP

Bi = one of the CBP30 (P300/CBP selective BD inhibitor) derivatives The target sequence of PIP Bi-PIP1 \rightarrow 5'-WWCWGWCW-3' (8bp) Bi-PIP2 \rightarrow 5'-WWCCGCCW-3' (8bp) (W = A or T)Bi (1) CBP30 R = R' : R = Me : R = R' : Bi-PIP1 (2) PIP1 (3) Bi-PIP2 (4) Fig.S1. Structural analysis of CBP30-CBP bromodomain complex. $) \diamond \bullet \bigcirc \bigcirc$ () $\diamond \circ \circ \circ$ An X-ray crystal structure of P300 bromodomain bound by its inhibitor CBP30 (PDB ID: 5BT3) was analysed. The terminal aryl group and morpholine group are located outside of the bromodomain pocket. Arrows indicate the corresponding moieties. Figure 2. Chemical structures of Bi (1), Bi-PIP1 conjugate (2), PIP1 monomer (3), Bi-PIP2 conjugate (4), and PIP2 monomer (5).

R = Me :

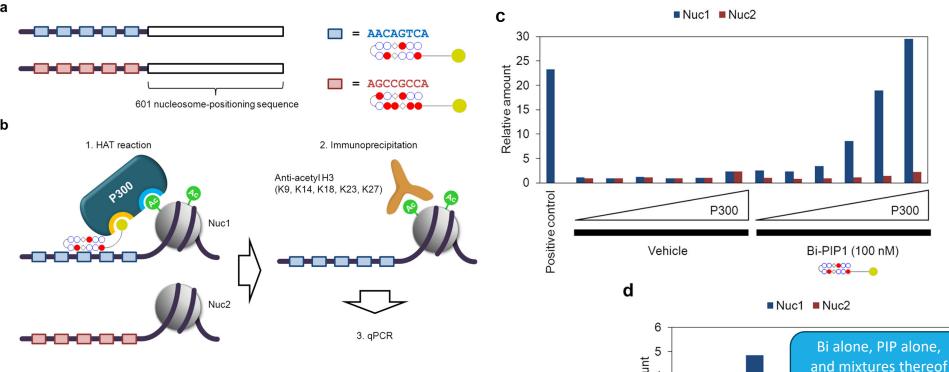
PIP2 (5)

2024/1/25

Bi-PIP

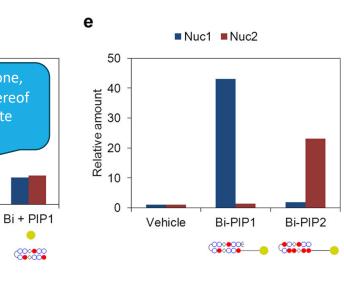
Taniguchi, J., Sugiyama, H. et al. J. Am. Chem. Soc. 2018, 140, 7108–7115

Bi-PIPs promote histone acetylation on nucleosomes that have their target DNA sequences in vitro


<u>ө</u>З

Vehicle

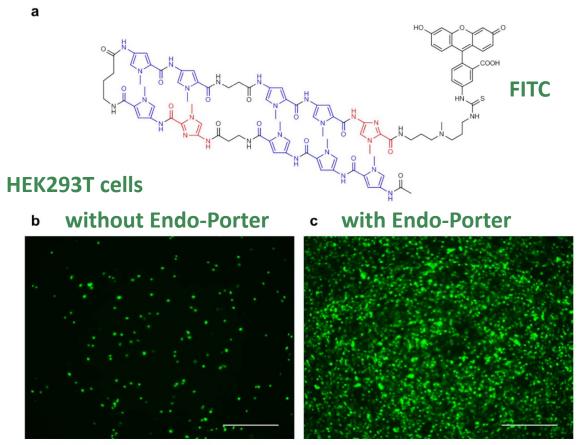
Bi-PIP1


PIP1

-000000

Bi-PIP

Figure 3. Bi-PIPs promote histone acetylation on nucleosomes that possess their target DNA sequences. (c) HAT reaction—in vitro ChIP-qPCR was performed with a series of P300 concentrations (**0**, **3**, **10**, **30**, **100** nM) with or without 100 nM Bi-PIP1. Positive control represents a nucleosome with synthetic acetylated histone H3 (K4ac, K9ac, K14ac, K18ac, K23ac). (d) HAT reaction—in vitro ChIP-qPCR was performed with 10 nM of P300. Each compound was applied at a concentration of 100 nM. (e) HAT reaction—in vitro ChIP-qPCR was performed Bi-PIP1 (100 nM) or Bi-PIP2 (100 nM) with 10 nM of P300.


do not promote

acetylation.

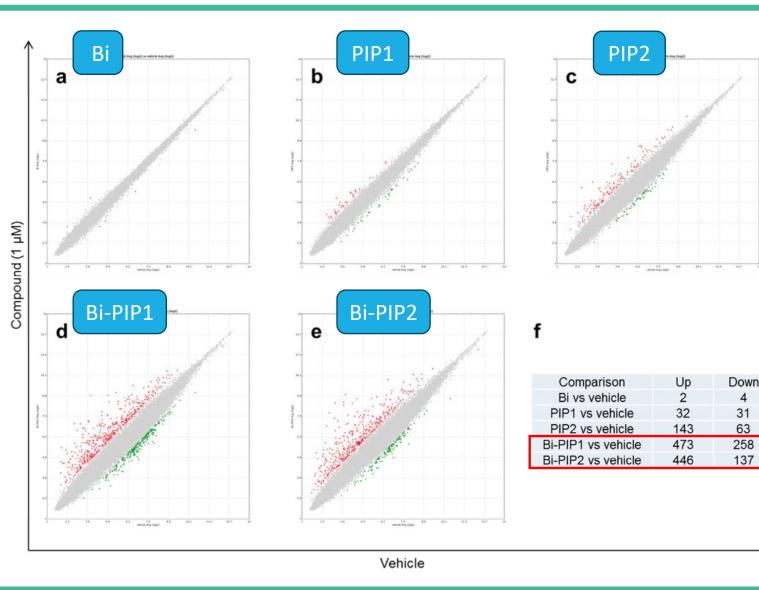
Bi

- ✓ 100 nM Bi-PIP1 induced intensive acetylation on its target Nuc1 but not on Nuc2.
- The level of acetylation was dependent on the concentration of P300. $\frac{\frac{2}{4}}{2}$
- Acetylation was achieved by PIP binding to the target DNA sequence selectively and recruiting P300 by the BD-Bi interaction.

Cell permeability of PIPs

Fig.S9. PIP delivery with Endo-Porter

(a) Chemical structure of the FITC-labelled PIP used in the experiment. (b,c) HEK293T cells were treated with 0.9 μ M of the FITC-PIP alone (b) or 0.9 μ M of the FITC-PIP and Endo-Porter (4 μ M). Bars, 300 μ m.


- The cell permeability of PIPs = vary depending on the chemical structures and cell lines
- ✓ Endo-Porter was used to ensure that all of the compounds enter the cells.

Bi-PIP

Taniguchi, J., Sugiyama, H. et al. J. Am. Chem. Soc. 2018, 140, 7108–7115

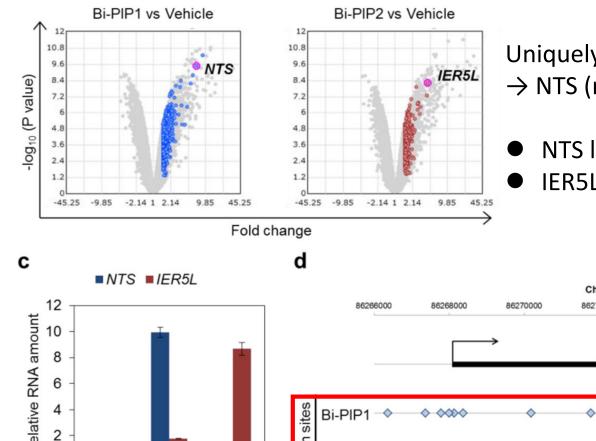
22

Bi-PIP caused greater changes in gene expression

HEK293T cells

A transcriptome analysis of total RNA extracted from cells

✓ Bi-PIP1 and Bi-PIP2 gave greater transcriptome changes, mainly for activation.


Fig.S10. Genome-wide gene expression change by each compound. (a-e) Scatter plots of cells treated with Bi (a), PIP1 (b), PIP2 (c), Bi-PIP1 (d), or Bi-PIP2 (e) versus vehicle-treated cell. Red and green dots represent transcripts which were up- or downregulated in each comparison. >2 or <-2fold change and <0.05 P value were used as the criteria. (f) Summary of the number of differentially expressed genes. 2024/1/25

After 15 hours of compound treatment, RNA was extracted.

Bi-PIP

Bi-PIPs selectively activated gene expression in living cells

b

Uniquely activated transcripts by Bi-PIP and Bi-PIP2 → NTS (neurotensin) and IER5L (immediate early response 5-like)

NTS locus contains the binding sites for Bi-PIP1 but not for Bi-PIP2.
IER5L locus contains the binding sites for Bi-PIP2 but not for Bi-PIP1.

Bi-PIP

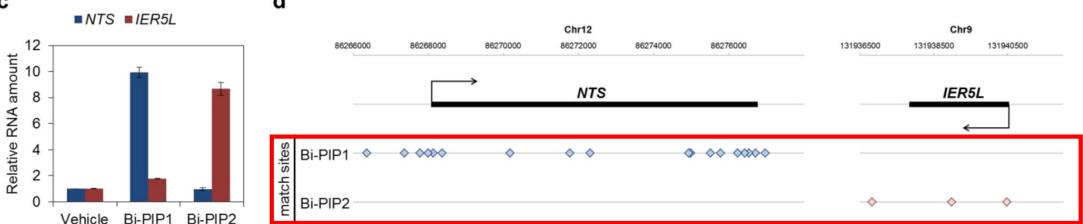


Figure 4. Bi-PIPs epigenetically activate selective gene expression inside living cells. (b) Volcano plots of transcriptome comparison of Bi-PIP1 vs vehicle (left) and Bi-PIP2 vs vehicle (right). Uniquely upregulated transcripts by individual Bi-PIP (>1.5 fold change) are indicated as colored dots. (c) Expression of *NTS* and *IER5L* was confirmed by RT-qPCR. Error bars represent standard deviation of data from two culture wells. (d) Genomic loci of *NTS* (top) and *IER5L* (bottom). Match sites for Bi-PIP1 (5'-WWCWGWCW-3') and Bi-PIP2 (5'-WGCCGCCW-3') are indicated as blue and red diamonds, respectively.

Taniguchi, J., Sugiyama, H. et al. J. Am. Chem. Soc. 2018, 140, 7108–7115

Acetylated loci by Bi-PIPs

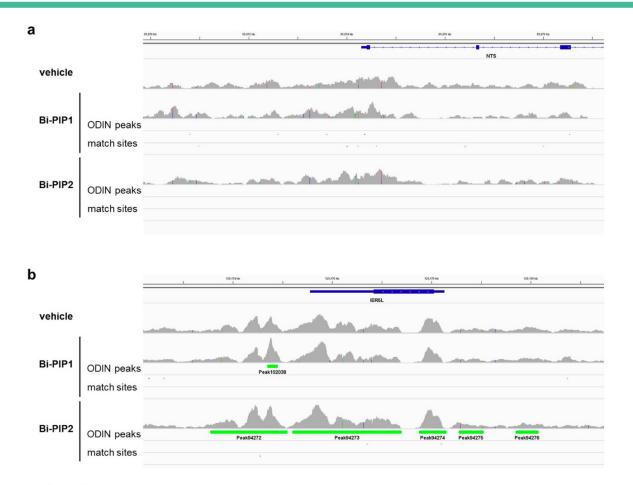


Fig.S12. ChIP-seq analysis on activated gene loci. anti-acetylated H3 Mapped reads in ChIP-seq, differential peaks significantly increased in Bi-PIP vs vehicle detected by ODIN, and match sites of Bi-PIPs at *NTS* locus (**a**) and *IER5L* locus (**b**) are shown.

✓ The acetylation at NTS locus slightly increased by Bi-PIP1.

 \checkmark The acetylation at IER5L locus increased by Bi-PIP2.

\triangle Acetylated loci by Bi-PIP

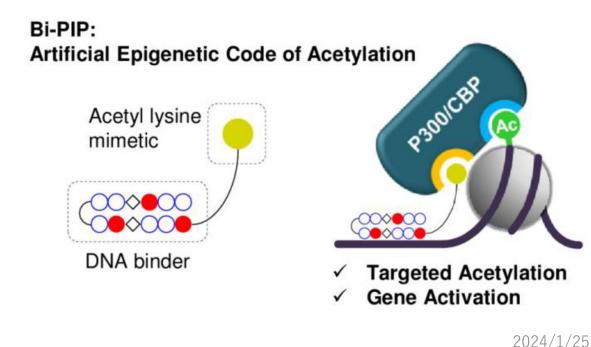
= its target sequences + the **other** possible binding sites

2024/1/25

Bi-PIP

Taniguchi, J., Sugiyama, H. et al. J. Am. Chem. Soc. 2018, 140, 7108–7115

Taniguchi, J., Sugiyama, H. et al. J. Am. Chem. Soc. 2018, 140, 7108–7115


Summary of Bi-PIP & Challenges

<u>Summary</u>

- ✓ Bi-PIP recruited P300/CBP to selective DNA sequences.
- ✓ Bi-PIP promoted the sequence-selective histone acetylation and transcriptional activation in living cells without gene transfection.

Challenges

- Need to improve the sequence-selective ability
- Endogenous enzyme-dependent

Contents

Contents

Introduction

•KR12 (DNA alkylating agent with PIP)

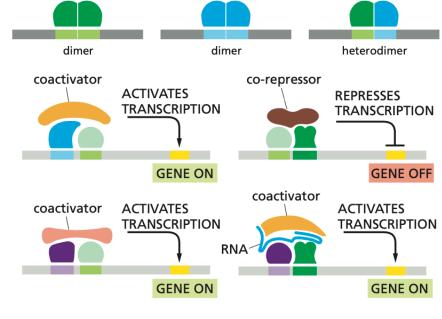
•Bi-PIP (Brd inhibitor with PIP)

PIP-HoGu (Integration of PIP and cooperative systems)

•ePIP-HoGu (PIP-HoGu with epigenetic modulator)

Summary & Discussion

TFs often act as homo/heterodimers


Current challenges

- > The short recognition sequence of PIP leads high off-target rates.
- > The extension of PIP length significantly reduces its cell permeability.
- Single PIP cannot block interactions between TF pairs and DNA.

☆ Transcription factors (TFs) often act as homo/heterodimers → high binding affinity and extended recognition sequences

28

2024/1/25

PIP-HoGu

Design for mimicking cooperative TF-pair systems

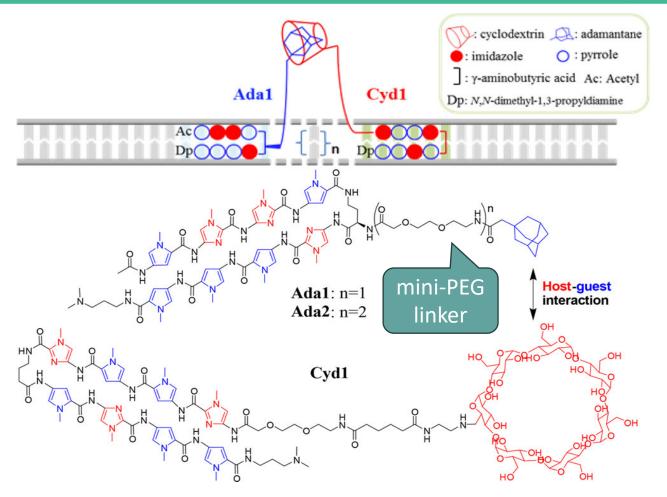


Figure 1. Overview of cooperative interactions of a TF pair targeting a sequence associated with two components of Pip-HoGu assembly, Ada1 and Cyd1. n = gap distance. (Bottom) Chemical structures of Ada1, Ada2, and Cyd1.

<u>Strategy</u>

Integration of PIPs with <u>a cooperative system</u> →Noncovalent cooperative system (nucleic acid analogues, metal ion-ligand, host-guest systems (ex. cyclodextrin(Cyd)adamantane(Ada)))

<u>This work</u>

- 1. Design PIP-HoGu (PIPs conjugated to a host-guest Cyd-Ada scaffold)
- 2. Evaluate PIP-HoGu in vitro using the DNA binding sequences of the Tax/CREB heterodimer
- 3. Experiment in cells

PIP-HoGu

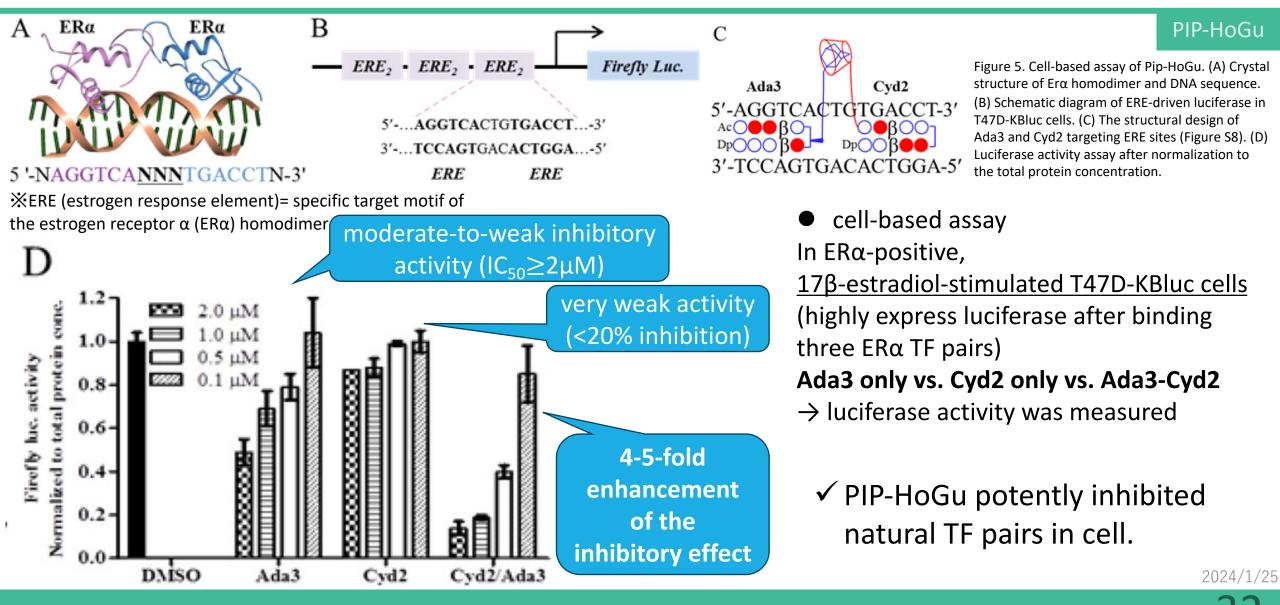
Yu, Z., Sugiyama, H. et al. J. Am. Chem. Soc. 2018, 140, 2426–2429

0-5 bp gap distances displayed cooperative binding.

					impossible for Ada PIP-HoGu				
A		Positive binding mode		Negative binding mode					
Gap distance (n)	ODNs	5'-AACTTAGGCTAATGACGTATATG-3'	ODNs	5'-AACTTGACGTAATAGGCTATATG-3'	to interact with Cyd <u>Thermal stabilization assay</u>				
-1	1'P	5'-AAACTTAGGCTGACGTATATAT-3'	1'N	5'-AAACTTGACG-TAGGCTATATAT-3'	$(\Delta T = difference in melting temperature)$				
0	0P	5'-AAACTTAGGCTTGACGTATATA-3'	0N	5'-AAACTTGACGTTAGGCTATATA-3'					
1	1P	5'-AACTTAGGCTATGACGTATATA-3'	1N	5'-AACTTGACGTATAGGCTATATA-3'	✓ improved thermal stability by the				
2	2P	5'-AACTTAGGCTAATGACGTATAT-3'	2N	5'-AACTTGACGTAATAGGCTATAT-3'	cooperative interaction of the Cyd–Ada				
3	3P	5'-AACTTAGGCTAAATGACGTATAT-3'	3N	5'-AACTTGACGTAAATAGGCTATAT-3'					
4	4P	5'-AACTTAGGCTATTATGACGTATAT-3'	4N	5'-AACTTGACGTATTATAGGCTATAT-3'	complexes				
5	5P	5'-AATTAGGCTATTAATGACGTATAT-3'	5N	5'-AATTGACGTATTAATAGGCTATAT-3'	✓ gap 0-5 bp \rightarrow cooperative binding				
6	6P	5'-AATTAGGCTAATTAATGACGTATA-3'	6N	5'-AATTGACGTAATTAATAGGCTATA-3'	function				
B 60.0-	,	$\begin{array}{c} \bullet T_{mP} \\ \bullet T_{mPA} \\ \bullet T_{mN} \\ \bullet T_{mNA} \end{array} C$	8.0 6.0		✓ 2 bp gap → the highest level of cooperation ($\Delta\Delta T_m = 7.2$ °C)				
[] 55.0- 50.0- 50.0- 45.0- 40.0			2.0- 0.0 -2.0	Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ	Figure 2. Tm assay illustrating the cooperativity of Pip-HoGu. (A) The DNA oligomers (ODNs) used in the Tm assay, including positive (ODN1'P–ODN6P) and negative (ODN1'N–ODN6N) binding sequences. The gap distance (green) is the number of bp between the binding sites of Ada1 (blue) and Cyd1 (red). The chart only shows the forward DNA strand. (B) Tm profiles of positive ODNs (TmP, light blue), negative ODNs (TmN, gray), positive ODNs/Ada1– Cyd1 (TmPA, blue), and negative ODNs/Ada1–Cyd1 (TmNA, black). (C) $\Delta\Delta$ Tm profiles of cooperativity of Ada1–Cyd1 assemblies. Δ Tm = Tm (ODNs/PIPs) – Tm (ODNs); $\Delta\Delta$ Tm = Δ TmP – Δ TmN. Error bars indicate the standard deviation of three replicates.				

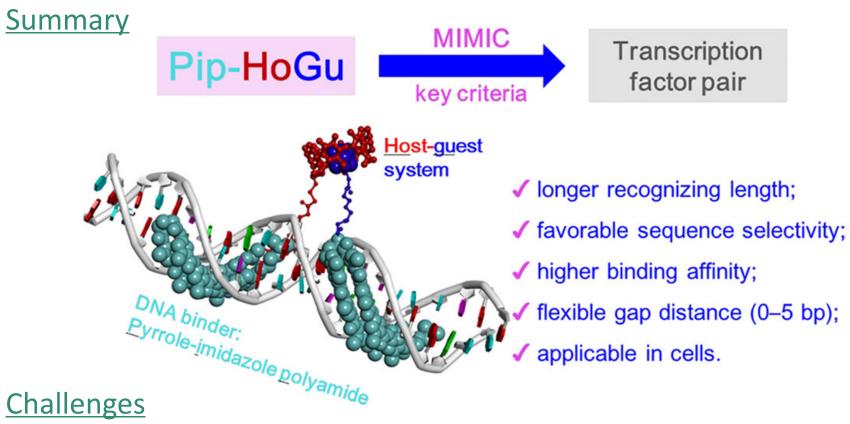
deviation of three replicates.

Yu, Z., Sugiyama, H. et al. J. Am. Chem. Soc. 2018, 140, 2426–2429


PIP-HoGu has high sequence-selectivity.

						cf)						PIP-HoGu		
Table S2. Results of Tm assay of mismatch sequence				>				/ N						
	ODNs	<i>T</i> _m [℃]	<i>T</i> _{mPA} [℃]	$\Delta T_{\mathrm{mA}} [^{\circ}\mathrm{C}]^{a}$	∆∆ <i>T</i> _m [℃]	Single PIP								
	ODN2P	45.8	63.2	17.4	8.4	2-nh III	1, L = § ℓ	■ N ⁰ N ⁵ ξ;	й X = CH;		⁵ O ₂ Ν			
	ODN2PM	43.9	52.9	9.0		-	H = H = N; Z H = H = CH 2 , $L = \{A = A, A = CH\}$ H = A = A = CH H = A =							
ODN2P: 5'-AACTTAGGCTAATGACGTATAT-3' ODN2PM: 5'-AACTTAGGCTAATGATGTATAT-3' • 1-bp mismatch T _m assay				Conjugates	3 , $L = \begin{cases} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$			Mismatch sequence ODN3: 5'-ACTTA <u>TCCACT</u> ATAGA-3' ODN4: 3'-TGAAT <u>AGGTGA</u> TATCT-5'						
✓ PIP-HoGu exhibited high sequence-selectivity.						$T_{\rm m} = 32.5 \ ^{\circ}{\rm C} \ (\pm 0.1)$ $T_{\rm m}/^{\circ}{\rm C} \qquad \Delta T_{\rm m}/^{\circ}{\rm C}^{\rm a} \qquad \Delta \Delta T_{\rm m}/^{\circ}{\rm C}$		$T_{\rm m} = 34.3 \ ^{\circ}{\rm C} \ (\pm 0.1)$ $T_{\rm m}/^{\circ}{\rm C} \qquad \Delta T_{\rm m}/^{\circ}{\rm C} \qquad \Delta$		$\Delta\Delta T_{\rm m}/^{\circ}{\rm C}^{\rm b}$				
					1	49.4 (±0.1)	Δ1 _m / C ²	ΔΔ1 _m / C	45.3 (±0.1)	Δ1 _m / C	5.9			
sequ			vity.			2	50.6 (±0.1)	18.1	_	45.8 (±0.1)	11.5	6.6		
						3	50.9 (±0.1)	18.4	-	46.5 (±0.1)	12.2	6.2 2024/1/25		

Yu, Z., Sugiyama, H. et al. J. Am. Chem. Soc. 2018, 140, 2426–2429 Yu, Z., Sugiyama, H. et al. Eur. J. Med. Chem. 2017, 138, 320–327


31

PIP-HoGu inhibited natural TF-pair binding in cells.

Yu, Z., Sugiyama, H. et al. J. Am. Chem. Soc. 2018, 140, 2426–2429

Summary of PIP-HoGu & Challenges

- Limitation of gap distance (~5 bp)
- Optimization of the host-guest moiety

 \prec

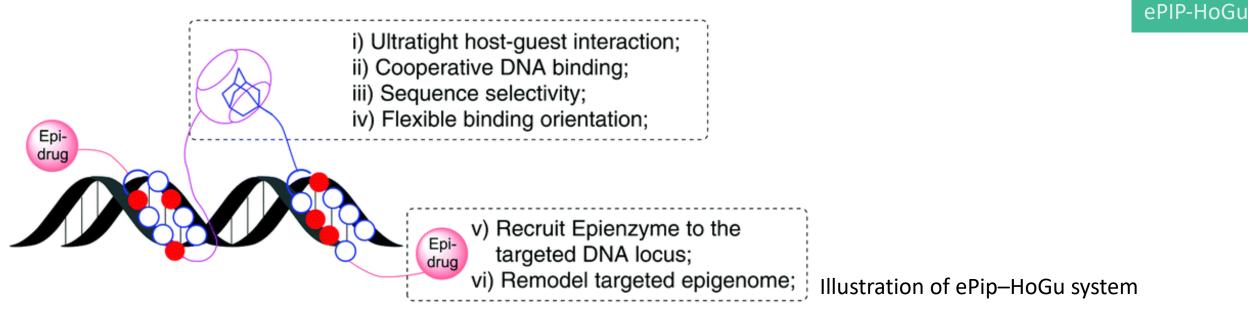
PIP-HoGu

Contents

Contents

Introduction

•KR12 (DNA alkylating agent with PIP)


•Bi-PIP (Brd inhibitor with PIP)

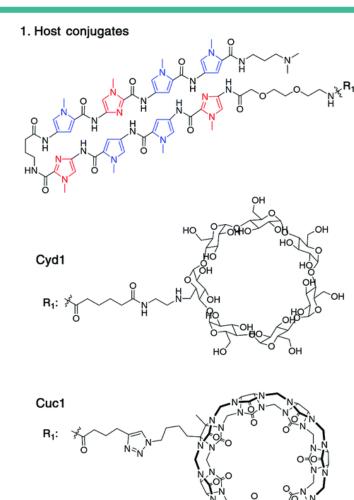
• PIP-HoGu (Integration of PIP and cooperative systems)

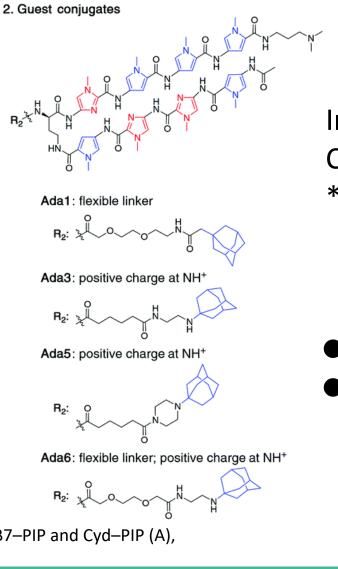
•ePIP-HoGu (PIP-HoGu with epigenetic modulator)

Summary & Discussion

A synthetic mimic capable of cooperative DNA binding and epigenetic modulation

Motivation


TFs → cooperative DNA binding & **transcriptional modulation** Need to create a synthetic mimic that can perform both **cooperative DNA binding** and **epigenetic modulation**


<u>Strategy</u>

The installation of an epigenetic modulator (epi-drug) to PIP-HoGu

Upgraded the cooperation domain in PIP–HoGu system

Improvement of PIP-HoGu replacing Cyd with <u>CB7</u> *CB7 = cucurbit[7]uril

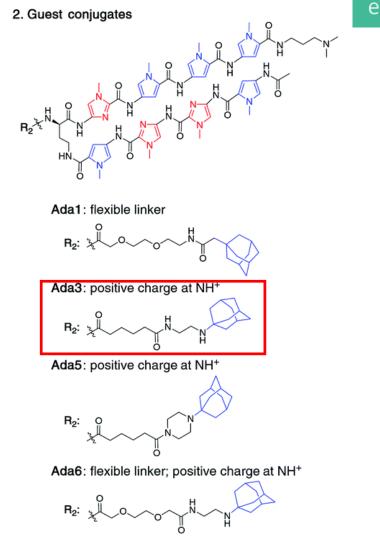
- CB7-PIP (Cuc1)
- Ada1-6 (Linker length, type, and positive charge are different)

ePIP-HoGu

Fig. 2 Chemical structures of host conjugates CB7–PIP and Cyd–PIP (A), and guest conjugates Ada–PIP (B).

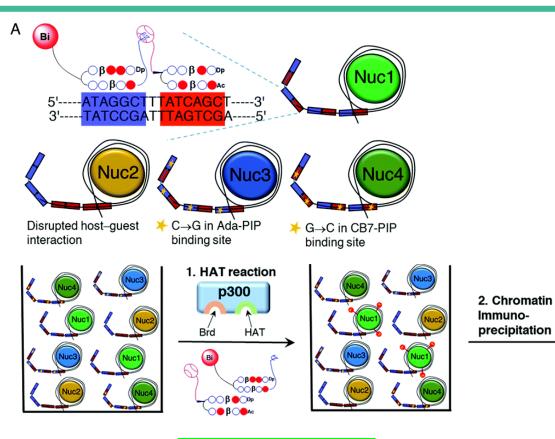
Yu, Z., Sugiyama, H. et al. Chem. Commun. 2020, 56, 2296

Cuc1 exhibited higher affinity than Cyd1

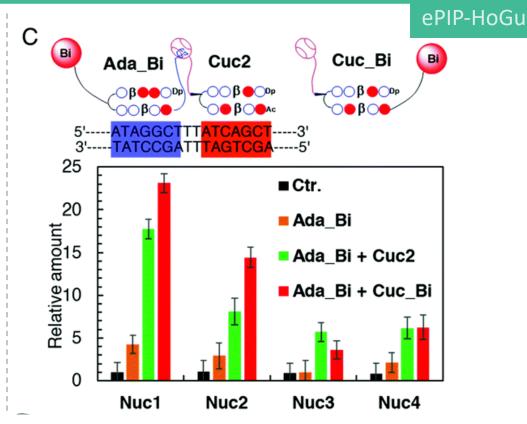

Table S3. T_m assay of Cyd1– and Cuc1–guest conjugates with ODNs containing 2 bp spacing

Ada1	Ada3	Ada5	Ada6
63.2 ± 0.3	63.5 ± 0.2	63.1 ± 0.3	62.9 ± 0.4
64.5 ± 0.2	65.6 ± 0.1	63.6 ± 0.4	64.7 ± 0.1
1.3 ± 0.5	2.2 ± 0.3	0.6 ± 0.7	1.8 ± 0.5
		64.5 ± 0.2 65.6 ± 0.1	63.2 ± 0.3 63.5 ± 0.2 63.1 ± 0.3 64.5 ± 0.2 65.6 ± 0.1 63.6 ± 0.4 1.3 ± 0.5 2.2 ± 0.3 0.6 ± 0.7

 $\Delta T_{\rm m} = T_{\rm m} ({\rm ODNs/Cuc1/Ada-PIP}) - T_{\rm m} ({\rm ODNs/Cyd1/Ada-PIP})$. ODNs (2P) forward strand is 5'-AACTTAGGCTAATGACGTATAT-3'. Error bars are ranging from 0.1–0.7 °C indicating standard deviation of three replicates.


Thermal stabilization assay

- ✓ Cuc1 exhibited higher thermal stability than Cyd1
- Ada3 (with an ethyldiamino residue and alkyl chain) showed the most prominent stabilization

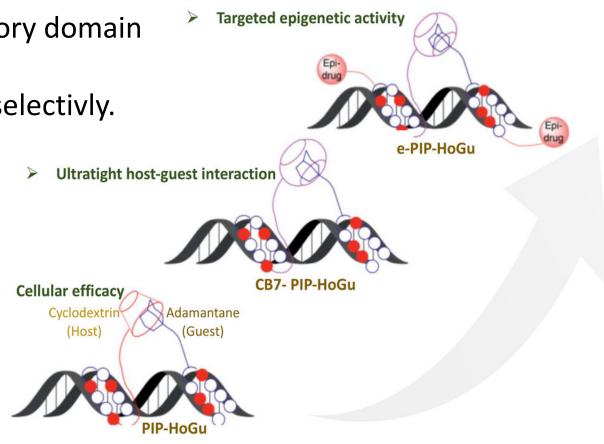


ePIP-HoGu recruited functional enzymes sequence-selectively.

3. qPCR

- ✓ Co-treatment of Ada_Bi1 and Cuc2 hugely increased the acetylation level in Nuc1 (nearly 20-fold)
- ✓ Co-treatment of Ada_Bi1 and Cuc_Bi1 further enhanced the acetylation level in Nuc1 (23.5-fold)

Fig. 4 ePIP–HoGu synergistically recruits an epigenetic modifier to the target DNA repeat locus. (A) Schematic illustration of four kinds of nucleosomes with different DNA templates. Nuc1 contains four-matched repeat sequence of PIP–HoGu binding. Nuc2 has two homodimeric binding sites of Ada–PIP and CB7–PIP separately, which cannot form a host–guest interaction (Nuc2 has potential synergic binding partially between site 2 and 3, because of the short distance between them). One-mismatch bp localizes in the binding site of Ada-PIP for Nuc3 and CB7-PIP for Nuc4. (B) The workflow of the *in vitro* HAT-ChIP-qPCR assay. (C) Results of the *in vitro* HAT-ChIP-qPCR assay. (C) Results of the *in vitro* HAT-ChIP-qPCR assay. Compound treatment in three groups compared with control (DMSO), *i.e.*, Ada_Bi1, Ada_Bi1 + Cuc2, and Ada_Bi1 + Cuc_Bi1. 2024/1/25


Summary of ePIP-HoGu & Challenges

<u>Summary</u>

- ✓ ePIP-HoGu contain a DNA binding domain, an interaction domain, and a gene regulatory domain like natural TF pairs.
- ✓ ePIP-HoGu promoted histone acetylation selectivly.

Challenges

- Endogenous enzyme-dependent
- Cell-based assay
- Specific gene activation

Contents

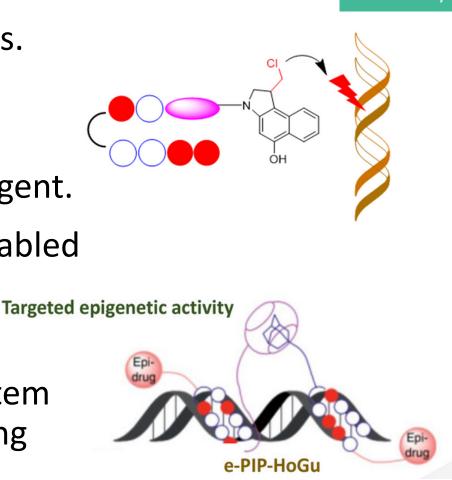
Contents

Introduction

•KR12 (DNA alkylating agent with PIP)

•Bi-PIP (Brd inhibitor with PIP)

• PIP-HoGu (Integration of PIP and cooperative systems)


•ePIP-HoGu (PIP-HoGu with epigenetic modulator)

Summary & Discussion

Summary

 \checkmark PIPs can inhibit binding of transcription factors.

- ✓ Conjugating PIPs to DNA alkylating agents enhanced the effectiveness of the alkylating agent.
- ✓ Conjugating PIPs to epigenetic modulators enabled genomic loci-selective histone modifications.
- Conjugating PIPs to a cooperative binding system improved DNA sequence selectivity and binding affinity.

Summary

Discussion

✓ PIPs have the potential to serve as small molecule-based designer drugs in targeted transcription therapy.

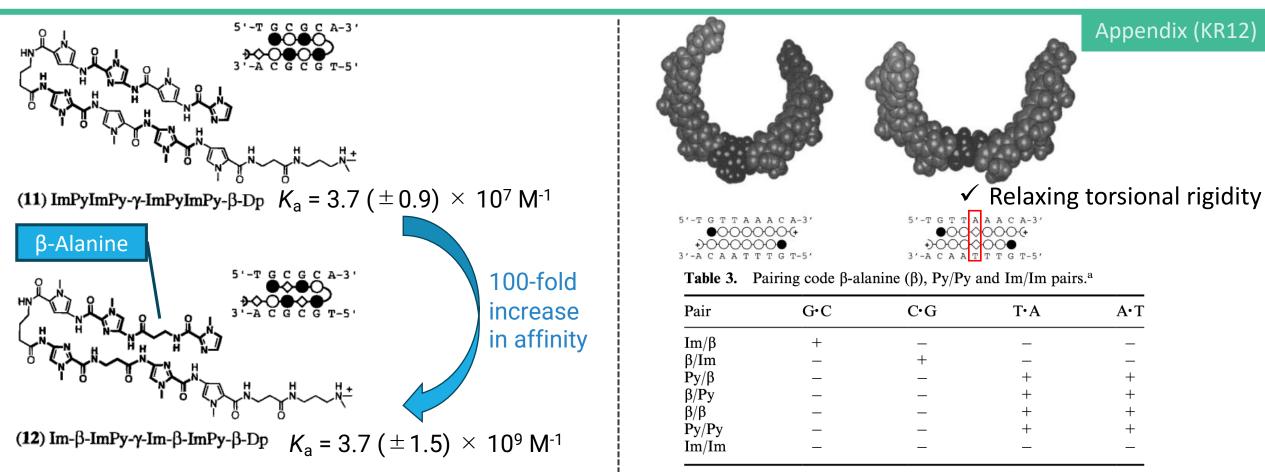
♦ Cell permeability \rightarrow PIP-HoGu

Conjugation with small molecule drugs (e.g., DNA alkylating agents)

✓ PIPs are programmable and can be applied to personalized precision medicine.

Need for optimization in each case

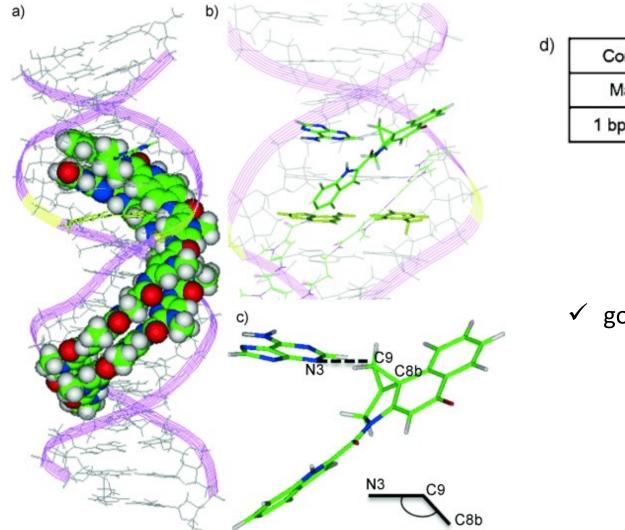
Thank you for your kind attention!


2024/1/25

43

Appendix

β-Alanine can improve affinity and relax torsional rigidity

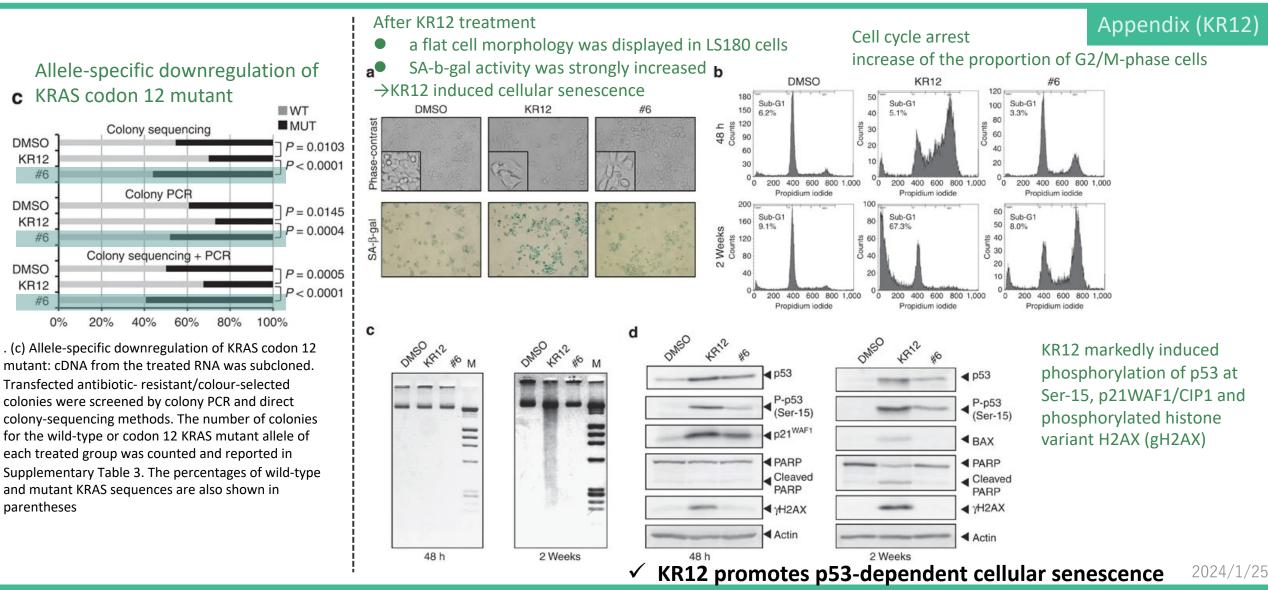

^aFavored (+), disfavored (-).

2024/1/25

- PIP owning over **four continuous rings** shows high torsional rigidity.
- β -alanine linker = replacement for the Py moiety

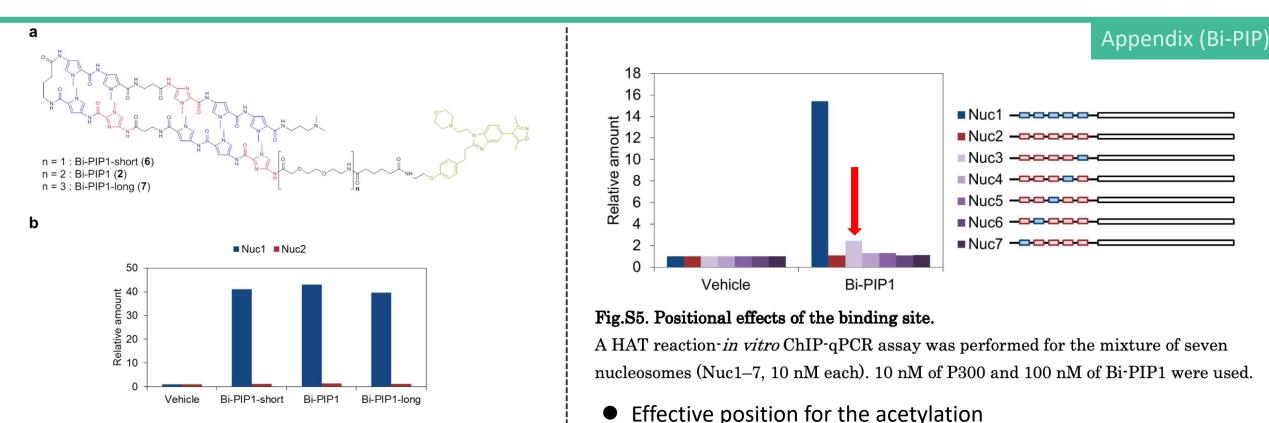
Turner, J. M., Dervan, P. B. et al. J. Am. Chem. Soc. 1998, 120(25), 6219–6226 Dervan, P. B. Bioorg. Med. Chem. 2001, 9, 2215–2235

Role of indole moiety in KR12


				Appendix (KR12)
d)	Conjugate 4	Distance (N3-C9)	Angle (N3-C9-C8b)]
	Match site	3.03 Å	150°]
	1 bp mismatch	3.12 Å	149°]
				-

✓ good proximity to the N3 to allow efficient alkylation

Taylor, R. D., Sugiyama, H., Nagase, H. et al. Chem. Eur. J. 2015, 21, 14996-15003


KR12 induced p53-dependent cellular senescence

Hiraoka, K., Sugiyama, H., Nagase, H. et al. Nat. Commun. 2015, 6, 6706

54

Effects of linker length of Bi-PIP and position of binding sites

Fig.S4. Effects of the linker length.

(a) Chemical structure of Bi-PIP1-short (6) and Bi-PIP1-long (7). (b) A HAT reaction-*in vitro* ChIP-qPCR was performed for Bi-PIP1-short, Bi-PIP1 and Bi-PIP1-long with 10 nM of P300. Each compound was applied at a concentration of 100 nM.

• Effects of linker length of Bi-PIP

sufficiently long and flexible linker for the effective acetylation of H3

the sum of acetylation levels of Nuc3–7 << Nuc1

 \rightarrow synergistic effects of multiple P300s on a single nucleosome

Taniguchi, J., Sugiyama, H. et al. J. Am. Chem. Soc. 2018, 140, 7108–7115

Distribution of PIPs in different cell lines

		ו ת ות	U _Q I a	MCE-7	SV	786.0	202	LN	DC3	MEI	NP4	Iurkat	CCPE	MEG												hhe			
		DLD-1	TIELa	WICI-7	BR-3	/80-0	293	CaP	res	WILL	ND4	Juikat	CEM	01															
															FITC (+)OOO(NHAc														
€ € FITC ~~(+)~~ \$ €	2 2	-													<i>FITC(+)</i> (NHAc	13	++	++	++	++	++	+ +	++	++	++	+	++	++	++
FITC ***(+)*** (+)*** (+)** (+)** (+)*** (+)** (+)*** ()*** (+)*** ()*** ()** ()** ()** ()*** ()** () 3	+	++	++	++	++	++	++	++	++	++	++	++	++	<i>FITC(+)</i> (NHAc	14	++	++	++	+ +	+	+ +	++	+ +	+	-	++	++	++
Bodipy FL ····(+)····) 4	-	-	-	_				-	-	-	-		-	FITC(+)														
●●○○ <i>FITC~~</i> (+)~~○○○○	5 5	+ +	++	++	++	+ +	+ +	+ +	+ +	++	++	++	+ +	++															
															FITC····C ₇ ···●●○○ ▷○○○●	17	+	_	++	+				+	+	+	+	+	+
FITC ~~(+)~~○○●●															<i>FITC</i> C ₇ ●●○○ +)○○○●	18	+	++	++	+	-	+	-	+	++	_	++	+	+
●●○○- FITCC ₇ ○○○●) 9	-		+	+			-	-			-	-		FITC (+)	19	-	+	-	+	-		+	+	+	++	-		+
FITC C ₇	(+ 10	+	++	+	+	+		++	+	+	+	++	+	+	FITC(+)(+	20	_	++	+	-	+	_	+	+			+	+	+
FITC (+)	(+ 11	+	++	+	+	+	++	++	++	+		++	+	++	FITC (+)	21	_	_		_			-						
• good	l nu	clea	ar up	otak	е										FITC (+)	22	++	++	++	+ +	++	++	++	++	++	++	++	++	++

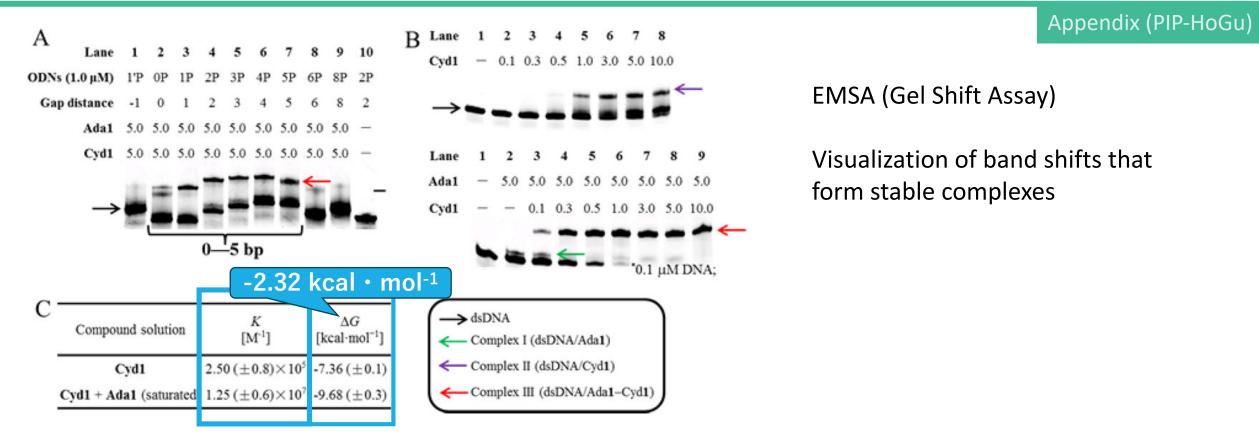
 \rightarrow an eight-ring polyamide DNA-binding domain, one or more positive charges incorporated within either the linker or the turn residue, and a conjugated fluorescein fluorophore

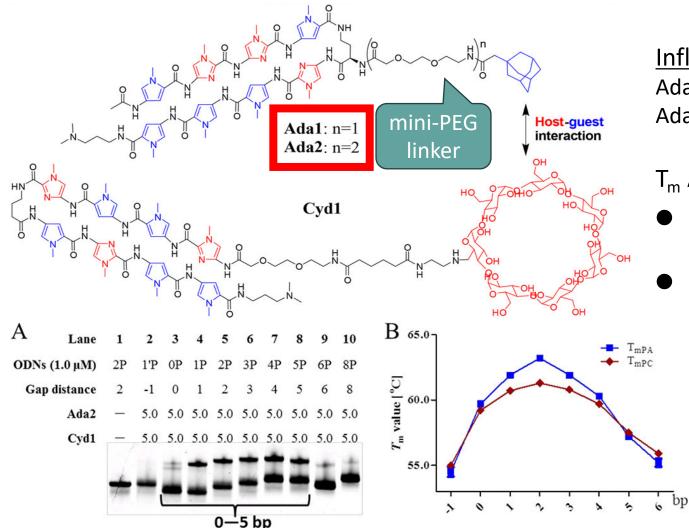
Uptake profile of compounds 1-22 in 13 cell lines. + +, Nuclear staining exceeds that of the medium; +, nuclear staining less than or equal to that of the medium, but still prominent; -, very little nuclear staining, with the most fluorescence seen in the cytoplasm and/or medium; --, no nuclear staining.

2024/1/25

Annendix (Ri-PIP)

Pip-HoGu showed higher binding affinity




Figure 3. EMSA illustrating the cooperativity of Pip-HoGu. (A) The gel-shift behavior of all the positive ODNs with Ada1–Cyd1. Concentrations are shown in figure. (B) Quantitative EMSA of ODN2P with Cyd1 at various concentrations (top) and Cyd1 supplemented with saturated Ada1 (bottom). ODNs concentration: 0.1 μ M. (C) Equilibrium association constants and free energies for ODN2P with Ada1–Cyd1.

- \checkmark Each bands can be distinguished.
- ✓ Cooperative binding was seen at 0-5 gap
 - = Tm assay

2024/1/25

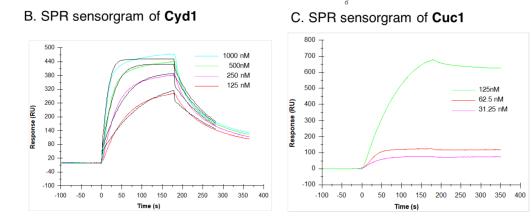
Yu, Z., Sugiyama, H. et al. J. Am. Chem. Soc. 2018, 140, 2426-2429

The cooperative energy of PIP-HoGu was highly distance dependent.

Appendix (PIP-HoGu)

2024/1/25

Influence of linker length on cooperative binding Ada1 = 1 mini-PEG-linker Ada2 = 2 mini-PEG-linkers

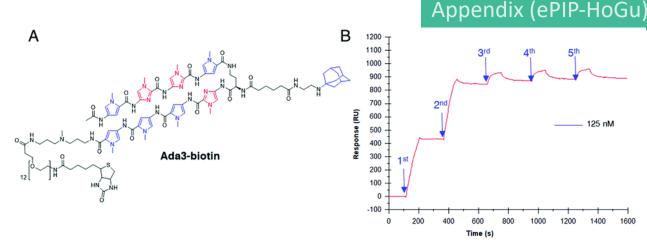

T_m Assay

- 0-4 bp gap → Ada2 showed lower stability than Ada1. (extra-long linker may destabilize the binding affinity)
- 5-6 bp gap → Ada2 showed slightly higher stability than Ada1. (longer and more flexible linker can make it easier to form complexes)
 - ✓ The cooperative energy of PIP-HoGu is highly dependent on gap distances, and gap >5 bp will diminish the cooperation even if the linker length is long enough.

Figure 4. Mechanistic studies of cooperative binding. (A) The gel-shift behavior of all the positive ODNs with Ada2–Cyd1. (B) Tm profiles of all positive ODNs in the presence of Ada1–Cyd1 (TmPA, blue, same as Figure 2B) and Ada2–Cyd1 (TmPC, red).

Yu, Z., Sugiyama, H. et al. J. Am. Chem. Soc. 2018, 140, 2426–2429

Binding dynamics of Cuc1 and Ada3



D. SPR data in summary

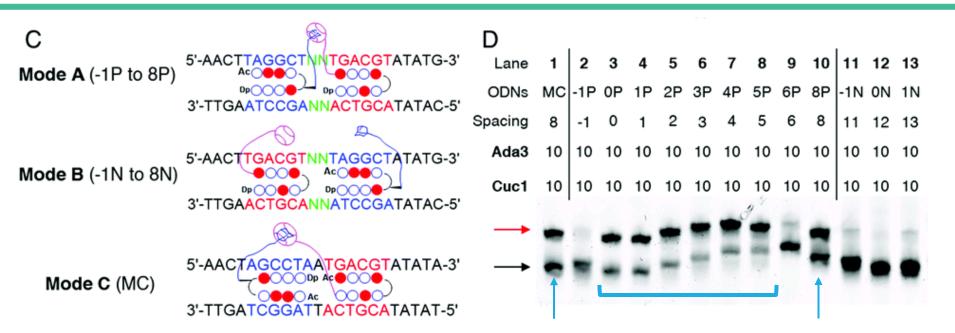
Compound solution	<i>k</i> a [M ⁻¹ s ⁻¹]	<i>k</i> _b [s ⁻¹]	<i>K</i> _D [M]
Cyd1	1.40×10 ⁵	1.47×10 ⁻³	1.05×10 ⁻⁷
Cuc1	4.09×10 ⁵	< 7.49×10 ⁻⁶	< 1.83×10 ⁻¹¹

*Determined by fitting with a 1:1 binding model with mass transfer.

(B) SPR sensorgram of Cyd1. (C) SPR sensorgram of Cuc1. The sensorgram were normalized to zero at the start point of injection, even though the interaction is irreversible. Thus, the accurate ka of Cuc1 can not be detected. (D) SPR data in summary. kb of Cuc1 was calculated based on a single injection (125 nM Cuc1) in a new chip. The concentrations were showed in figure. Extensive concentrations of Cyd1 and Cuc1 were dissolved in HBS-EP buffer (10 mM HEPES, pH 7.4, 150 mM NaCl, 3 mM EDTA, and 0.005 % surfactant P20) with 0.1% DMSO. These solutions were passed over a Ada3-biointylated chip, in the absence of targeting DNA, immobilized on a sensor chip through a biotin-avidin system. Kinetic constants were calculated from the surface plasmon resonance sensorgrams for the interaction of guest conjugate Ada-PIP with host Cyd-PIP or CB7-PIP.

Fig. 3 (A and B) **Cuc1** binds **Ada3** irreversibly in the absence of DNA in an SPR assay. (A) Chemical structure of **Ada3–biotin**. (B) SPR sensorgram of **Cuc1** (125 nM) with multiple rounds of standard injection. One standard injection consisted of 180 s sample injection, followed by 180 s elution at 20 μ L min⁻¹.

Surface plasmon resonance (SPR) assays


Cyd-assisted PIP–HoGu \rightarrow ① the pair binding to DNA, ② the host–guest interaction or the procession of these two steps at a similar rate

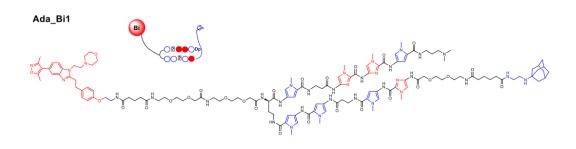
CB7-assisted PIP–HoGu \rightarrow (1) binding the partner guest, (2) synergic DNA binding $_{2024/1/25}$

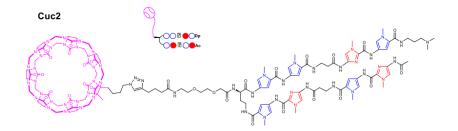
Yu, Z., Sugiyama, H. et al. Chem. Commun. 2020, 56, 2296

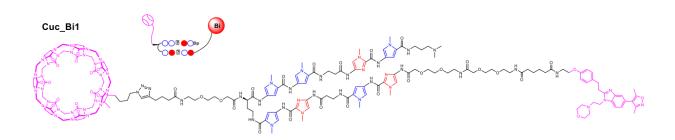
Influence of spacing and binding orientation on cooperation

Appendix (ePIP-HoGu)

Fig. 3 (C and D) EMSA illustrating the cooperativity of the CB7-assisted DNA-binding system. (C) Three binding modes. Positive binding mode (Mode A) contains series dsDNA (-1P to 8P) with a gap distance (*N*) ranging from -1 to 8 bp. Similarly, negative binding mode (Mode B) includes dsDNA (-1N to 8N) with gap distance of -1 to 8 bp. (D) The gel-shift behavior of Modes A, B, and C with **Ada3–Cuc1**. ODN concentrations: 1.0 μ M. Compound concentrations: 10.0 μ M. Black arrow: ODNs. Red arrow: ODNs/**Cuc1/Ada3**.


- EMSA (electrophoretic mobility shift assay) Cuc1-Ada3
 - 0-5 bp & 8 bp
- 8 bp with partially reversed orientation
 → a potent binding affinity


The difference in band-shift with the spacings of 6 bp and 8 bp


- DNA twist angle (host-guest moieties could meet through crossing the DNA major groove)
- distance between the two PIP-binding sites
- linker length of the two conjugates

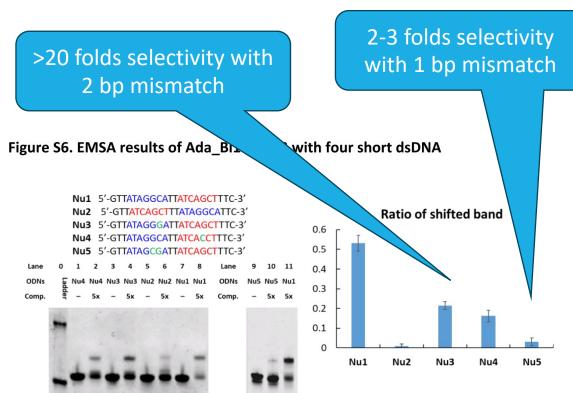

ePIP-HoGu showed high sequence-selectivity

Figure S5. Chemical structures of conjugates used in HAT assay

The gel-shift behavior of Ada_Bi1 + Cuc2 with four kinds of ODNs: Nu1 to Nu4. ODNs concentration: 0.5 μ M. Compound concentration is 2.5 μ M. These short ODNs were inserted into nucleosome DNA strands. The ratio was calculated based on the equation of the intensity of shifted band \div (un-shifted band + shifted band). ODNs show only the forward DNA strand and omits the complementary DNA strand.

72

2024/1/25

Appendix (ePIP-HoGu)