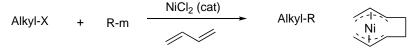

Ate Complexes for Catalytic C-C Bond Forming Reaction

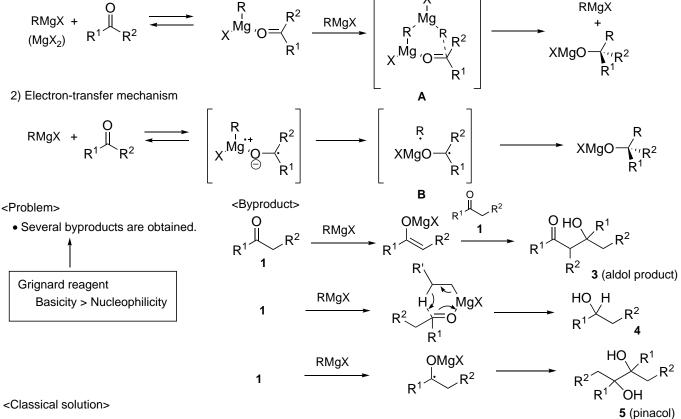

1-0 Introduction about Grignard Reaction of Ketone

1-1 Grignard Reaction of Ketone with Mg Ate Complex/ Zn Ate Complex (Prof. Ishihara and Dr. Hatano's work)

$$R^{1} R^{2} R^{2$$

1-2 History About Zn Ate Complex

- 1-3 Perspective of Catalytic Synthesis of 3°-alcohol with Grignard Reaction
- 2. Cross Coupling Reaction of Alkyl Halide Catalyzed by Ate Complex
- 2-0 Introduction about the Relation between Cross Coupling and Ate Complex
- 2-1 Cross Coupling with Ni or Pd Ate Complex (Prof. Kambe and Dr. Terao's work)


2-2 Cross Coupling with Cu Ate Complex (Prof. Kambe and Dr. Terao's work) Appindix Other Representative Cross Coupling Catalyzed by Ate Complex 1 Grignard Reaction for the Synthesis of 3°-Alcohol with Ate Complex

1-0 Introduction about Grignard Reaction of Ketone

$$R^1 \xrightarrow{R} R^2 \xrightarrow{R} R^1 \xrightarrow{R} R^2 + RMgX$$

~Reaction Mechanism~

1) Concerted reaction mechanism

Iwamoto et.al. Tetrahedron Lett. 1985, 26, 4763, J. Am. Chem. Soc. 1989, 111, 4392-4398

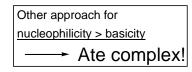
Knochel et.al. Angew. Chem. Int. Ed. 2006, 45, 497-500

$$LnCl_3 \bullet 6H_2O \xrightarrow{2LiCl} LnCl_3 \bullet 2LiCl \longrightarrow S 4A$$

(Ln = La, Ce, Nd)

• Although the preparation is rather difficult, THFsoluble lanthanide halides can be prepared. (0.3-0.5 M solution in THF)

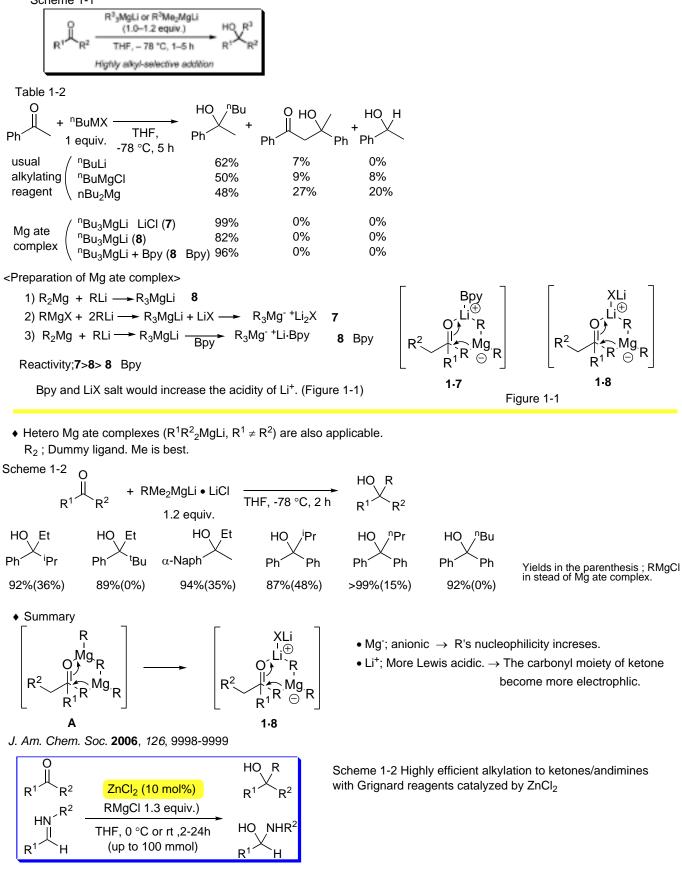
Superior promoters. (Table 1)

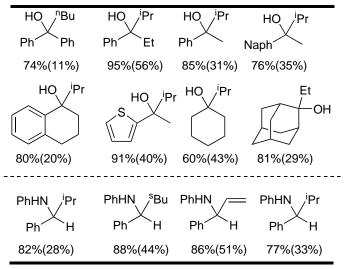

Entry	Grignard reage	nt 2	Ketone of type 3	Product of typ	e 4		Yield (%)	1	
						without additives ⁽⁴⁾	with CeCl, ^N	with LnCly2LICI	
1	iPrMgCl	28	[]→ 3a	C∕on	41	3-5	72 (80) ¹¹	92 ¹⁴ 94 ⁹¹ 92 ⁹¹	
2	/PrMgCl	28	n_L_n 14	n HQ_Pn	4d	3	-	96 ⁽⁴⁾ 95 ⁽⁴⁾ 97 ⁽¹⁾	
3		21	K=0 31	Kar,	40	17	53	92 ⁶⁴	

[a] Yield of isolated product obtained by the direct reaction of the ketone with the Grignard reagent, [b] Yield of isolated product obtained in the presence of GeCl, (1.5 equiv) according to the method of immente, [d] Yield of isolated product obtained in the presence of GeCl, (1.0 equiv), according to the method of Dimitros. [d] Reaction performed with LaCl,2LICI (1.0 equiv). [d] Reaction performed with MdCl,2LICI (1.0 equiv), [g] The Grignard reagent was first transmistated by addition of Incl,2LICI (1.0 equiv), act three dimensional with MdCl,2LICI (1.0 equiv). [g] The Grignard reagent was first transmistated by addition of Incl,2LICI (1.0 equiv), and thired for 4 h at room temperature before the letone was added at 0°C. [h] The reaction was performed in the presence of 10 mol% LaCl,2LICI.

(1.0 equiv.)

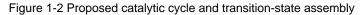
 Hindered and enolizable ketones are successfully transformed into 3°-alcohol using Knochel modification method.

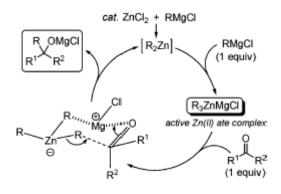

• Next, catalytic activation would be desired.


1-1 Grignard Reaction of Ketone with Mg Ate Complex/ Zn Ate Complex (Prof. Ishihara and Dr. Hatano's work)

Org. Lett. 2005, 573-576

Scheme 1-1

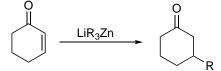




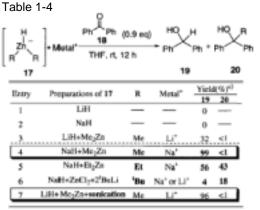
<mechanistic insight>

Zn(OTf)₂ as strong Lewis acid was not effective.

This unique catalytic system should be based on R₃ZnMgCl.



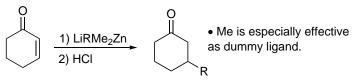
Yields in the parenthesis ; RMgCl without ZnCl₂ were used.


They said asymmetric alkylation catalyzed by Zn ate complexes might be possible.

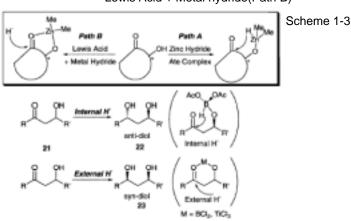
- 1-2 History About Zn Ate Complex
- M. Isobe, T. Goto et. al. Chem. Lett. 1977, 679-682
- First example trialkylzincate was used in organic chemistry.

M. Uchiyama et. al. J. Am. Chem. Soc. 1997, 119, 11425 J. Am. Chem. Soc. 1997, 119, 12372 薬学雑誌, 2002, 122(1), 29-46

<Heteroleptic ate complex for reduction of carbonyl moiety>


a) Isolated yield.

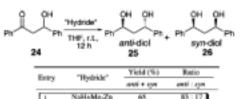
 Usually, LiH or NaH was used as base. Basicity > Nucleophilicity п


HMe₂Zn⁻⁺Metal; Basicity < Nucleophilicity

K. Ohshima et. al. Chem. Ber. 1986, 119, 1581-1593

'Heteroleptic ate complex'

<Proof that Zn ate complex was reactive spiecies.> two possibilities ; HMe₂Zn⁻⁺Metal (Path A) Lewis Acid + Metal hydride(Path B)



• If Zn hydride ate complex is active spicies, anti-diol 22 should be obtained selectively.

83:17

59:41

50:50

LiH+Me₂Za+sonication

NaBH₄

2

3

63

57

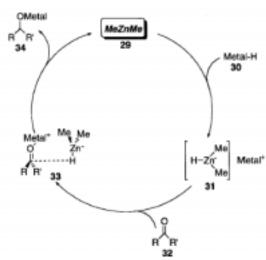
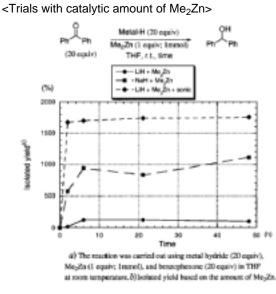

91

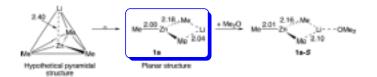
Table 1-5


•Actually, anti-diol 22 was generated mainly. (entry 1,2)

<Possible mechanism>

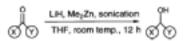
Scheme 1-4

 \bullet Considering this mechanism, Me_2Zn should be catalytic.



• Actually, Me₂Zn works with catalytic amount.(5-10 mol%)

M. Uchiyama et. al. J. Am. Chem. Soc. 2004, 126, 10897-10903

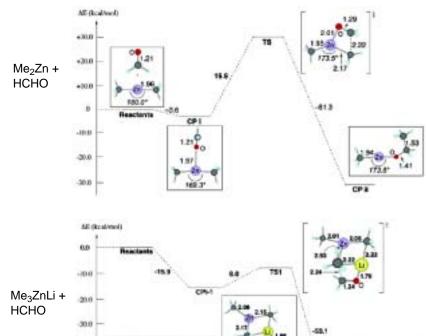

- 1) DFT calculations about the structure of LiZnMe₃
- 2) Ligand transfer selectivity of heteroleptic zincate Me₂Zn(X)Li

1) DFT calculations about the structure of LiZnMe₃

• The gas phase calculations indicated MeLi and Me₂Zn react to form a trigonal planer complex with 24.2 kcal/mol exothermically.

<Substrate generallity>

Entry Substrate Product Yield (%)# 92 1 938 2 94% 3 84 4 950 461 88(96:4)* 94(97:3)/1 $82^{(i)}$ 685 10


LiH; 3 equiv. Me₂Zn; 30 mol%

• Enolizable aldehydes were successfully reducted. (entry 2,3)

Carboxylic acids were reducted to aldehyde.(enrty 9,10)

a) isolated yield, b) The reaction was carried out at 0°C for 1 h, c) The reaction was carried out using LH (3.0 equiv) and Me₂Zn (30 mol %) at 0°C for 6 h, d) The reaction was carried out using LH (3.0 equiv) and Me₂Zn (30 mol %) is room temperature for 48 h. N-Ethyl-4-chloroanillae was sole product and 4-chloroanillae was recovered in 32% yield, e) Value in parentheses are ratio of 1,2-reduction and 1,4-reduction, f) Value in parentheses are ratio of 1-phenethyl alcohot and 2-phenethyl alcohot and 2-phenethyl alcohot and 2-phenethyl alcohot (30 mol %) at room temperature for 24 h.

Figure 1-3 The comparison between Me₂Zn and Me₃ZnLi

CPN

CP6-1

(A) Energy diagram of the reaction between Me₂Zn and HCHO.

• Association complex **CPi** forms without much energy gain (3.6 kcal/mol) and with little change of the geometry.

• C-C formation occurs with activation energy of 19.9 kcal/mol. (\leftarrow C-Zn > O-Zn)

• The overall gain to form **CPii** is rather small (29.1 kcal/mol).

• This result is consistent with the experimental fact that R₂Zn are inert in the carbonyl addition in a nonpolar medium.

(B) Energy diagram of the reaction between Me_3ZnLi and HCHO.

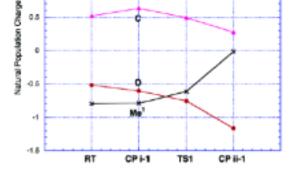
• First, Me₃ZnLi and HCHO form a Lewis

acid/Lewis base complex CPi-1.(15.9 kcal/mol)

(Li coordination for carbonyl moiety)

• Methyl groups bound to the lithium can migrate to carbonyl carbon with a small activation energy.(8.0 kcal/mol from **CPi-1**)

• The stabilization energy of the adduct, Me₂Zn(OCH₂CH₃)Li,**CPii-1** is very large.(-53.1 kcal/mol)


Figure 1-4 Charge change in 1,2-addition of Me_3ZnLi to HCHO

• The transfer of the Me group from Me₃ZnLi to the carbonyl carbon takes place as a single event.

negative charge
monotonically increase monotonically decrease toward zero.

• The charge of Zn remain especially constant.

→ The absence of any oxidation/reduction process in this reaction. ↔ different from the addition of Me₂CuLi to an α , β - unstaturated carbonyl compound.(Cu(I) → Cu(III))

40.0

-30.0

-60.0

1.5

4

2) Ligand transfer selectivity of heteroleptic zincate Me₂Zn(X)Li

<Two possible structures of heteroleptic zincate>

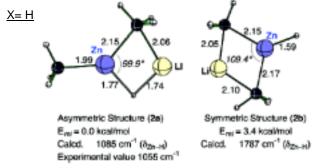
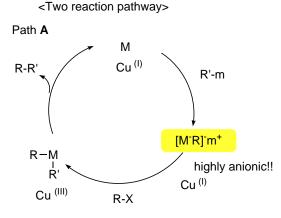


Figure 1-5 Asymmetric and symmetric structures of Me₂ZnHLi

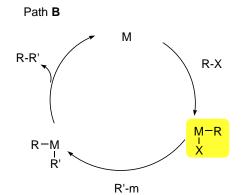

- Zn-H frequency between 2a and 2b must be different.
- Experimental data suggest 2a would be real structure of Me₂ZnHLi .
- \rightarrow Reaction pathway should be similar to that of Me₃ZnLi.

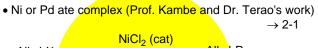
<Ligand-transfer selectivity for Me₂Zn(X)Li>

X;	K; H= NR₂ > SiR₃ > alkyl						
		activation energy of CPi to TS1 (kcal/mol)					
	Н	3.1					
	NR_2	2.7					
	SiR ₃	6.1					
	Me	8.0					
	H NR ₂ SiR ₃ Me	2.7 6.1					

- 1-3 Perspective of Catalytic Synthesis of 3°-alcohol with Grignard Reaction
 - Asymmetric version.
 - Ligand transfer activity of alkyl group is very low.
 - Ligand should be designed not to dessociate the chiral ligand.
 - \rightarrow Multidentate ligand is one of the possibility.
 - It might be possible to make chiral modification of counter cation(Mg²⁺, Li⁺).
 - cf. R₃Mg⁻⁺Li·Bpy system
- 2. Cross Coupling Reaction of Alkyl Halide Catalyzed by Ate Complex
 - 2-0 Introduction about the Relation between Cross Coupling and Ate Complex

<Cross coupling reaction> About cross-coupling reaction \rightarrow see. Dr. Maki's literature seminer 2006/03/18 R-X + R'-m \longrightarrow R-R'




Figure 2-1 Cross-coupling via ate complex

J. K. Kochi, Synthesis, 1971, 303

Alkyl-X + R'MgX \longrightarrow Alkyl -R' Li₂CuCl₄

R'MgX; high reactivity

 \rightarrow low functional group tolerancy.

Alkyl-X + R-m → Alkyl-R

• Cu ate complex (Prof. Kambe and Dr. Terao's work) $\rightarrow 2-2$

• One-electron donating Co, Fe system. \rightarrow Appendix

Figure 2-2 Cross-coupling via oxidative addition

J. K. Kochi et. al. J. Am. Chem. Soc. 1971, 93, 1487

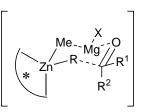
$$R-X + R'MgX \longrightarrow R-R'$$

$$FeCl_2 \text{ or } FeCl_3$$

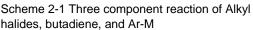
<Representative cross coupling>

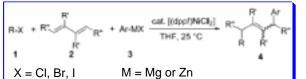
· Kumada-Tamao	MgX
 Negishi 	ZnX
· Stille	Sn
 Suzuki-Miyaura 	В
 Hiyama 	Si
 Sonogashira 	R≡C-Cu

Application for R = alkyl


<Problem>

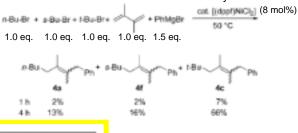
• Oxidative addition is slow.


- Resulted alkyl complex is highly reactive.
 - \rightarrow $\beta\text{-}$ hydride elimination > transmetallation


<Solution>

• Pd + bulky phosphine ligand(PCy₃, P^tBu₂Me),NHC ligand.

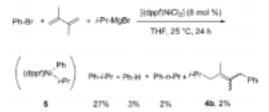
2-1 Cross Coupling with Ni or Pd Ate Complex Adv. Synth. Catal. 2004, 346, 905-908



Run	R-X	R	R"	Ar-MX	Isolated yield [%]	$[E/Z]^{[4]}$
1	n-Bu-Br	Mc	н	Ph-MgBr	4a: 69	59/41
2	i-Pr-Br	Mo	н	Ph-MgBr	4b; 91	67/33
3	r-Bu-Br	Mc	H	Ph-MgBr	4c: 74	56/44
4	c-Hex-Br	Ph	H	Ph-MaBr	44:73	79/21
5	c-Hex-Br	H	Ph	Ph-MgBr	4e: 60	100/0
6	s-Bu-Cl	Mc	н	Ph-MgBr	4 : 63	57/43
7	1-Bu-Cl	Mc	н	Ph-MgBr	4c; 81	52/48
8	c-Hex-I	Mc	H	Ph-ZnCl	4g: 72	72/28
9	r-Bu-Br	Mc	H	p-EtO-CC_HZnI	4h: 69	52/48

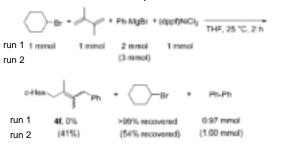
<Some control experiments>

Scheme 2-2 The relative reactivities of alkyl halides



- the reactivity of R; 1°<2°<3°
 - \rightarrow Alkyl groups are transferred as radical or cationic species.

Conditions: 1 (1.2 mmol), 2 (1 mmol), 3 (1.5 mmol), [(dppf)NiCl₂] (8 mol %), THF (1.5 mL), 25 °C, 24 h.

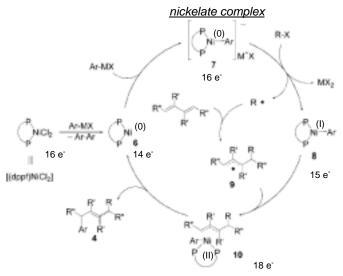

- Unsubstituted 1,3-butadiene failed to afford the corresponding product.
- 2°,3°-alkyl-Cl was reactive although 1°-alkyl-Cl didn't give the desired product.
- C=CMgBr, PhB(OH)₂ and PhC=CSn(ⁿBu)₃ were ineffective.

Scheme 2-3 Reverse combination of the reagent from Table 1 Run 2

Cumene was the major product via an intermediate 5.
 → The present three component reaction may not proceed through 5.

Scheme 2-4 control experiment 3

• In run 1, the major product was


Ph-Ph (reductive coupling).

Alkyl-Br was recovered completely.

• In run 2, three component coupling product was afforded in 41% yield.

 \rightarrow Excess PhMgBr promoted the C-Br bond cleavage.

• The nickelate complex **7** would act as an active electron transfer reagent.

 \rightarrow The generation of an alkyl radical and arylnickel(I) complex 8.

J. Am. Chem. Soc. 2002, 124, 4222-4223

Scheme 2-6 Ni-catalyzed cross-coupling with 1,3-butadiene

R-X +	R'-MgX -	cat. NICl ₂	R-R
R = alkyl	R' = aikyl, aryl	1,3-butadiene	n-n
X = CI, Br, OTs			

2' '0	101 - 1	BuMgCl	addit	ive	^{<i>n</i>} C ₁
		1.3 equiv.	(1.0	equiv.))
ontry	catalyst	additive	1+C14H20	GC yield (decane	(%)" decenes"
1	NCI ₂	-	82	<1	2
2	NICI ₂	none	2	40	27
3	Ni(acac) ₂	~~	90	-1	2
4	N(COD)2	~~~	92	~1	3
5	PdCl ₂	~~~~	38	1	3
8	NIC12	1000	99	~1	0
7	NICl ₂	4	5	14	
8	NCI2	con	10	18	30
9	NCI ₂	PhE1	3	7	23
10	NCI ₂	3-CF ₂ -styrone	15	25	14

 Contractions: and gategore (a minor), canneyd (a minor), a-maxingC1 [1,3 oquin, 0,9 M), additt tor (1) oquin, 0,7 M); 25 °C; 3 h. * A minime of 1-decame and 2-decames. * 1,5 /Cyclocetadiene.

• When Ni complex bearing phosphine ligands, such as NiCl₂(PPh₃)₂, NiCl₂(dppp), were used, the yield was 45% and 22%, respectively.

• Unsubstituted 1,3-butadiene shows the highest activity.(entry 6-10)

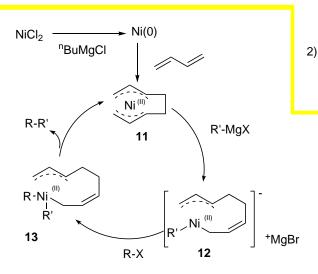
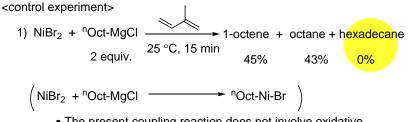


Figure 2-3 A plausible reaction pathway

Table 2-3 Substrate generality


enàry	R-X	R*-MgX* (equity to R-X)	NICl ₂ (mail %)	1.3-butacliene (mol %) ²	temp. (°C)	time (Pt)	product.	pield $\left\{ N_{i}\right\} ^{b}$
1	"C10H21-8r	⁶ Bu-MgCl (1.3)		10 (0.07 M)	a	0.5	1C14H30	100
2	"O.,	"Bu-MgCI (1.3)	1	10 (0.07 M)	0	0.5	Br Q.	100
з	PhOTs	Et-MgBr (1.3)	3	30 (0.23 M)	0	з	PhEt	67
4	"Bu-OTs	"Bu-MgCI (1.3)	8	100 (3.68 M)	0	3	"CeH ₁₆	100
5	EI-OTs	Ph-MgBr (1.3)	а	100 (3.77 M)	0	6	E1-Ph	56
8	*Oct-Br	Ph-MgBr (1.5)	з	30 (0.23 M)	25	з	"Oct-Ph	90
7	ⁿ Ocl-Br)-MgC1 (8.0)	з	30 (0.07 M)	0	0.5	"Oct-(72
8	"Oct-CI	*8=MgCI (2.0)	8	50 (0.23 M)	25	20	"C ₁₀ H ₂₆	96

*Based on R-X (concentration is in parenthenes). *Determined by OC

• entry 1; Optimized results

• entry 2; Br on Ar ring remained intact.

• entry 8; X=CI is OK.

• The present coupling reaction does not involve oxidative addition of alkyl halides to Ni(0).

n-DecylBr + Ni(COD)2 1,3-butadiene n-DecylBr

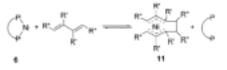
THF, 0 °C

• Oxidative addition didn't occur.

Ni(0) reacts with 2 equiv. of 1,3-butadiene to afford bis- π -allyl Ni complex. (oxidative cycloaddition)

→ Less reactive to R-X but readily reacts with R'-MgX to form 12.

The complexation for **12** might enhance nucleophilicity of Ni toward R-X.


The central metal (Ni) in this catalyst system is always ...

d⁸, 16e⁻, plane structure.

The difference between the condition of 3-component reaction and this cross coupling

- + the presence/absence of phosphine ligand.
- + whether butadiene is substituted or not.

Scheme 2-6

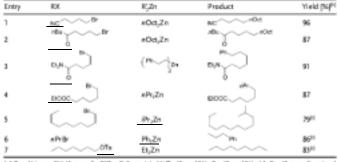
Bidentate dppf ligand is bound strongly on Ni.

→ the supression of the formation of bis-allylnickel complex 11. When substituents were introduced on butadiene skeleton, formation of 11 became thermodynamically less favorable. R'MgX; high reactivity \rightarrow low functional group tolerancy. R'₂Zn

cat. (3 mol%) ${}^{n}C_{10}H_{21}$ -Br + Et₂Zn dodecane THF/NMP= 2/1, 2 equiv. 25 °C, 48 h

				Product yield [%] ^(N)			
Entry	Catalyst	Additive (equiv)	= þi	Dodecane	Decane	Decenes ¹⁰	
1	NiCl,	C,H, (1)	48	<1	23	<1	
2	NIC,	C.H. (1), MgBr; (3)	48	45	20	11	
3	NIC:	none	48	0	5	<1	
4	NIC,	Mglir, (3)	48	2	49	46	
s	NIC,	C.H. (1), Bu,NBr (3)	48	<1	-6	3	
6	NiCl ₂	C,H, (1), Bu,NI (8)	48	3	69	23	
7	NIC.	C,H, (1), Liller (3)	48	16	7	0	
8	NiCl ₂	C.H. (2), Mg8n (3)	48	69	14		
9	NiCl,	C,H, (4), MgBr, (3)	48	73	2	2	
10	[Nijacac],]	C,H, (4), MgBr, (3)	48	84	3	3	
11	INICL/PPh.).]	C.H. (4), MgBr, (3)	48	40	2	<1	
12	[NICl,(dppp)]	C.H., (4), MgBr, (3)	48	31	3	0	
13	PdCl ₂	C.H. (4), MgBr; (3)	48	5	55	3	
14	[Nijacad]	isoprene (4), MgBr, (3)	48	37	5	3	
15	[Nijacad]	pfluarostyrene (4), Nglir, (3)	48	7	<1	23	
16	[Nijacad_]	2a (2), MgBr, (3)	48	> 99	0	0	
17	NIC.	2a (2), MgBr; (3)	48	> 99	0	0	
18 ^[44]	[Nijacad]	2a (0.09), MgBr, (3)	1	> 99	0	0	
1914	Nikad.	2b (0.09), MgBr, (3)	i.	> 99	ō	0	

[a] Conditions unless otherwise stated: #-Decyl bromide (1 mmol), catalyst (1 mol%), additive (equivalents based on the substrate), diethylzinc (2 equiv, 1 w in hexane), mixed solution of THF (8 mL) and NMP (4 mL), 25 °C, 48 h. (b) Determined by GC analysis. (c) A mixture of 1 decene and 2 decenes. [d] #-Decyl biomide (1 mmaß, diethylzinc (1.3 equiv, 1 w in hexare), mixed solution of THF [8.4 mi] and NMP (4.2 mi.), 25 °C, 1 h. [e] The yields were decreased to 41 and 11% when the amount of MgBr, was decreased to 1.3 and 0.65 equivalents, respectively



The addition of MgBr₂ increased the dodecane although side reactions could not be suppressed.(entry 2)

When tetraene 2a was used in stead of 1,3-butadiene, this cross-coupling proceeded completely.(entry 16-19)

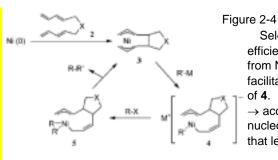
entry 18; the optimized condition. Et₂Zn 1.3 equiv.,9 mol% of 2a.

Table 2-5 Functional group tolerancy

(a) Conditions: RX (1 mmol). R/Zn (1.3 equiv). NICl, (3 mol36). 2a (9 mol36). MgBr, (3 mmol). mixed solution of THF (8.4 mL) and NMP (4.2 mL), 25 °C, 1 h. [b] Yield of isolated product. [c] GC yield.

This catalyst system tolerates unsaturated heteroatom functional groups, such as nitriles, ketones, amides, esters.(enrty 1-4)

Table 2-6 Effects of additives


	nCgHig-F + 2 mmol	sCyH⊷VgBr 3 mmai	3 mol % [M6(acac(s) THF (1.5 mL), RT, 6 h	Dodecane
Entry	Nijaca	ic);[[mai]%]	Additive (mol%)	Yield [%]
1	3		1,3-butadiene (30)	11
2	3		1,3-butadiene (100	58
3	3		1,3-butacliene (200	65
4	3		1,3-butacleme (300	67
5	0.6		26 (15)	94

Alkyl-F was reacted in this reaction system. Tetraene 2b as additives; the yield was improved dramatically.(entry 5)

In the case of 1,3- butadiene

Ni(0) center will react with more than 2 equiv. of 1,3butadiene.

> → Complexes composed of C12-butadieneoligomer units might be genarated.

Selective and efficient formation of 3 from Ni(0) and 2 would facilitate the generation

→ accelerate the nucleophlic addition that leads to 5.

of 4.

Chem. Commun. 2007, 825-827

<the use of η^3 -allylnickel and η^3 -allylpalladium complexes as catalyst>

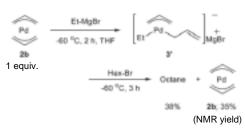
Scheme 2-7

ALL Y . BILY	$\label{eq:control_cont_state} \operatorname{coll.} \begin{array}{c} \widehat{\underset{M}{\longrightarrow}} & 2a \ (M=Ni) \\ 2b \ (M=Pd) \end{array}$	
Alkyl-X + R-MgX X = Br, OTs	THF	 Akyl−R

1) To prove the intermediary of bis(η^3 -allyl)nickel complexes.

2) Whether the ethylene tether between two ligand is essential or not.

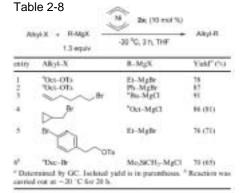
Table 2-7 1.3 equiv.


Entr

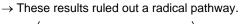
				'Dec-R	+ decane +	+ decenes
y	R	Cat.	$\pi r c$	Yield'	69	
	Bu	PdCL	0	3	54	26
	Bu	(PPh ₃) ₃ PdCl ₂	0	2	1	1
	Bu	(C ₃ H ₃ PdClb	0	10	26	23
	Bu	(C ₃ H ₄) ₃ Pd	0	58	13	12
	Mc	PdCl ₂	0	9	26	26
	Mc	(PPh_)_PdCl_	0	9	1	1

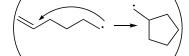
Mc (C₃H₃PdClb Ū \$3 Mc (C.H.)-Pd 90 30 Bu NiCl₂ 10 Bu (PPh-)-NiCl--301 (C₄H₄NiCD₂ 33 Bu -3024 (C₂H₄)₂Ni 30 Bu Ma 14 Me (PPh-)-NiCl--304 15 (C₃H₄NiCl)₂ Mc 30 92 16 Me (C₃H₃)₂Ni 30 44 " Determined by GC. 5 mol% of catalyst was used.

Pd or Ni complexes without η^3 -allyl ligands were ineffective.(entry 1,2,5,6,9,10,13,14) Mono(η^3 -allyl)metal complexes afforded a successful result when MeMgBr was employed but not in the case of ⁿBuMgCl. (entry 3,7,11,15)

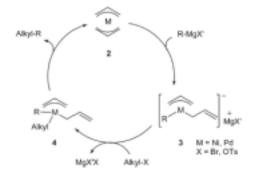

Scheme 2-8 control experiment

Nearly equal amounts of octane and $bis(\eta^3-allyl)Pd$ complexes.


Possible products, 1-pentane or 1nonane by reductive elimination of an allyl group were not formed.


→ Reductive elimination proceeds preferentially with alkyl group than allyl group.

entry 3; 1-decene was obtained as a sole product. entry 4


,

entry 5; Br on Ar ring was intact.

Scheme 2-9 a plausible reaction pathway

2-2 Cu-catalyzed cross-coupling reaction

J. Am. Chem. Soc. 2003, 125, 5646-5647

Scheme 2-10

Image: Second	M DOP no octoner 0 0 0
entry catelyst additive (mol30) undecase odd 1 NiCle none 0 0 0 2 (157m)(NiCle none 0 0 0 3 (dapp(NiCle none 0 0 0 4 NiCle 1.3-bitadirne (10) 9 1 5 NiCle 1.3-bitadirne (30) 44 1 6 NiCle 1.3-bitadirne (100) 64 4 8 NiCle 1.3-bitadirne (200) 67 3 9 NiCle 1.3-bitadirne (200) 67 3 9 NiCle 2.3-metrol (1.3-bitadirne (100) 64 4 10 NiCle 2.3-metrol (1.3-bitadirne (100) 6 4 11 NiCle 1.5-cycloodiadirne (100) 0 6 12 NiCle 1.5-cycloodiadirne (100) 0 6	ne octener 0 0 0
I NiCl: none 0 0 2 (PTru)(NiCl: none 0 0 3 (dpp)(NiCl: none 0 0 4 NiCl: 1.3-bitadiene (10) 9 0 5 NiCl: 1.3-bitadiene (10) 9 0 6 NiCl: 1.3-bitadiene (10) 64 0 7 NiCl: 1.3-bitadiene (100) 64 0 8 NiCl: 1.3-bitadiene (100) 64 0 9 NiCl: 1.3-bitadiene (100) 64 0 10 NiCl: 2.3-metry:1.1.3-bitadiene (100) 64 0 11 NiCl: 1.5-cyclicocitadiene (100) 0 0 12 NiCl: 1.5-cyclicocitadiene (100) 0 0 </th <th>0000</th>	0000
2 (197n)(2MCb) mone 0 3 (dapp()MCb) mone 0 4 NiCb: 1.3-batadirne (10) 9 5 NiCb: 1.3-batadirne (30) 44 6 NiCb: 1.3-batadirne (30) 44 7 NiCb: 1.3-batadirne (100) 64 8 NiCb: 1.3-batadirne (200) 67 9 NiCb: 1.3-batadirne (200) 67 9 NiCb: 1.3-batadirne (100) 64 10 NiCb: 2.3-metryl-1.3-batadirne (100) 67 10 NiCb: 2.3-metryl-1.3-batadirne (100) 6 11 NiCb: 1.5-systocidadirne (100) 6 12 NiCb: 1.5-systocidadirne (100) 6	0
3 (dpp)/NICl ₂ none 0 4 4 NiCl ₂ 1,3-batadime (10) 9 1 5 NiCl ₂ 1,3-batadime (30) 44 1 6 NiCl ₂ 1,3-batadime (30) 50 1 7 NiCl ₂ 1,3-batadime (100) 64 1 8 NiCl ₂ 1,3-batadime (200) 67 1 9 NiCl ₂ 1,3-batadime (200) 67 1 10 NiCl ₂ 2,3-methyl-1,3-batadime (100) 0 1 11 NiCl ₂ 1,5-systocitadime (100) 0 1 12 NiCl ₂ 1,5-systocitadime (100) 0 0	0
3 (dpp)NCl ₂ none 0 0 4 NiCl ₂ 1.3-bitadirne (10) 9 5 NiCl ₂ 1.3-bitadirne (30) 44 6 NiCl ₂ 1.3-bitadirne (70) 50 7 NiCl ₂ 1.3-bitadirne (20) 64 8 NiCl ₂ 1.3-bitadirne (200) 67 9 NiCl ₂ 1.3-bitadirne (200) 67 9 NiCl ₂ 1.3-bitadirne (200) 67 9 NiCl ₂ 1.3-bitadirne (200) 67 10 NiCl ₂ 1.3-bitadirne (200) 67 11 NiCl ₂ 1.5-cycloodialine (200) 0 12 NiCl ₂ 1.5-cycloodialine (200) 0	
6 NiCl ₂ 1.3-batadiane (70) 50 7 NiCl ₂ 1.3-batadiane (100) 64 8 NiCl ₂ 1.3-batadiane (200) 67 9 NiCl ₂ 1.3-batadiane (200) 67 10 NiCl ₂ 2.3-methyl-1.3-batadiane (100) 0 11 NiCl ₂ 1.5-cyclocetadiane (100) 0 12 NiCl ₂ diptorylaothiane (100) 0 14 NiCl ₂ 0	0
6 NiCl ₂ 1.3-batadiane (70) 50 7 NiCl ₂ 1.3-batadiane (100) 64 8 NiCl ₂ 1.3-batadiane (200) 67 9 NiCl ₂ 1.3-batadiane (200) 67 10 NiCl ₂ 2.3-methyl-1.3-batadiane (100) 0 11 NiCl ₂ 1.5-cyclocetadiane (100) 0 12 NiCl ₂ diptorylaothiane (100) 0 14 NiCl ₂ 0	
9 NiCl ₂ licoprane (100) 47 (10 NiCl ₂ 2,3-methyl-1,3-butadiene (100) 0 (11 NiCl ₂ 1,5-cycloodadiene (100) 0 (12 NiCl ₂ diplom/acotilene (100) (12 NiCl ₂ diplom/ac	0
9 NiCl ₂ licoprane (100) 47 (10 NiCl ₂ 2,3-methyl-1,3-butadiene (100) 0 (11 NiCl ₂ 1,5-cycloodadiene (100) 0 (12 NiCl ₂ diplom/acotilene (100) (12 NiCl ₂ diplom/ac	2
9 NiCl ₂ licoprane (100) 47 (10 NiCl ₂ 2,3-methyl-1,3-butadiene (100) 0 (11 NiCl ₂ 1,5-cycloodadiene (100) 0 (12 NiCl ₂ diplom/acotilene (100) (12 NiCl ₂ diplom/ac	2
10 NiCl ₂ 2.3-metryl-1.3-butadiese (100) 0 0 11 NiCl ₂ 1.5-cyclocataliese (100) 0 0 12 NiCl ₂ diphenylacothiese (100) 0 0	1
12 NiCl ₂ diphenylacetylene (100) 0 0	0
12 NiCl ₂ diphenylacetylene (100) 0 0	0
	0
 (PPh,);NICl₂ 1,3-butadiene (100) 	0
	2
	2
15 FeCl ₂ 1,3-batadiane (100) 0 0	0
16 CoCl ₂ 1,3-butadiene (100) 0 0	0
17 PdCl ₂ 1,3-batadiene (100) 23	4
18 CuCl ₂ 1,3-butadime (100) 97 0	0
19 CaCl 1,3-butadiene (100) 94 0	0
20 Lij-CuCl ₄ 1,3-Initadiane (100) 30 0	0

*Conditions: *Oct—F (2 mmol), 3 mol % catalyst, additive (mol % based on the substrate), and *Pr—MgBr (2 equiv, 1 M), in THF, 25 °C, 3 h. *Determined by GC. * A mistare of 1-octene and 2-octenes. Table 2-10

	⁷ Oct-F + 2 mmol	R-MgX — 2.6 mmol	CuCl ₂ (3 mel %) THF	"Oct-R	GC yield (59)
ontry	R-MyX	additivo (1.2 mmol)	komp (*C)	tino (1)	
1 2 3	*C3H1-MgBr	1,3-butadiene isoprene none	25 25 25	6 6 6	94 34 20
4 5		1,3-butadiene none	-20	6	38 36
6		B-002 B-002	-20 -40	48 6	68

In entry 4,5 ; at -20 °C, the reaction proceeded slowly without significant loss of catalytic activity in the absence of 1,3-butadiene.

 \rightarrow 1,3-butadiene plays impotant roles in stabilizing an active species.

Ces-X	+ R-MgBr	CuCl ₂ (3 mol %)	• 'oe	en.		
х	"C ₁₁ H ₂₂ (R = "P	-				he reactivity of R-X; < F< Br
ci .	3%	¥ 1)			•.	
Br	87%	Sch	eme 2-	10	(the	e reason is not clear yet.)
°Вле "С.#	sciene was odder 4. "MgBr+ [®] C ₀ H ₁₀ 1.5 equ	،F+ ⁰ CgH17-CI+ ⁰ C19H2		25.0.3	l mit	R-CI was almost unreactive in this catalys system.
	0 ₅ (3 mol %), 1.3-	butacliene (100 moi %)	104Ho+1	CoHae *	°C ₁₉ H ₃₂ 39%	

Angew. Chem. Int. Ed. 2007, 46, 2086-2089

Scheme 2-11 eat. Ca cat. Ph-R-MgX Alkyl Akyt-CI T)-€ R-CI wide availability low cost //0/t=Cl . R-Max aOet-THE 1 mmol 1.5 mmol 3% NOL 2% CuCl, Table 2-11 50% 2 10% Ph-___Me R. THF, 25 °C, 20 h THF, reflux, 6 h n Du OE% SQPK. aBu 95% 1% 94 0% -99% Ph 4% 82% Scheme 2-12 competitive experiments 2% CaOl, 10% Ph--Me

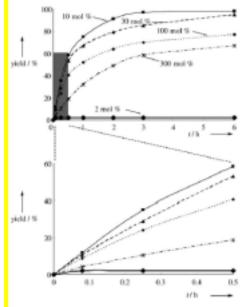
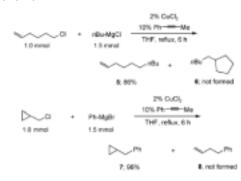


Figure 2-4 Time course of Cucatalyzed cross-coupling reaction using different amounts of 1-phenylpropyne in THF under reflux.

As the amount of additive was increased, the reaction rate at early stage decreased.

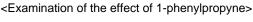

When only 2 mol% of the additive was employed, the catalyst rapidly lost its activity and reaction stopped.

THE, reflax, 30 min

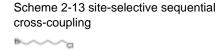
nBu-nDec

98%

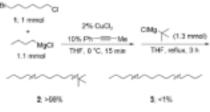
These results would rule out a radical mechanism.


The present reaction for primary-alkyl chlorides proceeds principally by an S_N2 mechanism.

Scheme 2-16 A plausible pathway



1-phenylpropyne would stabilize the alkyl-copper complex to form the alkyne-alkyl-copper complex 11.


Increasing alkynes shifts the equilibium toward the formation of the complexes 13 or 14, which might be the resting states of the catalyst.

1 mmol

nBu-MgCl + nOctF + nNon-Cl + nDec-Br

5 mmol

the reactivity of R-X; CI< F< Br

toOn-ellip

2%

95%

(5 mmol)

nBu-oNon

0%

5%

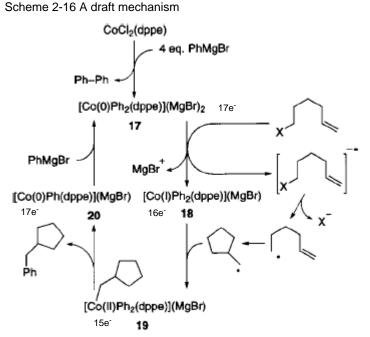
5 mmol

with nDec-Br

without nDec-Br

Appendix Other Representative Cross Coupling Catalyzed by Ate Complex

QR¹

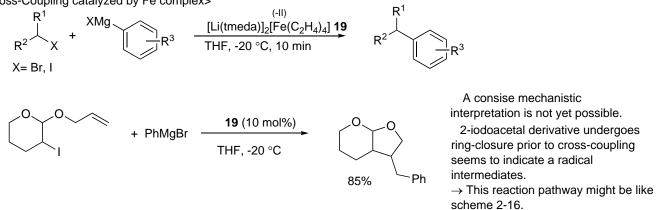

K. Ohshima et. al. J.Am. Chem. Soc. 2001, 123, 5374-5375

<Cobalt-Catalyzed Tamdem Radical Cyclization and Cross-Coupling Reaction>

Table 2-12 Co-catalyzed phenylative radical cyclization

$P_{H^{4}}^{0}$ $P_{H^{2}}^{0}$ $THF, 0 C, 30 min P_{H^{2}}^{0}$ $P_{H^{2}}^{0}$ $P_{H^{2}}^{$								
substrate	Х	R1	\mathbb{R}^2	\mathbb{R}^3	R ⁴	\mathbb{R}^{5}	product	yield ^b
1a	Br	л-С₄Н₀	Н	Н	n-CsH11	Н	2	80% (55/45)
1b	I	n-C4Ho	Н	Н	#-CsH11	Н	2	78% (55/45)
1c	Cl	n-C4Ho	Н	Н	n-C3H11	H	2	N.R.
1d	Br	(CH ₂) ₃		Н	n-C ₃ H ₁₁	H	3	71% (51/49)
le	Br	(CH ₂) ₉		Me	Me	Н	4	84% (62/38)
1f	I	(CH ₂) ₅		Me	Me	Н	4	84% (60/40)
1g	Br	(CH ₂) ₉		Н	H	Me	5	51% (single)
1ĥ	Ι	(CH ₂) ₉		Н	H	Н	6	22% (91/9)

^a Substrate (0.5 mmol), CoCl₂(dppe) (0.05 mmol), PhMgBr (1.1 mmol), and THF (1 mL) were employed. ^b Isolated yield. Diastereomer ratios are in parentheses.



An active spicies would be the 17-electron-ate complex **17**. *A single electron transfer* from **17** to a substrate to yield an anion radical of the substrate and Co(I) complex **18**.

They also investigated the allylation, alkynylation with Co ate complex.

A. Furstner et. al. Angew. Chem. Int. Ed. 2004, 43, 3955-3957

<Cross-Coupling catalyzed by Fe complex>

