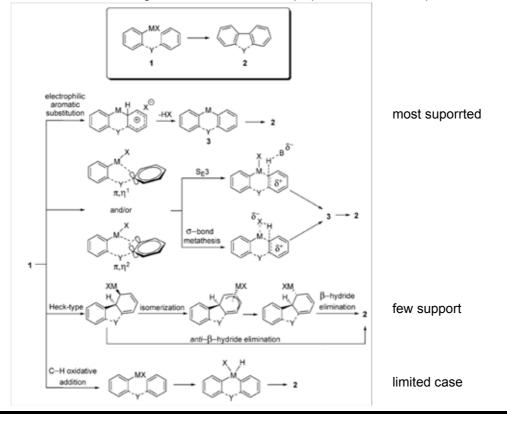
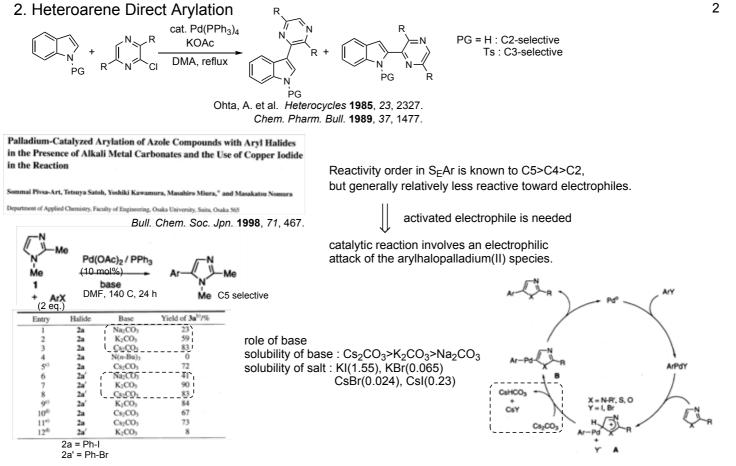
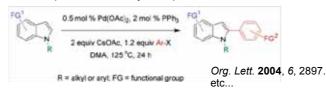

Transition Metal Catalyzed Intermolecular Formations of Ar-Ar Bond : post-Cross Coupling

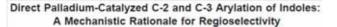
Ligand : depend on Ar-X and system

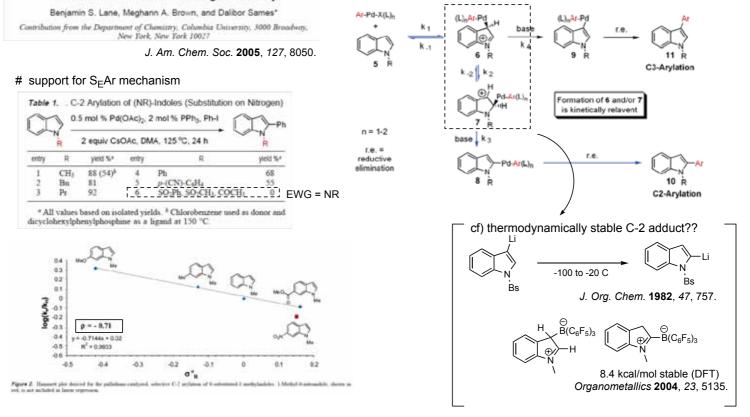

for Ar-I,Br : PhP₃ etc for Ar-Br,Cl : electron rich and bulky trialkylphosphine, Buchwald's ligand, NHC etc ligand-free conditions is also reported


Base : most cases inorganic bases such as K2CO3, Cs2CO3, KOAc, tBuOK, CsOPiv,,,,

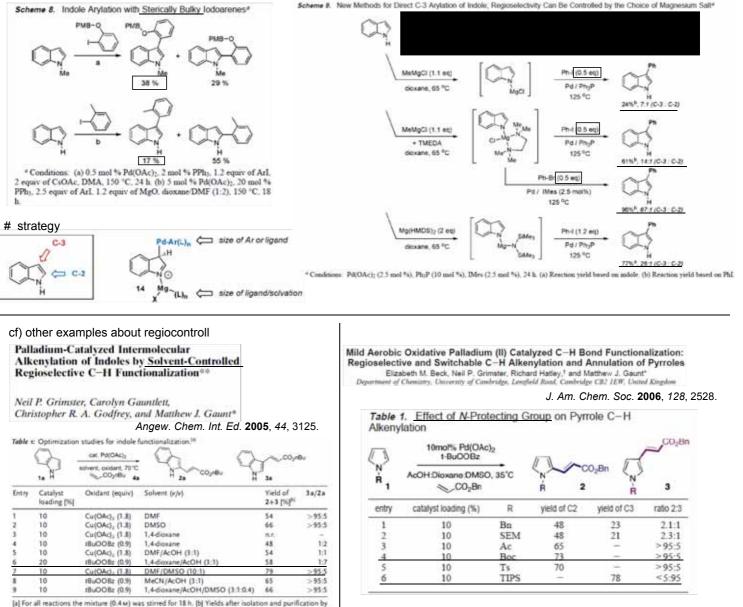
Solvent : polar, aprotic solvents such as DMF, DMA, CH₃CN, NMP, DMSO,,,


temp. : > 100 C

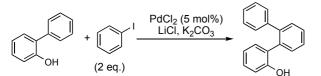

mechanism Although several mechanisms are proposed, exact ones depend on substrate, cat. system and so on.



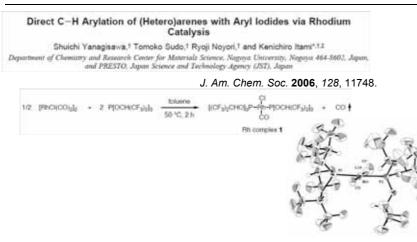
Indole produces C2-arylated product, which is "nonelectrophilic" regioselectivity.

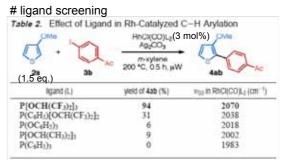

consideration of mechanism

chance to C-3 selective reaction (?)


realization

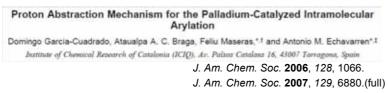
me #. New Methods for Direct C-3 Arviation of Indole: Regioselectivity Can Be Controlled by the Choice of Magnesium Salt4


Arene Direct Arylation

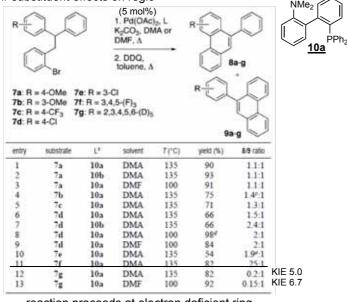

arene : lower electron density than heteroarene (lower reactivity as to S_EAr) In order to overcome this problem, use of directing group is major strategy. (many reports)

fash silica-gel chromatography. n.t. = no reaction. Bz = benzoyl, DMF = N,N-dimethylformamide, DMSO = dimethyl sulfoxide.

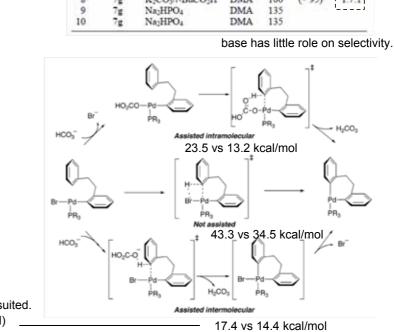

Miura, M. et al. Chem. Lett. 1996, 823. other directing groups are amide, ketone, imine, pyridine, quinoline,,,,

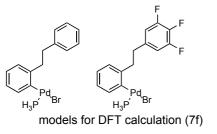


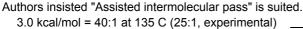
bulky and strongly pi-accepting ligand is effective


nondirected direct arylation of simple arene

new mechanistic insights are appered from intramolecular rxn

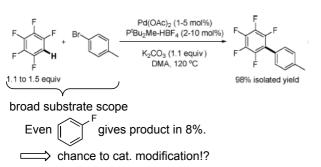

substituent effects on regio

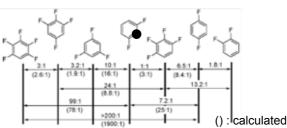

1. Pd(OAc) 104 base, solvent, A 2. DDQ, Br 7d: X = Cl 7g: X = F F C 8d: X 8g: X 9d: X 9g: X entry substrate base solvent T(°C) yield (%) 8/9 ratio 7dK2CO3 Et3N DMF 100 84 2.1 7dDMF 100 DBU DMF 100 3 7d DMF 4 7d K-r-BuO 100 Ъ K2CO3 DMA 3 135 72 1.6:1 7g 7g KHCO₃ DMA 1.5:1 6 135 68 K₃PO₄ DMA 135 66 1.6:1 7g84 K2CO3/t-BuCO2H DMA 100 (>95)* 7g 1.7:1 9 DMA 135 7g


base effect

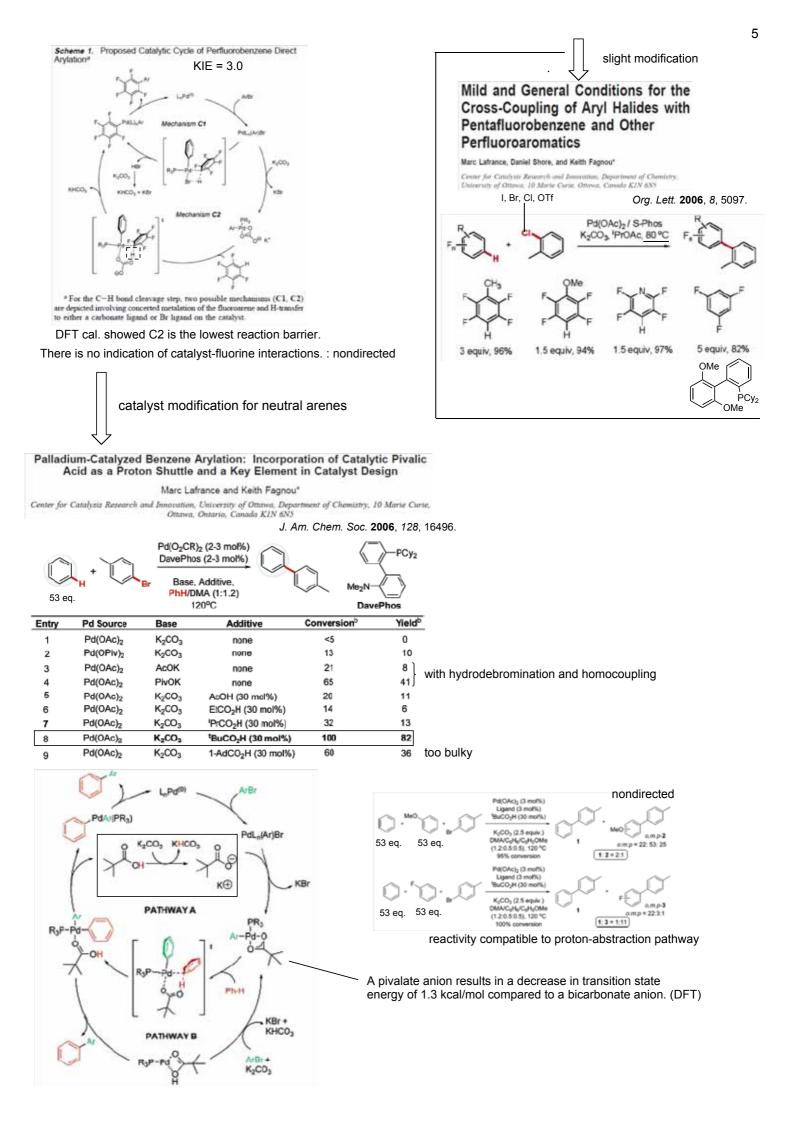
⇒

reaction proceeds at electron deficient ring.



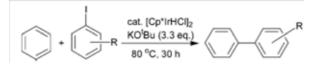


Marc Lafrance, Christopher N. Rowley, Tom K. Woo, and Keith Fagnou*


Center for Catalysis Research and Inn ovation, Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, Canada KIN 6N5

J. Am. Chem. Soc. 2006, 128, 8754.

Reactivity parallels relative acidities. more electron deficient, higher reactivity

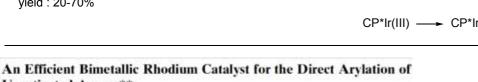

4. Other Approaches

Direct arylation of aromatic C-H bonds catalyzed by Cp*Ir complexes[†]

Ken-ichi Fujita,*ab Mitsuru Nonogawa* and Ryohei Yamaguchi*s

Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan, E-mail: figitak@kagaku.mbax.media.kyoto-u.ac.jp; Fax: +81+75-753-6634; Tel: +81+75-753-6634
Graduate School of Global Environmental Studies, Kyoto University, Kyoto 606-8501, Japan

Chem. Commun. 2004, 1926.

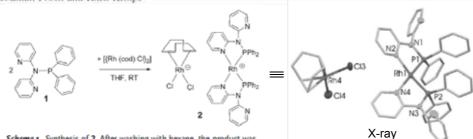


" The reaction was carried out with aryl iodides (0.50 mmol). [Cp*IrHCl]2 (5.0 or 10% Ir), and KO'Bu (1.65 mmol) in benzene (20 mmol) at 80 °C for 30 h. b Determined by GC. The values in parentheses are isolated yields.

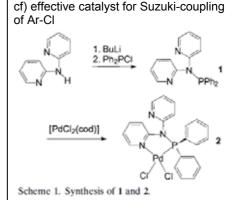
 $R = 4-NH_2$, $4-NO_2$, $4-CF_3$: noTM R = Me, OMe, 1-Napht yield : 20-70%

radical pathway ? cat. [Cp*lrHCl]₂ (10.0%lr) KO^tBu (3.3 eq.) 80 °C, 30 h 16% 20 mmol 0.50 mmol 2-Me: 3-Me: 4-Me 58: 27: 15 reported ratio involved in Ph radical : 54/26/20 without BHT: 70% with BHT: 10%

 $CP^*Ir(III) \longrightarrow CP^*Ir(II) \longrightarrow aryl iodide radical \longrightarrow aryl radical$



Angew. Chem. Int. Ed. 2007, 46, 3135.


Sebastian Proch and Rhett Kempe*

Unactivated Arenes**

Product

429

Angew. Chem. Int. Ed. 2002, 41, 1521.

Scheme 1. Synthesis of 2. After washing with hexane, the product was isolated in 98% yield.

Ar-I 3 : [(PN)₂Rh][B{C₆H₃(CF₃)₂}₄] 70 C, 24 h 4 : [NEt₄][Rh(cod)Cl₂] (10 eq.)

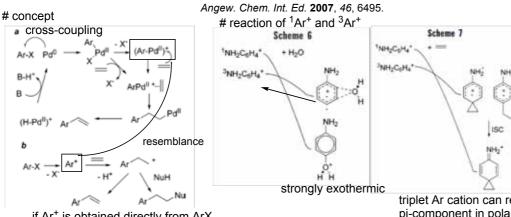
TONs 2^{b.b} 3[4,5] (yield) 780 0 0 (78) 45 0 0 (45) 30 Ö 0 (31)40 0 0 (40) 32 0 0 (32)13 Ő 0 (13)

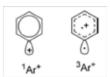
chlorides.^[4] Aryl halide Product Yield [%] X = Br^{bi} X-CI^{EI} 65 46 73 87 61 83 70 83 59

Table 2: Nondirected direct arylation of benzene by aryl bromides and

bimetallic Rh : essential

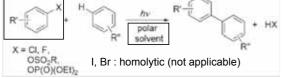
[a] 70°C, 24 h. Compound 2 was generated in situ from [{Rh(cod)Cl}_] and 1.^[14] [b] 5 mol% 2. [c] 10 mol% 2.

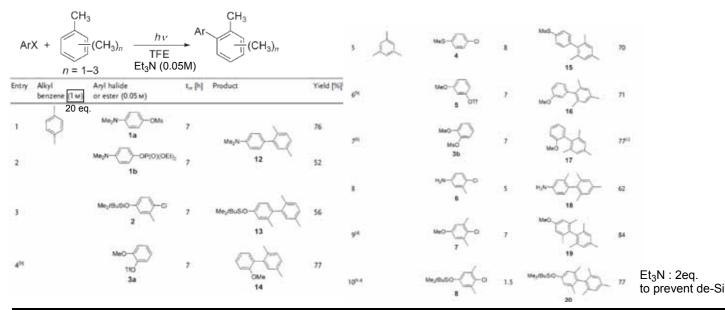

 σ_{p}


mechanism 1.2-71 0.9 R = NO2 C 2(cod)2 2 moi % 1 19 matched?? $R = CF_3$ 0.6 3.3 eq. KO¹Bu 343 K, 24 h, th! a(k) 0.3 10 $\rho = 1.33 \pm 0.02$ û R = H83% typical value for radical reaction (?) -0.3 R = Me -0.2 ò 0.2 0.4 0.6 0.8

reported ratio involved in Ph radical : 54/26/20 Authors insisted reaction proceeded via radical intermediates.

Metal-Free Synthesis of Sterically Crowded Biphenyls by Direct Ar-H Substitution in Alkyl Benzenes*

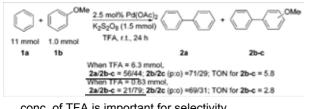

Valentina Dichiarante, Maurizio Fagnoni,* and Angelo Albini



triplet Ar cation can react selectively pi-component in polar solvent(some Nu)

if Ar⁺ is obtained directly from ArX,,, # generation of ³Ar⁺

Ar-X with EDG in polar solvent gives triplet Ar cation under hv. polar solvent : stabilize ionic components

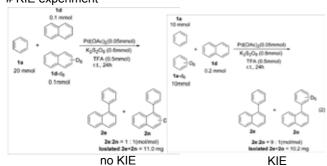

5. Catalytic Oxidative Coupling of Ar-H

Intermolecular Cross-Coupling of Simple Arenes via C-H Activation by Tuning Concentrations of Arenes and TFA

Rnoshi Li, Li Jiang, and Wenjun Lu*

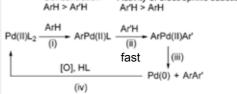
nghai Jiao Tong University, 800 Dongchu People's Republic of China an Road, Shanghai 200240. nt of Che sha

Organometallics 2006, 25, 5973.

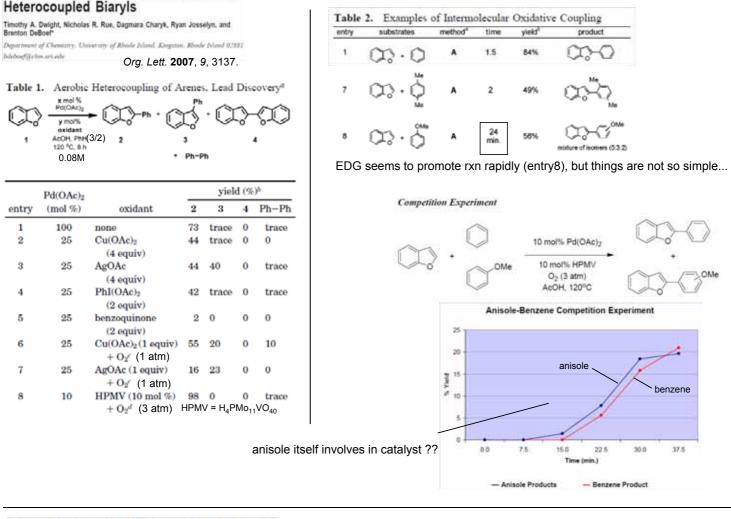


5 mol% Pd(OAc); TFA, K₂S₂O₈ r.t., 24 h 2. ArH/1d TFA roduct yield ArH TON entry (%) (molP6) 3.16 25 0.5 15 93' 100 1.3 32 3.2 24 ×00 1a 22.0 50 2.6 11 55 25 3.3 1.0 16 25 2.6 77 10.0 50 15 0.5 5.0 25 15 21.0 1.0 21 -00 3.04 5 0.1 15 71 29.0/71 60 3.34 1.0 16 62 21-47:8:45

choice of Naphthalene : more electron rich than benzene S_EAr is occured to alpha-position (??)


to prevent homocoupling : ratio higher about EWG-aromatic (entry9) lower about EDG-aromatic (entry8)

KIE experiment



C–C Bond Formation via Double C–H Functionalization: Aerobic Oxidative Coupling as a Method for Synthesizing Heterocoupled Biaryls

choice of TFA : $Pd(OAc)_2$ to more reactive $Pd(TFA)_2$ (??) why conc. of TFA is critical??

The Catalytic Cross-Coupling of Unactivated Arenes

David R. Stuart and Keith Fagnou* Science. 2007, 316, 1172.									
		Pine and	catalyst dant WOH H ¹ R H ¹				dole : Ni ndole : d	R dimerizatio	'n
Entry	Mol % Pd	Oxidant (equiv.)	Additive (mol %)	Heating	7 (°C)	Time (h)	% Conv.	1:2:3	
1	100	None	None	Oil bath	110	24	75	4.4:1:2.6	
2	10	Cu(OAc) ₂	CsOPiv (40)	Oil bath	110	24	67	27:1:0.3	
3	0	Cu(OAc) ₂	3-Nitropyridine (10) CsOPiv (40)	Oil bath	110	24	0	nd	
4	10	Cu(OAc) ₂	3-Nitropyridine (10) CsOPiv (40)	Microwave	140	5	100	8.9:1:0.3	
5	5	CulOAd) ₂	3-Nitropyridine (5) CsOPiv (40)	Microwave	140	5	92	13.8:1:0.3	

140

5

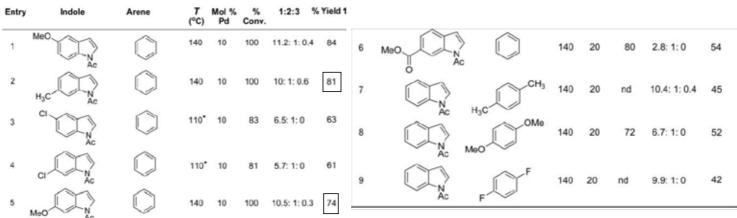
66

27:1:0

Microwave

3-Nitropyridine (2)

CsOPiv (40)


Cu(OAc)₂

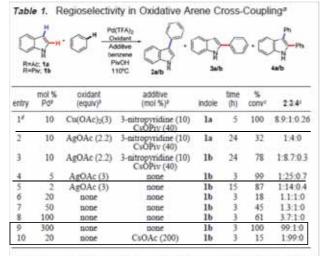
2

3-nitropyridien : stabilize Pd(0) CsOPiv : not clear

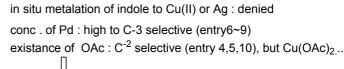
% Yield 1

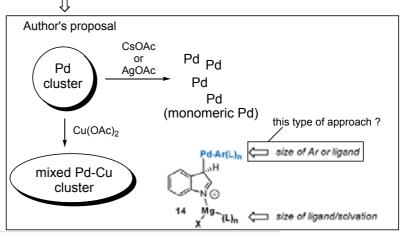
63

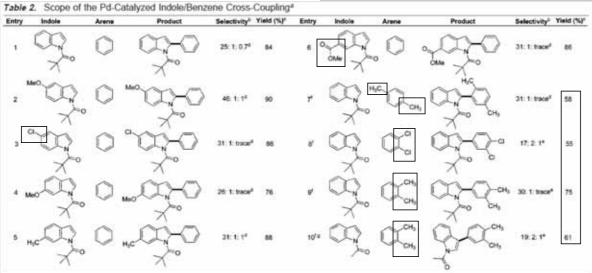
generally EDG promote and EWG retard, but entry 2 vs 5 dosen't follow this rule


Elements of Regiocontrol in Palladium-Catalyzed Oxidative Arene

Cross-Coupling

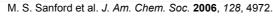

David R. Stuart, Elisia Villemure, and Keith Fagnou*


Center for Catalysis Research and Innovation, University of Ottawa, Department of Chemistry, 10 Marie Curie, Ottawa, Ontario, Canada KIN 6N5

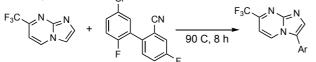

J. Am. Chem. Soc. 2007, 129, 12072.

^a Conditions: Pd(TFA)₂, oxidant, 3-nitropyridine, cesium pivalate, PivOH (6 equiv), and 1a/b were added to a screw-capped vial followed by the addition of benzene (30-60 equiv, see SI) and heating to 110 °C. ^b Relative to 1. ^c Determined by GC/MS. ^d Microwave heating.

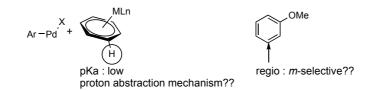
^a Conditions: Pd(TFA)₂ (5 mol %), AgOAc (3 equiv), PivOH (6 equiv), and the N-pivalylindole were added to a screw-capped vial followed by benzene (approximately 60 equiv) and heating to 110 °C. ^b Determined by GC/MS. ^c Isolated yield. ^d Represents the ratio of C2/C3/double arylation. ^e Represents the ratio of the major (isolated) isomer to other minor isomers detected by GC/MS. ^f 10 mol % Pd used. ^g Cu(OAc)₂ used as the oxidant. See SI.

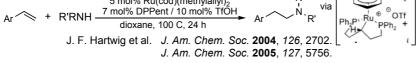

EWG on indole : not big effect on yield (entry 3,6) Substituent on benzene : significant effect

 \implies encounting cat. with arene-H is rds ?? (like organometallics 2006)


6. Trends and Perspectives

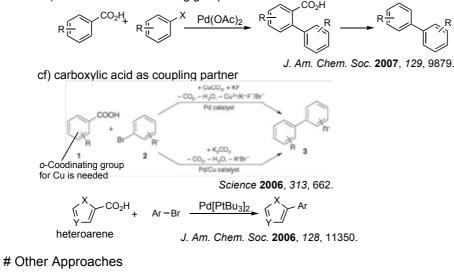
- # Heteroarene of Direct Arylation
 - rxn of many types of heteroaromatic ring almost used up??
 - rxn under milder conditions
 - ex) extremly mild condition


 realization of real alternative synthetic strategy to cross-coupling ex) Merck group


Org. Proc. Res. Dev. 2006, 10, 398.

Arene of Direct Arylation

● regioselectivity, reactivity problem for nondirected system 妄想: use of pi-arene complex for arenen activation



cf) Ru-pi-arene complex in catalytic cycle for hydroamination $$5\,{\rm mol}\%\,{\rm Ru}({\rm cod})({\rm methylallyl})_2$ $${\rm R}_1^{-1}$$

removable directing group (but need environmentaly benign)

ex) Benzoic acid as directing group

- regioselectivity problem, but maybe difficult to overcome in radicalic or cationic pathway
- reactivity problem
- # Oxidative Coupling
 - obtain some information and understand mechanism
 - etc...

Keith Fagnou

Current Position: Assistant Professor, Department of Chemistry, University of Ottawa Education: Ph.D. University of Toronto, 2002; M.Sc. University of Toronto, 2000, B.Ed. University of Saskatchewan, 1995.

K. Fagnou' group : http://www.science.uottawa.ca/~kfagn061/