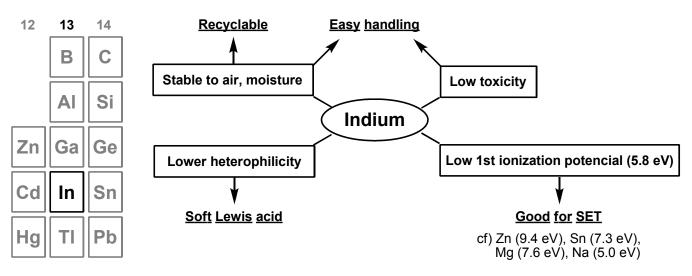
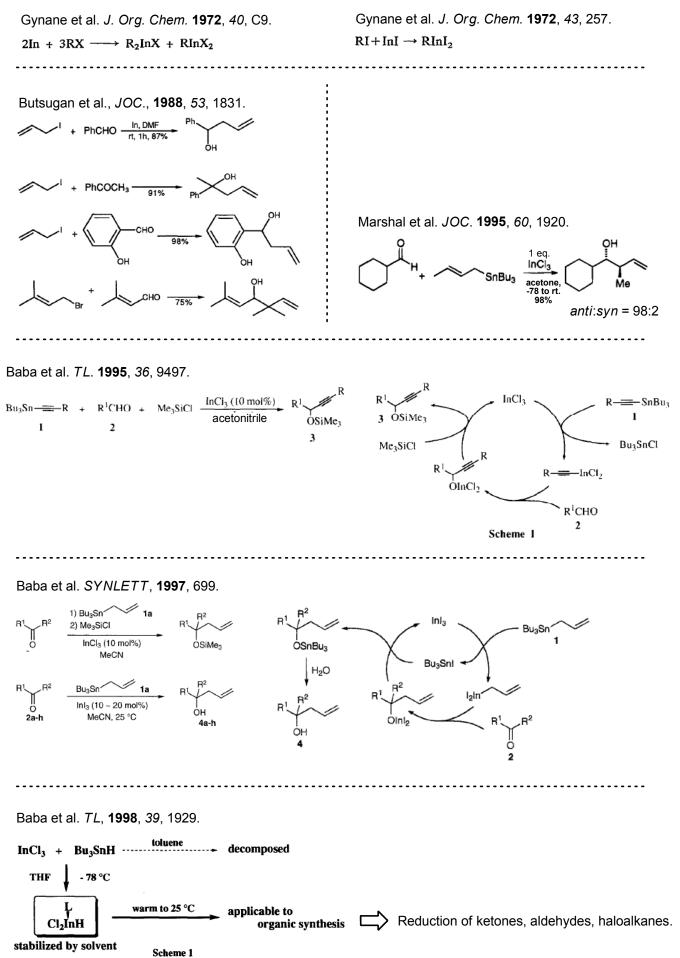

Indium Chemistry ~ from Dr. Baba's works ~

Akio Baba was born in Kochi, Japan, in 1949. He received his B.S. (1971) and Ph.D. degrees (1976) from Osaka University under the guidance of Professor Toshio Agawa. He worked for Mitsubishi Kasei Industries (now Mitsubishi Chemicals, Inc.) from 1976 to 1981. He became an Assistant Professor at Osaka University in 1981 and Associate Professor in 1987, working with Professor Haruo Matsuda. He became Full Professor in 1995. He is now also working as one of the project leaders at the Handai Frontier Research Center.


Baba et al. The Chemical Record. 2005, 5, 323.

0. Introduction

0-1. What is indium?


Cintas, *SYNLETT*, **1995**, 1087. Reddy et al. *Eur. J. Chem.* **2010**, 591.

Indium has these good points. But the prices of indium species is not cheap. cf) In(OH)₃: 12900 Yen/10g, Wako. InCl₃: 13300 Yen/10g, Ald.

InBr₃: 17400 Yen/10g, Ald. In(OTf)₃: 14900 Yen/5g, Ald.

0-2. Primary reactions

1. Alkyl indium

1-1. Cyclopropylmethylenylation

<u>Cyclopropylmethylenylation of α -iodoketones</u>

Table 2. Reaction of 1 with α-Iodocarbonyl Compounds 2^a

Bu ₃ Sn	+ ^R 0 2 (1 eq.)	InBr ₃ (50) toluene, r open air		-	
entry	iodocarbonyl		yield	∜%	$(under N_2)^c$
1	PhOI	2a	3a	79	(64)
8	EtO	2h	3h	65	(47)
9	ζ,	2i	3i	80	(98)
10 11 ^{b,d}	PhOI	2j	3j	<5 15	(<5) (30)
12 ^{b,d}	Et ₂ N I	2k	3k	54	(62)
13	Ph r	21	31	71	(67)

^{*a*} All entries were carried out at room temperature in solvent (1 mL) with 1.0 mmol of 1, 1.0 mmol of 2, and 0.5 mmol of InBr₃. Tin compound 1 was added to the mixture of 2 and InBr₃ in toluene. ^{*b*} Iodocarbonyl 2 was added to the mixture of 1 and InBr₃ in toluene that had been previously stirred at room temperature for 30 min. ^{*c*} Reactions were carried out on the bench using a nitrogen-flowing flask. ^{*d*} Reactions were carried out at 100 °C.

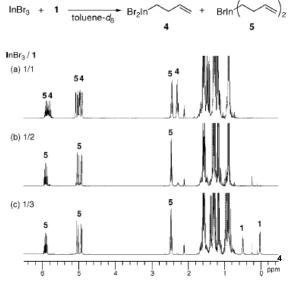
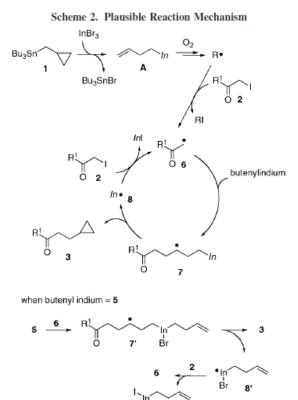


Figure 2. ¹H NMR spectra of the reaction mixtures of $InBr_3$ and 1 with (a) 1/1, (b) 1/2, and (c) 1/3 ratios in toluene- d_8 .

Two alkyl indium species were observed.


Table 1. Optimization of Reaction Conditions^a

Bu ₃ Sn	7 + PhO I 2a	additive (50mol%) rt, 4.5 h	PhO 03a
entry	additive	solvent	yield, %
1	InBr ₃	toluene	73
10	GaCl ₃	toluene	71
11	AICl ₃	toluene	<5'
12	BF3 · OEt2	toluene	9
14	TiCl ₄	toluene	13
18	InBr ₃ ^d	toluene	<5

^d Addition of galvinoxyl (0.1 mmol).

Galvinoxyl (radical scavenger) inhibited the reaction. -> This reaction is radicalic.

Baba et al. Organometallics, 2009, 28, 132.

Which indium is the active species?

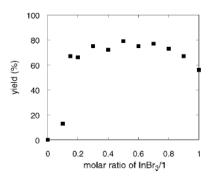
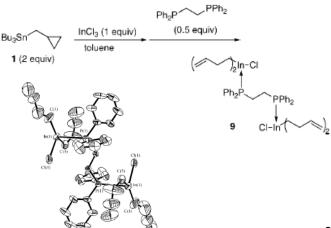



Figure 1. Relationship between amount of $InBr_3$ and the yield of 3a in the reaction of 1 (1 mmol) with 2a (1 mmol) at rt for 4.5 h.

1 eq. InBr₃ was not effective. -> The active species is dibutenylindium **5**.

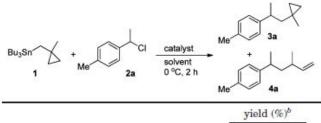
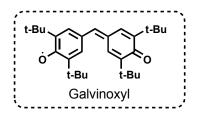


Table 2. GaCl ₃ or InBr ₃ -Catalyzed	Cyclopropylmethylation of
Various Alkyl Chlorides 2 ^a	Dr. Dr. 200 Dr.

Bu ₃ Sn 1 (1 eq.	× + R-CI 2) (1 eq.	-	(5 mol%) catalyst CH ₂ Cl ₂ temp, 2 h	+ R3	R +	R	4
entry	2		temp	product	catalyst	yield 3	(%) ^b 4
1	Ph		(°C)		GaCl ₃	72	16
2	Ph ^{CI}	2b	0	3b	InBr ₃	79	20
5	1	•••	_		GaCl ₃	59	21
6	Ph ^{CI}	2d	d rt	3d	$InBr_3$	trace	trace
13	\frown				GaCl ₃	45	12
14	CI	⊥ _{CI} 2h	rt	3h	InBr ₃	15	5
15 ^c	CI CI				GaCl ₃	36	46
16° CI		2i	80	3i	InBr ₃	70	14

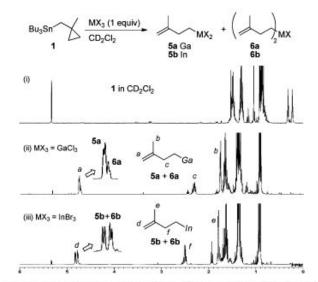
 a All entries were carried out with 1.0 mmol of 1, 1.0 mmol of 2a, and 0.05 mmol of catalyst. b Determined by $^1\rm H$ NMR. c 1.5 mmol of 1 and 0.75 mmol of catalyst were used. d 0.5 mmol of catalyst was used.

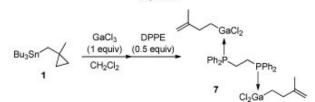

Table 1. Reaction of 1-Chloro-1-(4-methylphenyl)ethane (2a) with Cyclopropylmethylstannane 1^a

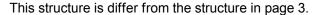
entry	catalyst	solvent	3a	4 a	
2	InBr ₃	CH_2Cl_2	81	19	
8	GaCl ₃	CH_2Cl_2	57	14	
10^c	InBr ₃	CH_2Cl_2	55	15	
11^{d}	InBr ₃	CH_2Cl_2	73	20	
12^{c}	GaCl ₃	CH_2Cl_2	45	13	
13^{d}	GaCl ₃	CH_2Cl_2	71	21	

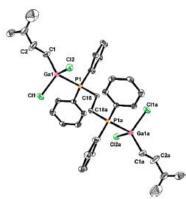
 a All entries were carried out at 0 °C for 2 h using 1.0 mmol of 1, 1.0 mmol of 2a, and 0.05 mmol of catalyst. b Determined by $^1\mathrm{H}$ NMR. c TEMPO (0.05 mmol) was added. d Galvinoxyl (0.05 mmol) was added.

Galvinoxyl did not inhibit the reaction. ->This reation is not radicalic; ionic. Author said this is the 1st report about ionic reaction of organic halides with organoindium.

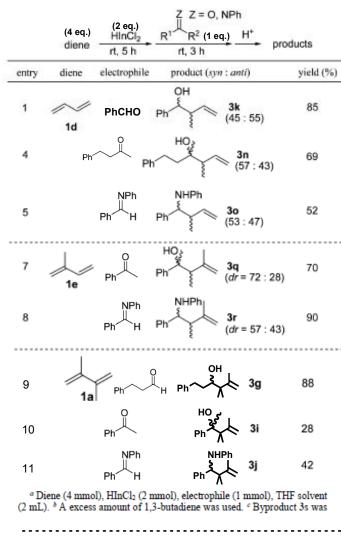



Figure 1. ¹H NMR spectra of (i) 1, (ii) the mixture of GaCl₃ and 1, and (iii) the mixture of InBr₃ and 1 in CD₂Cl₂.


Also two species were observed.



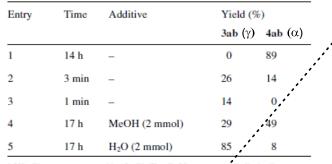
Scheme 2. Complexation and Isolation of the Butenylgallium Species



1-2. Diene utilized alkylation

Alkylation of ketones / imene

Baba et al. Org. Lett. 2006, 8, 4553.


Table 3. Reaction with 1,3-Butadiene and Isoprene^a

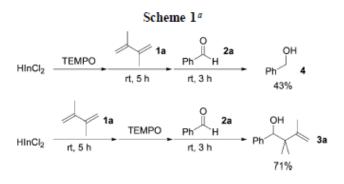
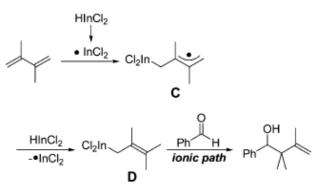
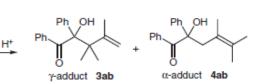

Baba et al. SYNLETT, 2008, 1407.

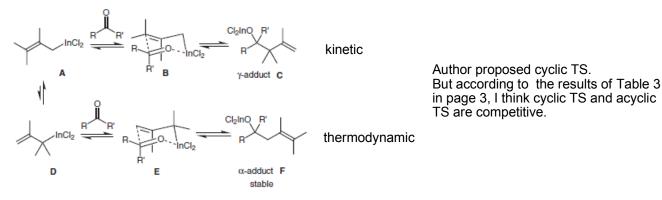
Table 1 Allylation of Benzil by 2,3-Dimethyl-1,3-butadiene and Effect of Additives^a



^a HInCl₂ was generated by InCl₃/Bu₃SnH system. Allylic indium was generated from the reaction of diene 1a (4 mmol) with HInCl₂ (2 mmol) in THF (2 mL) at r.t. for 5 h. Benzil (2b, 1 mmol) was used.


^{*a*} HInCl₂/TEMPO/diene/aldehyde = 2/0.1/4/1 (equiv), THF solvent.

When TEMPO was added before diene, only reduction of aldehyde was observed. In contrast, when TEMPO was added after diene, alkylation proceeded. -> Generation of alkylindium is radicalic path, and alkylation step is ionic path.


Ph

in situ: InCl₃ + Bu₃SnH → Cl₂InH + Bu₃SnCl Baba et al. *TL*, **1998**, *39*, 1929. Baba et al. *TL*, **2001**, *42*, 4661. Baba et al. *Org. Lett.* **2006**, *8*, 4553.

Other method preparing HInCl₂: Et₃SiCI

InCl₃ + Et₃SiH \longrightarrow Cl₂InH Baba et al. *Org. Lett.* 2004, *6*, 4981. InCl₃ + NaBH₄ \longrightarrow Cl₂InH + NaCl + BH₃ Baba et al. *JACS.* 2002, *124*, 906. InCl₃ + DIBAL \longrightarrow Cl₂InH + Al(ⁱBu)₂Cl Oshima et al. *Org. Lett.* 2002, *4*, 2993. 5

Scheme 4 A plausible mechanism of α-allylation

The additive effect is not clear. Does quenching indium alchoxide of **C** prevent the retroreaction? When author tried the reaction of acetophenone with **1a** in the presence of Ph_3P or HMPA, only a small amount of α -adduct was obtained at r.t.. See Entry 5 of Table 2. In absence of Lewis base, only γ -adduct was observed at r.t..

Table 2 Regioselective Allylation Using 2,3-Dimethyl-1,3-butadienea

	HInCl ₂ THF, r.t., 5 h	Cl ₂ In	$\begin{array}{c} & & \\ R & R' & 2 \\ \hline conditions & H^+ & \\ \hline r^{-adduct} & 3 \end{array}$	R'_OH R α-adduc	et 4		
Entry	Carbonyl compo	ound	Conditions	Yield (%)		
				3		4	
1	Ph OMe	2c	r.t., 3 h	3ac	>99	4ac	0
2		2c	r.t., 19 h then reflux, 3 h	3ac	0	4ac	90
3 ^b	Ph OMe	2d	r.t., 14 h	3ad	90	4ad	0
4		2d	r.t., 12 h	3ad	7	4ad	71
5°	Ph	2e	r.t., 16 h	3ae	50	4ae	0
6		2e	r.t., 3 h then reflux, 20 h	3ae	11	4ae	66
11	Рһ ОН	2h	r.t., 3 h	3ah	68	4ah	0
12		2h	r.t., 3 h then reflux, 3 h	3ah	0	4ah	12
13	Ph	2i	r.t., 16 h	3ai	28	4ai	0
14		2i	r.t., 3 h then reflux, 13 h	3ai	0	4ai	46
21	Ph	21	r.t., 3 h	3al	88	4al	0
22		21	r.t., 3 h then reflux, 48 h	3al	66	4al	0

^a HInCl₂ was generated by InCl₃-Bu₃SnH system. Allylic indium was generated from the reaction of diene 1a (4 mmol) with HInCl₂ (2 mmol) in THF (2 mL) at r.t. for 5 h. Carbonyl compound (1 mmol) was used.

^b H₂O (2 mmol) was added before addition of ketone 2d.

"HInCl2 (3 mmol) and THF (3 mL) were used.

^d HInCl₂ (3 mmol) and THF (3 mL) were used. H₂O (3 mmol) was added before addition of ketone 2g.

2. Indium as a Lewis acid 2-1. Deoxygenative functionalization

Reduction of aryl ketones

Baba et al.	SYNLETT,	1999 , 182.
-------------	----------	--------------------

Me₂SiClH + 1 2a-n Me₂SiClH + 0 CH₂Cl₂, 25 °C 3a-n 3a-n

R = alkyl, haloalkyl, phenyl Ar = phenyl, *p*-MeO phenyl, *p*-Cl phenyl, naphthanyl

Deoxygenative arylation of ketones

Baba et al. *Tetrahedron*, **1999**, 55, 1017. **Table 1.** Effect of Catalyst for Reductive Friedel-Crafts Alkylation⁴

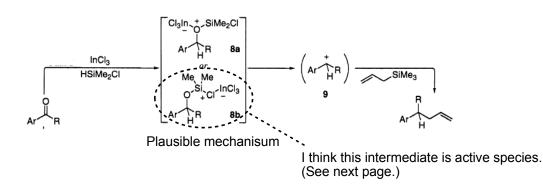
	iMe ₂ Cl 1a	+ Ph + 0 2c	+ (excess)	MtX _n (5 n 60 °C,		
•	Entry	MtXn	Yield /% $(o:m:p)^b$	Entry	MtXn	Yield /% ^b
	1	InCl ₃	99 (15:4:81)	6	ZnCl ₂	0
	2	In ₂ O ₃	95 (13:4:83)	7	TiCl ₄	0 ^c
	3	In(OTf)3	98 (13:7:80)	8	SnCl ₄	0
	4	InBr ₃	84 (18:6:76)	9 ^d	BF3•OEt2	0
	5	Inl ₃	93 (15:2:83)	10 ^d	AlCl ₃	4 ^e
				11 ^d	CF3SO3H	Of

^a Reaction conditions: M(X_a, 0.1 mmo); chlorodimethylsilane, 2.4 mmol; acetophenone, 2 mmol; solvent, 10 mL; N₂ atmosphere. ^b Yields and selectivities were determined by GLC and NMR. ^c 11% of sec-phenethyl chloride was obtained. ^d 10 mol% of catalyst was used. ^e 45% of sec-phenethyl chloride was obtained. ^f 33% of sec-phenethyl chloride was obtained. ^f 33% of sec-phenethyl chloride was obtained. ^f 30% of sec-phenethyl chloride was obtained. ^f 33% of sec-phenethyl chloride was obtained. ^f 33% of sec-phenethyl chloride was obtained. ^f 30% of sec-phenethyl chloride was obta

Table 2. InCl ₃ -Catalyzed Reductive Friedel-Crafts Alkylation of Various Carbonyls
--

	Me ₂ SiCIH 1 a	+ R ¹ 0 2a-		rH (excess) Inc	Cl ₃ (5 mol%)	R↓ R ² Ar 3a-k	
Entry	R ¹ in 2	R ² in 2	ArH	Time /h	Temp /°C	Yield of 3 /%	o:m:pª
1	2a: Ph	н	PhH	14	25	3a: 79	
2 b	2b: n-C5H11	н	PhH	1	25	3b: 0	
3	2c: Ph	Me	PhMe	1	60	3c: 99	15:4:81
10	2j: - (CH ₂)	5 -	PhMe	3	110	3j: 92	38:1:61
11	2 k : Me	Me	PhMe	4	110	3k: 42	

• Yields and selectivities were determined by ¹H, ¹³C NMR or GLC. ^b Di-n-hexyl ether was obtained quantitatively.

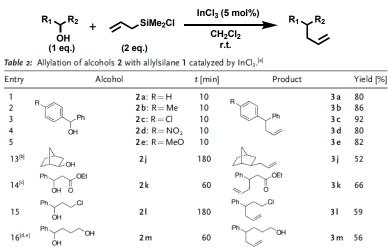

.

Deoxygenative allylation of aryl ketones

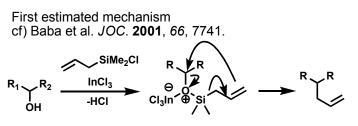
Baba et al. TL, 2000, 41, 2425.

Ar R	+ HSiMe ₂ C	+ 旍	SiMe ₃ InCl ₃ (5 mc CH ₂ Cl ₂	V	\langle
			Table 2		
Entry	Ar	R	Conditions	Product	Yield/ % ^a
1	Ph	Et	rt, 2 h	2	67
2	Ph	Ph	rt, 2 h	3	99
3	Ph	CH ₂ CH ₂ CI	rt, 1 h → 60 °C, 3 h	4	70
4	p-CI-C ₆ H ₄	Me	rt, 2 h	5	84
5	p-EtOCO-C ₆ H ₄	Me	rt, 1 h → 60 °C, 3 h	6	44
6	<i>p</i> -O ₂ N-C ₆ H ₄	Ph	rt, 1 h → 60 °C, 2 h	7	75

^a Yields were determined by GLC.



The combinaton of InCl₃ and chlorosilane show high Lewis acidity. Baba et al. also achieved catalytic Sakurai-Hosomi reaction using InCl₃-Me₃SiCl. cf) *Eur. J. Org. Chem.* **2002**. 1578., *Tetrahedron.* **2002**, 58, 8227. And catalytic Mukaiyama aldol reaction was reported. cf) Mukaiyama et al. *Chem. Lett.* **1991**. *20*. 949.


7

Deoxygenative allylation of alcohols

Baba et al. ACIE. 2004, 43, 1414.

[a] The reactions were carried out in dichloromethane (1 mL) with allylsilane 1 (2.0 mmol), alcohol 2 (1.0 mmol), and InCl₃ (0.05 mmol) at RT unless otherwise stated. [b] Allylsilane 1 (3.0 mmol), dichloromethane (2 mL). [c] Allylsilane 1 (3.0 mmol), dichloroethane (2 mL), 80 °C. [d] Allylsilane 1 (4.0 mmol). [e] Bu₄NF was added during the workup.

But in a case of R₁=R₂=Ph, HCl and intermediate were not observed on NMR. And also the reaction was proceeded in the cases of using trimethylsilyl.

Baba et al. Synlett. 2005, 11, 1737.

Table 1 Optimization of the Lewis Acid-Catalyzed Allylation with Allyltrimethylsilane^a

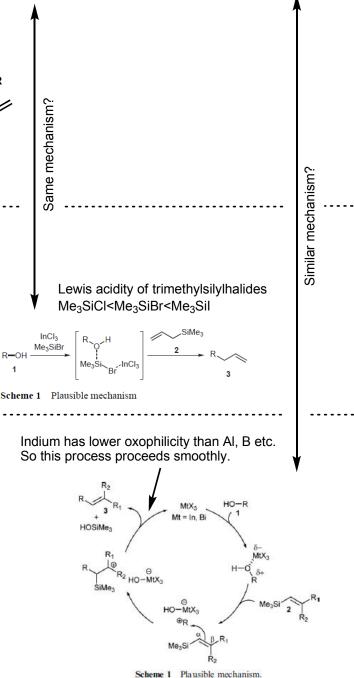
Ph	+ SiMe ₃ —	catalyst solvent	→ Ph	*
1a	2		3a	
Entry	Catalyst (mol%)		Solvent	Yield (%)
1	$InCl_3(5) + Me_3SiC$	l (10)	Hexane	13
2	$InCl_{3}(5) + Me_{3}SiBs$	r (10)	Hexane	77

^a All reactions were carried out in a solvent (1 mL) with allylsilane 2 (2.0 mmol), 1a (1.0 mmol), and a catalyst (0.05 mmol) at r.t. for 2 h.

Baba et al. Chem. Commun. 2008, 6396.

Ph

Table 1 Effect of catalysts in the coupling reaction of benzhydrol 1a with (E)-2-phenyl-1-trimethylsilylethylene 2aª


	. Me ₃ SiPhCatalyst (5 mol%) 2a PhCICH ₂ CH ₂ CI 80 °C, 2 h	→ Ph Ph 3aa Ph
Entry	Catalyst	Yield (%)
1	None	0
2	InCl ₃	91
3	InBr ₃	85
4 5	BiCl ₃	56
5	BiBr ₃	82
6	BF ₃ ·OEt ₂	7
7	AlCl ₃	5
8	TiCl ₄	20
9	Sc(OTf) ₃	33
10	Yb(OTf) ₃	8
^a Alcohol:	1 mmol, alkenylsilane: 2 mmol,	catalyst: 5 mol%:

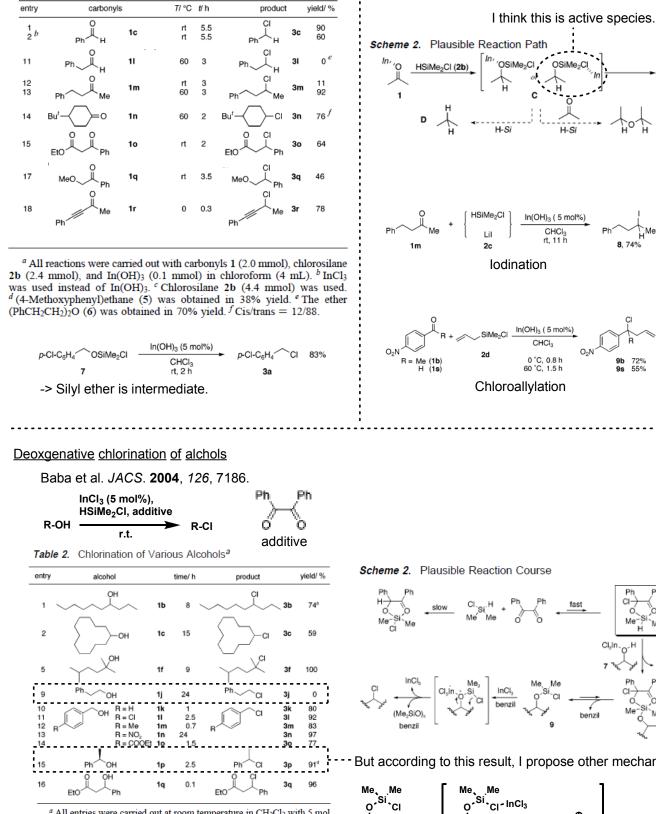
CICH2CH2CI: 1 mL.

Table 3: Alkylation of alcohols 2 with trimethylsilyl nucleophiles catalyzed by InCl₂.^{[a}

1/200	Ph Ph	× ^R aur		cat. InCl ₃	Ph 、	R
	Nu-SiMe ₃ +		R = Ph R = Me	80 °C	ľ	Nu
Entry	Silane	Alcohol	‡ [h]	Product		Yield [%]
1		2a	3	-	3 a	99
2 ^[b]	SiMe ₃	2 a	3	Ph~R	3 a	0
4[c]	7	2 g	3	<u> </u>	3 g	87
5	PhSiMe ₃	2a	3	Ph Ph Ph	9a	100
6	SiMe _s	2a	3	PhR	11a	64
7	10	2 g	3	L /	11g	72
8 ^[c]	1 10	2 g	3	7~	11g	81
9	- C11-	2a	3	PhR	13a	64
10	SiMe ₃ . 12	2 g	6	•	13g	55

[a] The reactions were carried out in 1,2-dichloethane (2 mL) with silane (2.0 mmol), alcohol 2 (1.0 mmol), and InCl₃ (0.05 mmol) at 80 °C. [b] InCl3 was not added. [c] Silane (3.0 mmol).

ОН


1

Deoxgenative halogenation of ketones

Baba et al. JACS, 2002, 124, 13690.

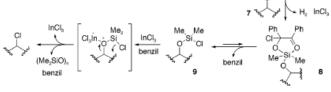
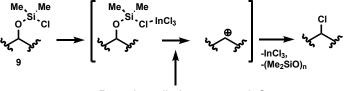

$$R_1 \stackrel{O}{\longrightarrow} R_2 \stackrel{In(OH)_3 (5 \text{ mol}\%),}{\underbrace{HSiMe_2Cl}} R_1 \stackrel{CI}{\longleftarrow} R_2$$

Table 2. In(OH)3-Catalyzed Deoxygenative Chlorination of Various Carbonyls 1 by HSiMe₂Cl (2b)^a



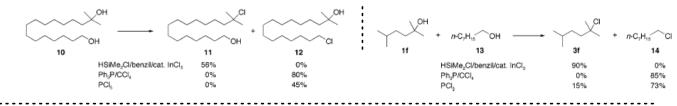
a All entries were carried out at room temperature in CH2Cl2 with 5 mol % of InCl3. 1.1 equiv of HSiMe₂Cl and 1.0 equiv of benzil. ^b Rearrangement products (regio isomers) were observed in 23% yield. ^c dr = 1:1. ^d <2% ee. ^e 2-Phenylpropane was obtained in 49% yield. ^f Premixing of HSiMe₂Cl and MeOH (1.0 equiv) followed by the addition of 1r.

Reactivity: tertiary > secondary > primary (NR.)

But according to this result, I propose other mechanisum.

Does benzil play some role?

8.74%


9b 72% 9s 55%

Ó s Me `Me

CLIn H O,

O₂N

Scheme 3. Competitive Reaction between Tertiary and Primary Alcohols

2-2. Coupling reaction with silyl enol ethers

Baba et al. *Org. Lett.* **2007**, *9*, 4931. Baba et al. *Tetrahedron.* **2009**, *65*, 5462.

Table 1. Effe	ect of Catalysts ^a	E
Ph ^{CI +}	OSiMe ₃ OMe CH ₂ Cl ₂ , rt, 2 h	
1a (1 eq.)	2a (1.5 eq.)	3aa
entry	catalyst	yield (%)
1	none	0
2	$InBr_3$	99
3	$InCl_3$	9
4	\mathbf{ZnBr}_2	39
5	$ZnCl_2$	6
6	$BF_3 \cdot OEt_2$	0
7	AlCl ₃	0
8	$TiCl_4$	0
9	$BiBr_3$	0

 a Alkyl chloride ${\bf 1a}$ (1 mmol), silyl enolate ${\bf 2a}$ (1.5 mmol), catalyst (0.05 mmol), and CH2Cl2 (1 mL).

CI-InBr₂

Ř

CISiMe₂ CI-InBr

CluminBra

δ+ R

Mes

Me₃SiCI

ClumInBr:

OSiMa

InBr₃ + Me₃SiCI

Scheme 3. Plausible mechanism.

R

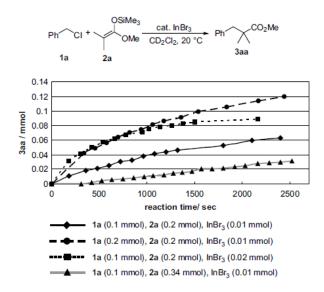
OSiMe₃

InBr₃ + 2 Me₃SiCI

R¹ R²

path A

	InBr ₃ -	Catalyzed Reac	tion of	Alkyl Hali	des with	silyl	R ¹	$R^2 R^3$
Enolates ^a		0014-						Me OMe
R–Cl 1	+	OSiMe ₃ R ¹ R ² 2		5 mol %) H ₂ Cl ₂	$R \xrightarrow{R}{R^1} R^2$	R ³ 3	2b H 2c H 2d H 2e Me	H Ph -(CH ₂) ₃ - H S [/] Bu Me NMe ₂
	entry	chloride		silyl enolate 2	time (h)	product 3	yield (%)	
	1		1b	2a	2	3ba	83	
		Q Ph						


5	Eto	11	Za	3	31a	82
6	C	1g	2a	1	3ga	91
9 ^{c, d}	1	1j	2b	2	3jb	99
10 ^c	Ph CI	0	2c	2	3jc	83 ^e
11 ^d	Ph I	1k	2d	2	3kd	94
12 ^d	Ph ^{CI}	IK.	2e	2	3ke	47

^a Alkyl chloride 1 (1 mmol), silyl enolate 2 (1.5 mmol), InBr₃ (0.05 mmol), and CH₂Cl₂ (1 mL). ^b Silyl enolate 2 (3 mmol). ^c InCl₃ (0.05 mmol) was added instead of InBr₃. ^d Silyl enolate 2 (2 mmol). ^e Diastereomer ratio: 52:48.

First, reaction goes on path A. Then, TMSCI is generated and reaction is accelerated by path B.

path B fast

When the amount of ${\bf 1a}$ or ${\rm InBr}_3$ was doubled, the reaction rate was increased.

->The genaration carbocation step is rate-determining step.

When the amount of **2a** was increased, the reaction rate was decreased.

->The coordination of the oxygen atom on the silyl enol ether deactivates the catalytic activity of InBr₃.

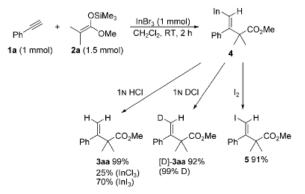

This is the reason why the strong Lewis acids showed no activity.

Figure 2. Effects of amounts of reactants and catalyst for the reaction rate.

3. C=C or C \equiv C bond activation

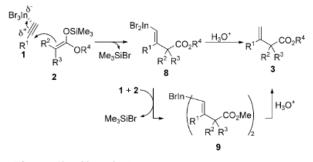
<u>3.1 C = C bond activation</u>

Baba et al. ACIE. 2009, 48, 4577.

Scheme 1. Reaction with InBr3, alkyne 1 a, and ketene silyl acetal 2 a.

Table 1: Additions of ketene silyl acetal 2 a to various alkynes.^[a]

R ¹ 1	# + \	2) 1N HCl OMe 2a		< CO₂Me
Entry	Alkyne	R ¹	Product	Yield [%] ^[b]
1	1 b	4-MeC ₆ H₄	3 ba	94 (80) ^[c]
2	lc	4-tBuC ₆ H ₄	3 ca	71
3	1 d	4-CIC ₆ H ₄	3 da	99 (97) ^[c]
4	le	C ₆ H ₁₃	3 ea	71
6	۱g	$\bigcirc^{{}{}}$	3 ga	83 (82) ^[c]


[a] Reaction conditions: 1 (1.0 mmol), 2a (1.5 mmol), $InBr_3$ (1.0 mmol), CH_2Cl_2 (1 mL), RT, 2 h. [b] Yields were determined by ¹H NMR analysis. [c] Yield of product in a reaction using 0.5 mmol of $InBr_3$.

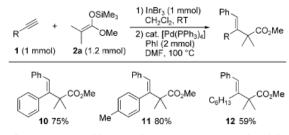

In some cases, the reactions were proceeded by 50 mol% indium catalyst.

Table 2: Additions of various ketene silyl acetals to alkyne 1 a.^[a]

Pr 1	$\begin{array}{c} \text{OSiM} \\ + R^{1} \\ R^{2} \\ a \\ 2 \end{array}$	/le ₃ 1) InE 2) 1ℕ R ³	ßr₃ (1 m <u>HCI</u>	imol)		CO ₂ R ³
Entry	Silyl ketene acetal	R ¹	R ²	R ³	Product	Yield [%] ^[b]
2	2c	-(CH ₂) ₅ -	-	Me	3 ac	99
3	2 d ^[c]	Me	Ph	Me	3 ad	98
4	2 e ^[d]	н	<i>n</i> Bu	Me	3 ae	58
6	2 g	Н	Н	Me	3 ag	0 ^[f]

[a] Reaction conditions: 1 a (1.0 mmol), 2 (1.5 mmol), InBr₃ (1 mmol), CH₂Cl₂ (1 mL), room temperature, 2 hours. [b] Yields were determined by ¹H NMR analysis. [c] E/Z=66:34. [d] E/Z=89:11. [e] E/Z=70:30. [f] **2g** isomerized to a corresponding α -silyl ester.

Scheme 4 One-pot addition/coupling reaction. DMF = N,N-dimethylformamide.

By using Pd catlyst, onepot addition / coupling reactions were achived.

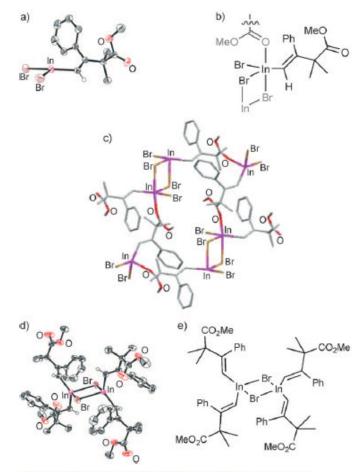
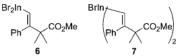
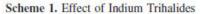
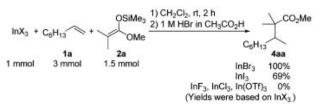



Figure 2. Molecular structure of 6 (a, b, and c) and 7 (d and e).

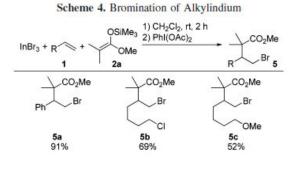
2 indium species were isolated.


3.2 C=C bond activation


Table 1. Scope and Limitations of Alkenes 1 and Silyl Ketene Acetals $\mathbf{2}^a$

InBr ₃ + R ¹ + R ²	SiMe ₃ 1) CH ₂ Cl ₂ , 2 h, temp R ³ OR ⁴ 2) 1 M HBr in CH ₃ CO ₂ H R ² CO ₂ R ⁴	ł
1 R ³	2 R ¹ 4	
$2a B^2 = B^3 = B^4 = Me$	$2d R^2 = R^3 = -(C_c H_{c0}) + R^4 = Me$	

 $2b R^2 = Me, R^3 = Et, R^4 = Me$ $2c R^2 = R^3 = R^4 = R^4$ $2c R^2 = R^3 = R^4 = R^4 = Me$


entry	1	2	tamp	yield (%)8		
	1	2		temp	4	
	4-XC6H4					
1	X = H	lb	2a	rt	4ba	100
2"		1c	2a	-20 °C	4ca	100
3°		1d	2a	rt	4da	100
4	Cl	1e	2a	rt	4ea	95
1 2 ^b 3 ^c 4 5 7	NO_2	lf	2a	80 °C	4fa	0
7	Ph 1h		2a	rt	4ha	70
8			2a	rt	4ia	36
9 ^d			2a	rt	4ja	93
13 ^d	1b		2b	rt	4bb	81 "
14^d	1b		2c	rt	4bc	69
15^d	1b		2d	rt	4bd	73
16^d	1b		2e	50 °C	4be	61'

 InF_3 , $InCl_3$, $In(OTf)_3$ are too hard.

So they are trapped by oxygene atom of keten silyl acetal.

.

.

4. Summary

· The combination of indium halide and silyl species shows high Lewis acidity.

Me Me. Si CI InCl₃ Functionalization $\frac{1}{2}$ E

· Low oxophilicity of indium enables various reactions.