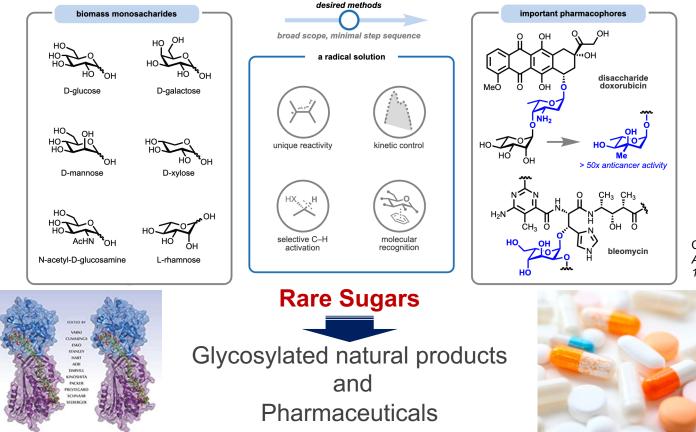
Selective Epimerization of Sugars Inspired by Radical-Based Synthetic Mechanisms

Literature Seminar

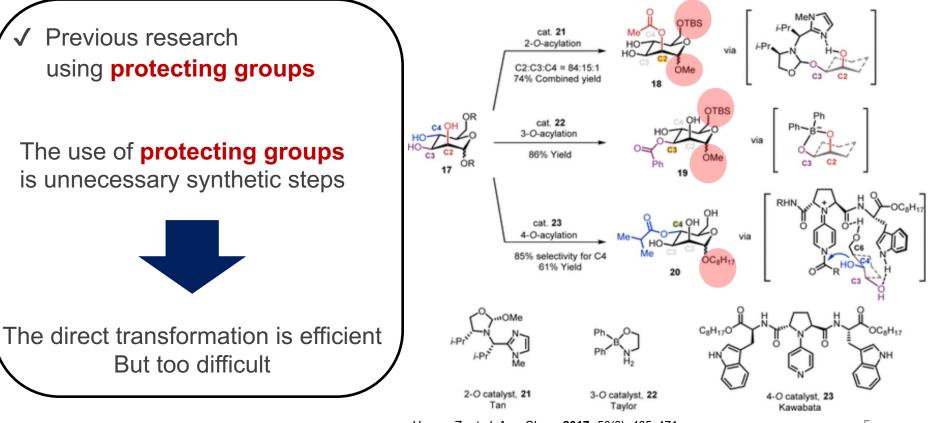
Ryo Kuroda

2022/6/9

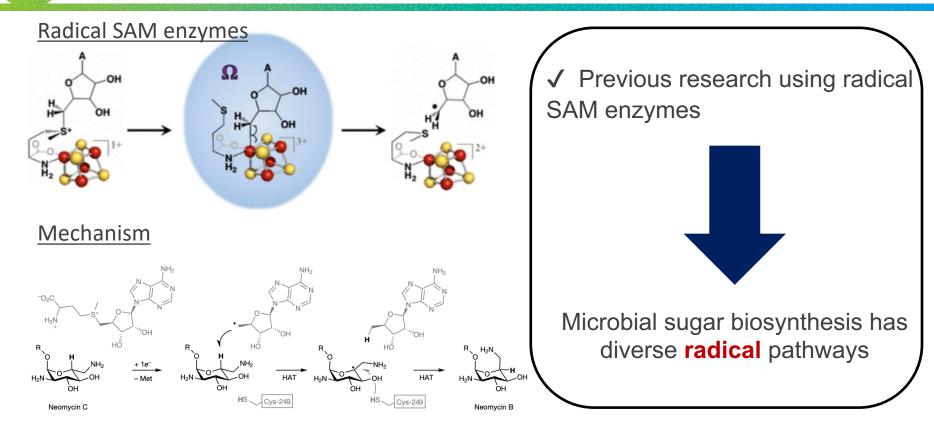
1. Introduction

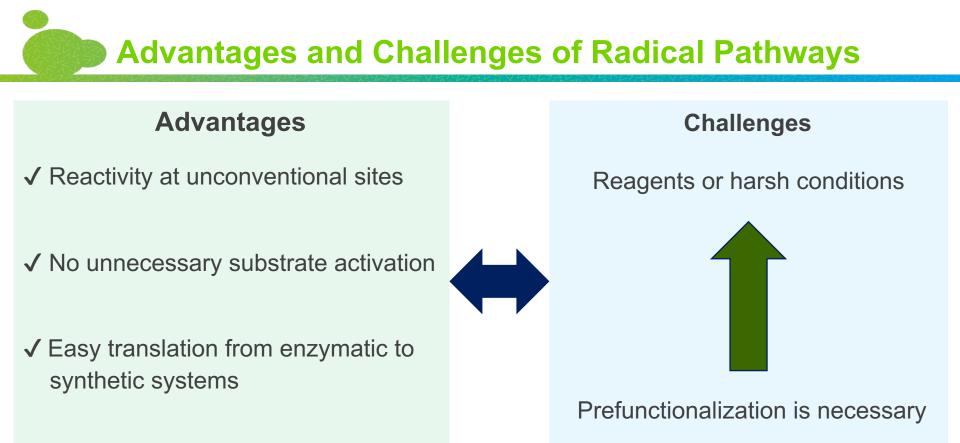

- 2. Representative Researches
 - Epimerization via Kinetic Control
 - Epimerization via Thermodynamic Control
 - Epimerization via Transient Thermodynamic Control
- 3. Summary

1. Introduction


- 2. Representative Researches
 - Epimerization via Kinetic Control
 - Epimerization via Thermodynamic Control
 - Epimerization via Transient Thermodynamic Control
- 3. Summary

Importance of Synthesizing Rare Sugars


Carolyn E. Suh *et al.* ACS Chem. **2021**, *16*, *1814*–1828.


Synthesis Using Protecting Groups

Huang, Z. et al. Acc. Chem. 2017, 50(3), 465-471.

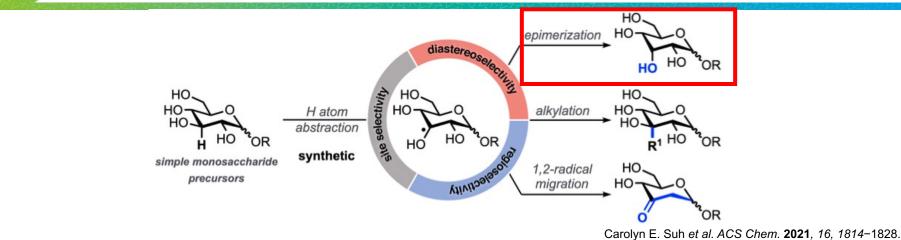
SAM (Radical Enzymes)

✓ Irreversible

Advantages and Challenges of Radical Pathways

Advantages

 \checkmark Reactivity at unconventional sites

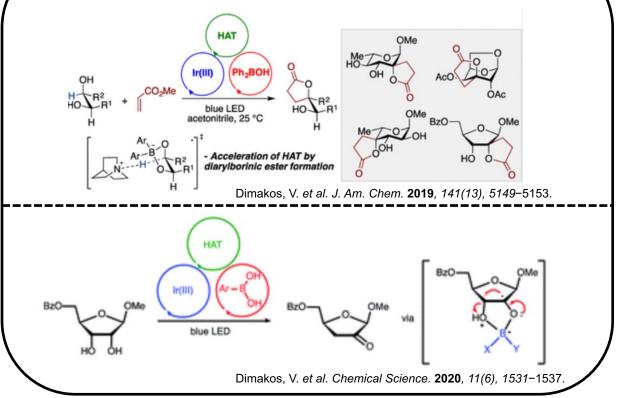

✓ No unnecessary substrate activation

 Easy translation from enzymatic to synthetic systems

✓ Irreversible

hemisi oto Ch

Photochemistry


Advantages of Photochemistry

- ✓ No prefunctionalization
- ✓ Mild conditions
- ✓ Selective reaction

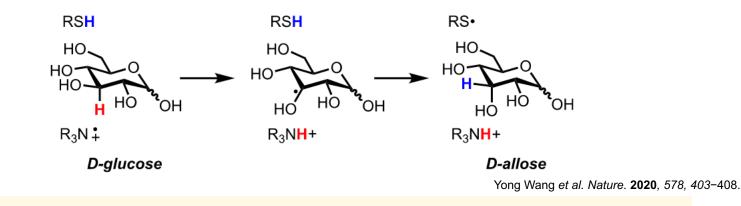
✓ No reagents✓ Minimally Protecting groups

Epimerization is Possible ??

✓ Alkylation and 1,2-radicalmigration is possible

Epimerization Is Possible ??

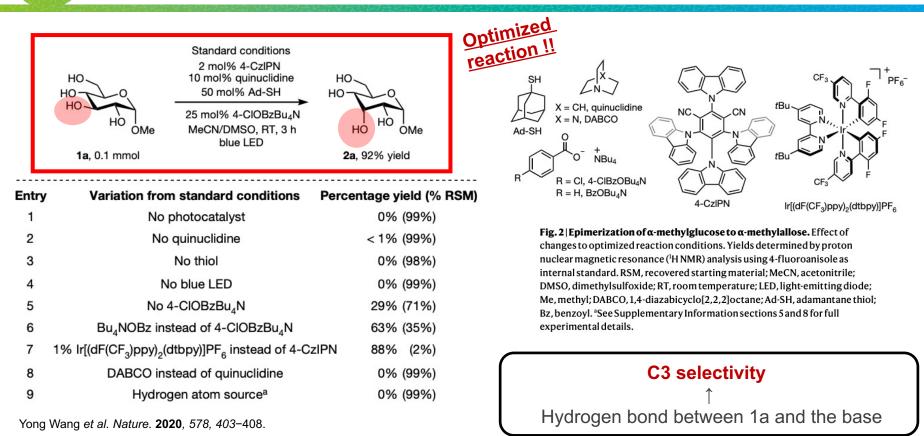
1. Introduction

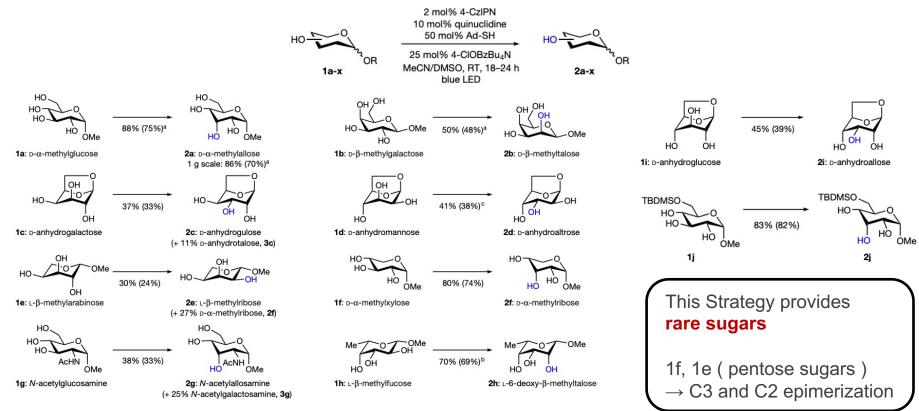

2. Representative Researches

- Epimerization via Kinetic Control

- Epimerization via Thermodynamic Control
- Epimerization via Transient Thermodynamic Control
- 3. Summary

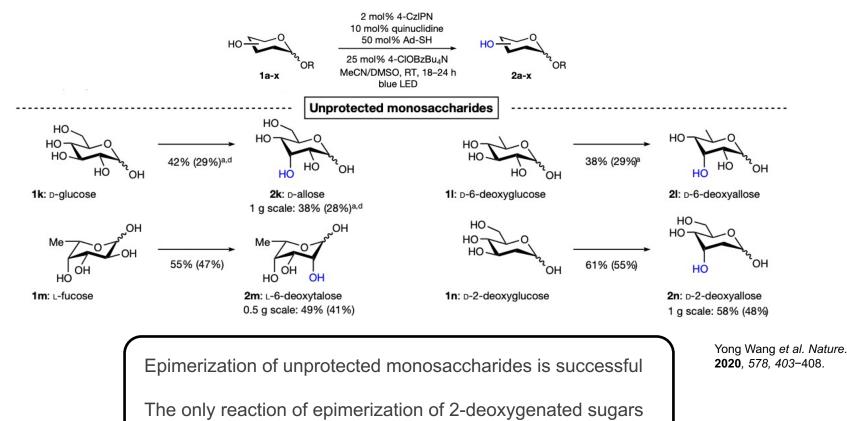
Epimerization via Kinetic Control


Synthesis of rare sugar isomers through site-selective epimerization

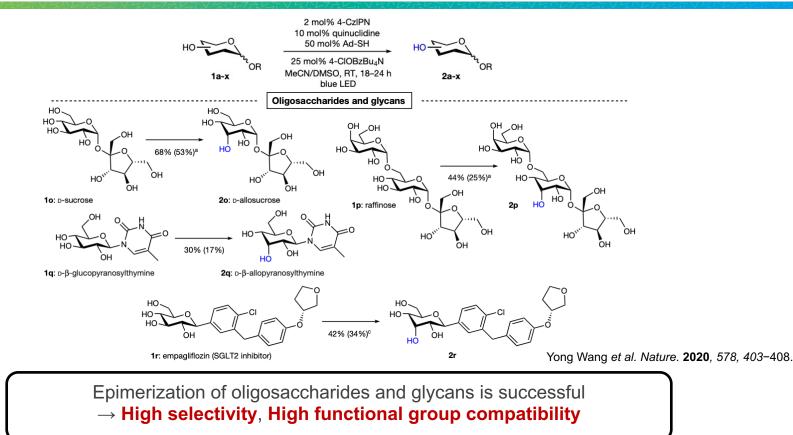

- ✓ Kinetically controlled mechanism
- ✓ High selectivity
- ✓ Single step

✓ High yield✓ Site-selective

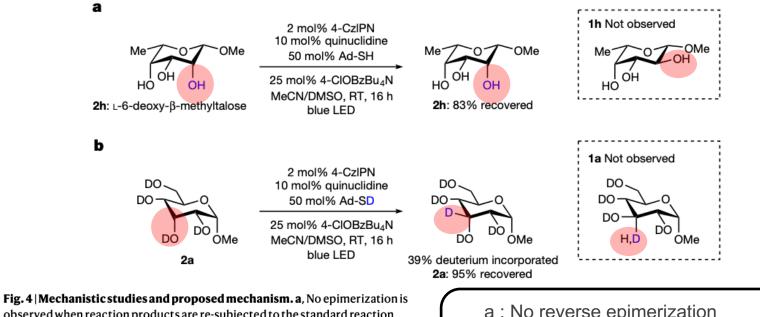
Condition Optimization for Sugar Epimerization

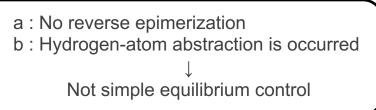


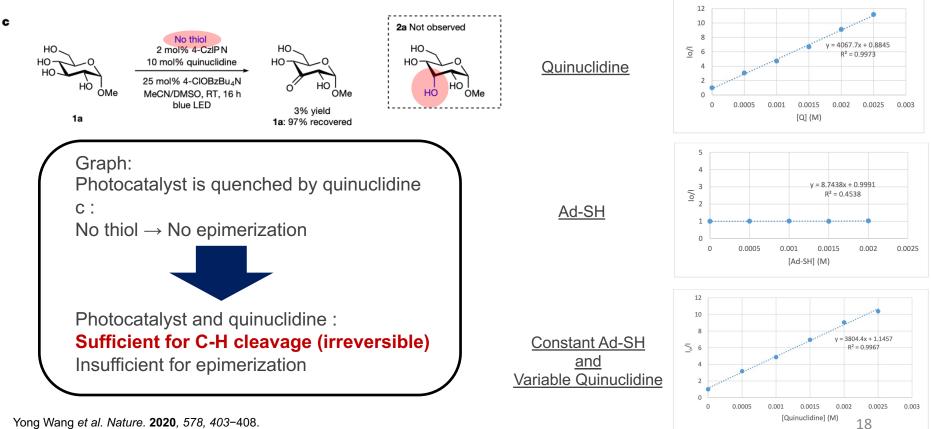
Substrate Scope of Protected Monosaccharides



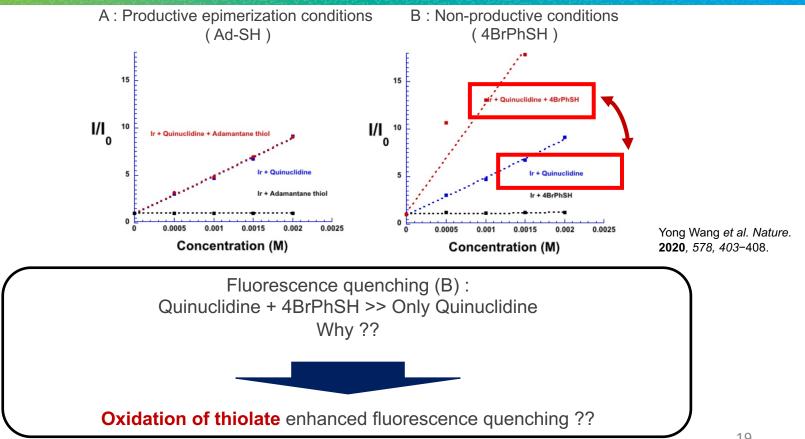
Yong Wang et al. Nature. 2020, 578, 403-408.


Substrate Scope of Unprotected Monosaccharides

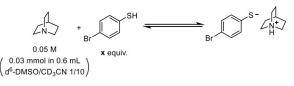

Substrate Scope of Oligosaccharides and Glycans


Mechanistic Studies of Sugar Epimerization

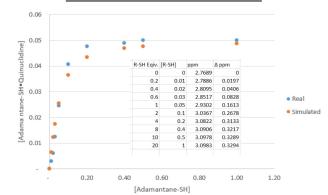
observed when reaction products are re-subjected to the standard reaction conditions. **b**, Deuterium labelling studies indicate that the reaction product reacts under standard reaction conditions, but both epimers converge to a common product.



Mechanistic Studies of Photocatalyst and Quinuclidine


Yong Wang et al. Nature. 2020, 578, 403-408.

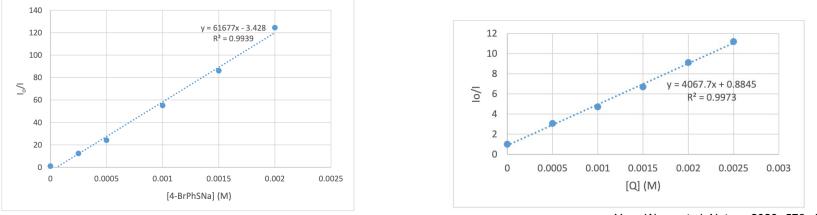
Mechanistic Studies of Thiol Co-Catalyst

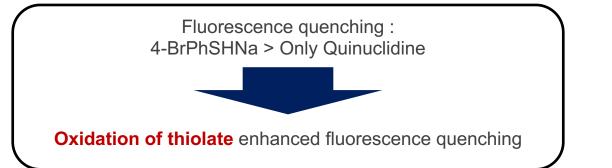

Interaction between Quinuclidine and Thiol

Equilibrium Constant between 4-BrPhSH and Quinuclidine

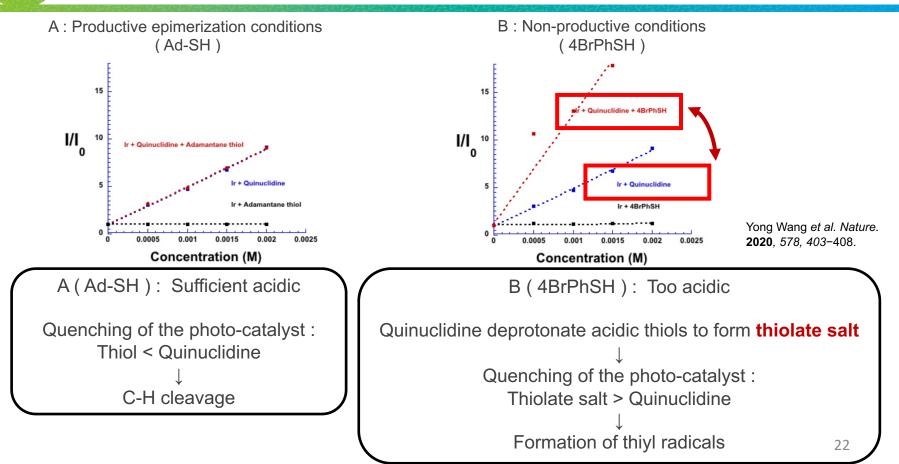
10.0 equiv.	/		
8.0 equiv.		l	
4.0 equiv.			
2.0 equiv.			
1.0 equiv.			
0.6 equiv.			
0.4 equiv.			
0.2 equiv.			
0 equiv. [4-BrPhSH]	ML	A	

Equilibrium Binding Curve between 4-BrPhSH and Quinuclidine

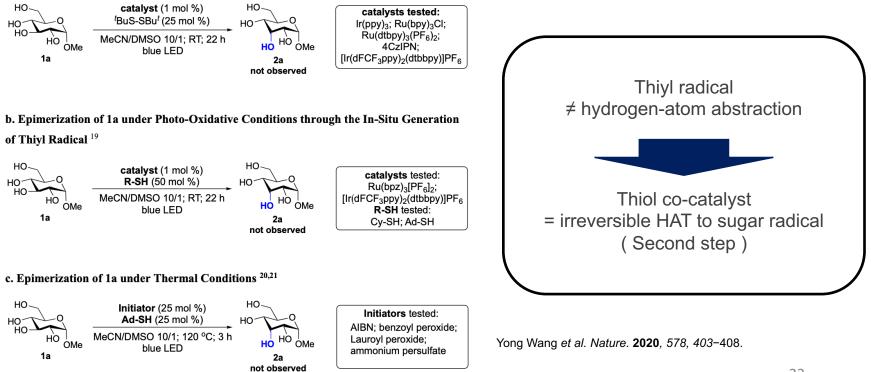

Equilibrium interaction between 4-BrPhSH and Quinuclidine

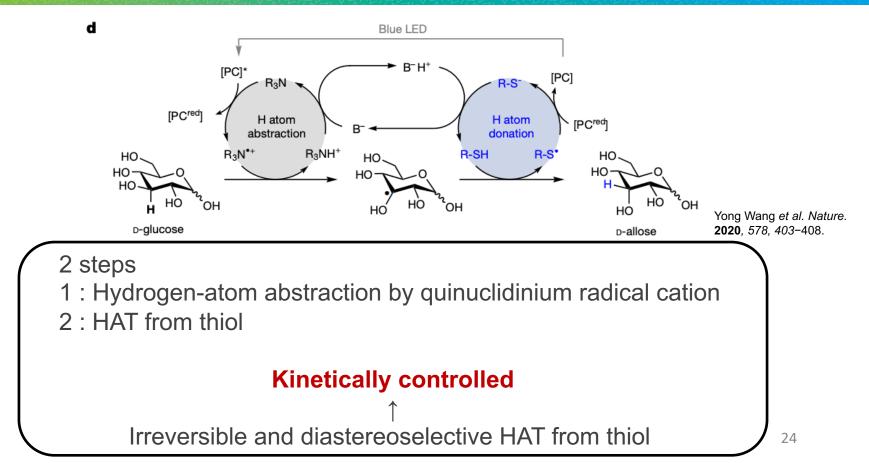

Interaction between Quinuclidine and Thiol

<u>4-BrPhSNa</u>


Quinuclidine

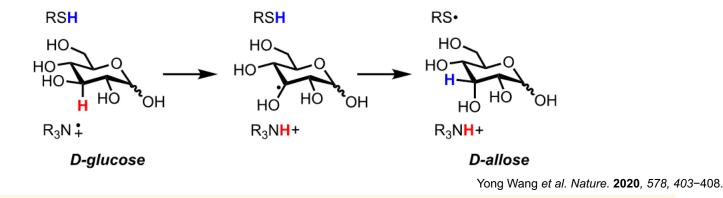
Yong Wang et al. Nature. 2020, 578, 403-408.


Mechanistic Studies of Thiol Co-Catalyst


Mechanistic Studies of Thiol Co-Catalyst

a. Epimerization of 1a under Photo-Reductive Conditions through the In-Situ Generation

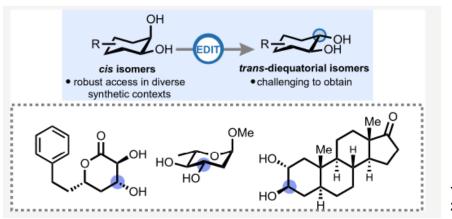
of Thiyl Radical¹⁸



Mechanism of Sugar Epimerization

Synthesis of rare sugar isomers through site-selective epimerization

- ✓ Kinetic control
- ✓ Sequential steps of HAT
- ✓ HAT mediated by two distinct catalysts
- ✓ Concise and potentially extensive access to rare sugars


1. Introduction

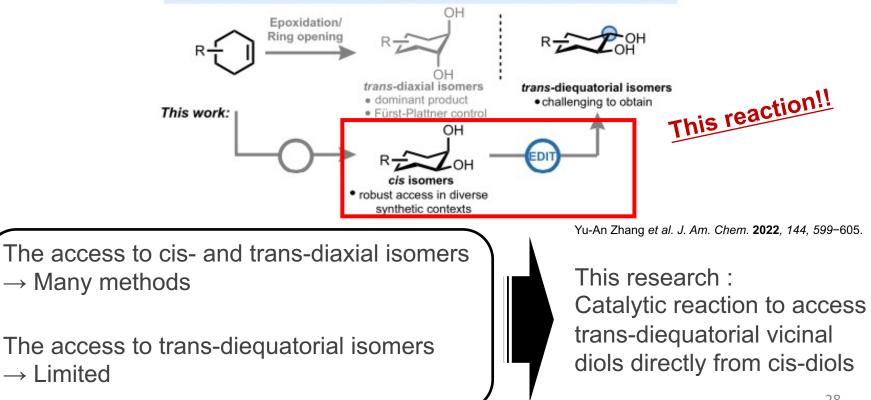
2. Representative Researches

- Epimerization via Kinetic Control
- Epimerization via Thermodynamic Control
- Epimerization via Transient Thermodynamic Control
- 3. Summary

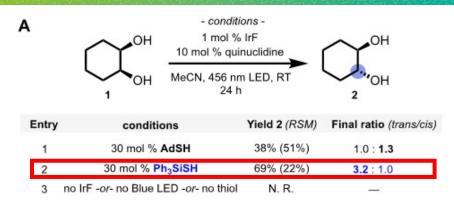
Epimerization via Thermodynamic Control

A Change from Kinetic to Thermodynamic Control Enables Trans-Selective Stereochemical Editing of Vicinal Diols

Yu-An Zhang *et al. J. Am. Chem.* **2022**, *144*, *599*–605.


✓ Ph₃SiSH as a HAT catalyst
✓ Chemoselective
✓ Thermodynamic

✓ Mild condition


- ✓ Broadly functional group tolerant
- ✓ Concise access to trans-diol products

C. Stereochemical editing strategy for trans-diequatorial diol synthesis

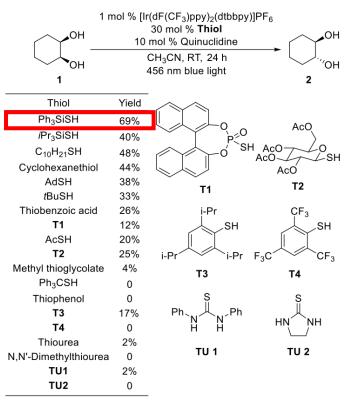

Condition Optimization

Figure 2. Reaction conditions optimization. (A) Isomerization of cyclohexanediol. Conditions: 0.1 mmol scale, 1 mol % IrF, 10 mol % quinuclidine, 30 mol % "thiol", 0.2 M CH₃CN, 23 °C, 24 h, 456 nm blue LED; yield of **2** and recovered **1** were determined by ¹H NMR with nitrobenzene as internal standard; IrF, $[Ir(dF(CF_3)ppy)_2-(dtbpy)]PF_{6}$; RSM, recovered starting material; N.R., no reaction. (B) Reaction timecourse data carried out under Ph₃SiSH- and AdSH-catalyzed conditions.

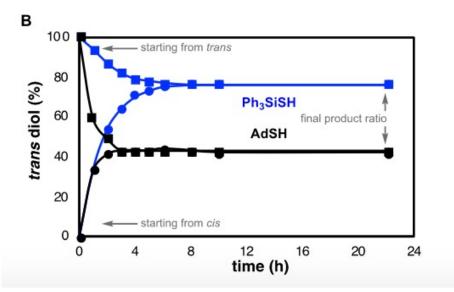

2: Ph ₃ SiSH is best thiol catalyst
3: No IrF, No Blue LED, No thiol \rightarrow No reaction

Table S1. Effect of Different Thiol Catalysts in the Presence of Quinuclidine.

Yu-An Zhang et al. J. Am. Chem. 2022, 144, 599-605.

Yu-An Zhang et al. J. Am. Chem. 2022, 144, 599-605.

The cis- / trans- isomer starting substrate \rightarrow Same final product ratio

The thiol catalyst dictates the final equilibrium product ratio

Comparison between Ph₃SiSH and Quinuclidine

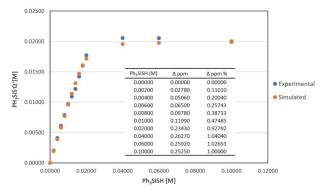
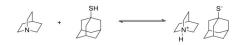
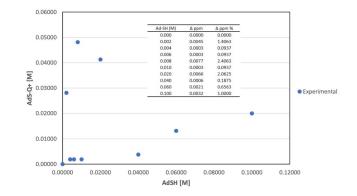
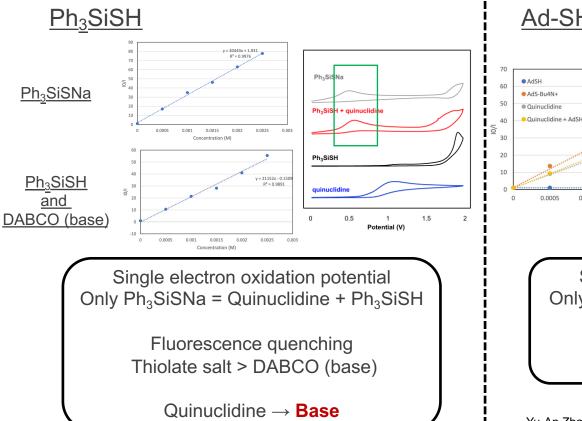
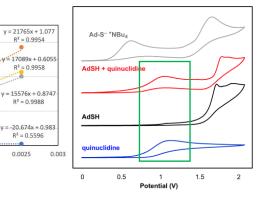



Figure S10. NMR titration of Ph₃SiSH and quinuclidine. Fitting based on the peak shift of C-H of quinuclidine, K_{fit} = 2131 M⁻¹.

The interaction between Ph₃SiSH and Quinuclidine

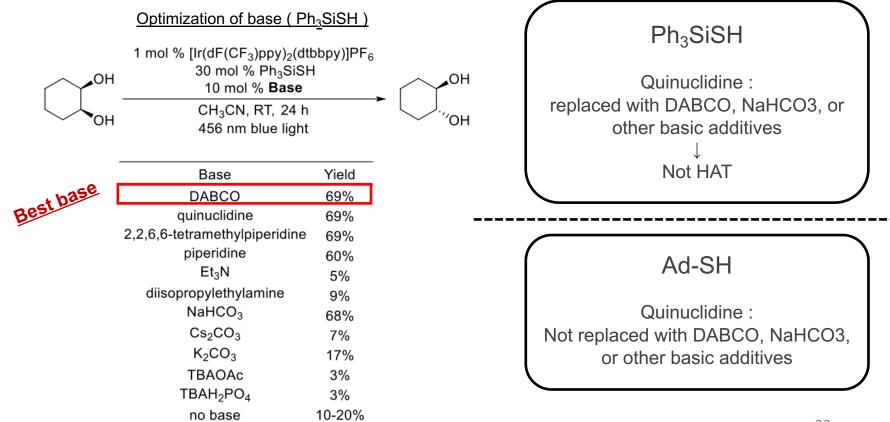




Figure S11. NMR titration of AdSH and quinuclidine reveals no significant binding interaction.

No interaction between Ad-SH and Quinuclidine

Comparison between Ph₃SiSH and Quinuclidine

Ad-SH


Single electron oxidation potential Only Quinuclidine = Quinuclidine + AdSH

> Fluorescence quenching Thiolate < Quinuclidine

0.007

Concentration (M)

Comparison between Ph₃SiSH and Quinuclidine

Mechanism of the Epimerization

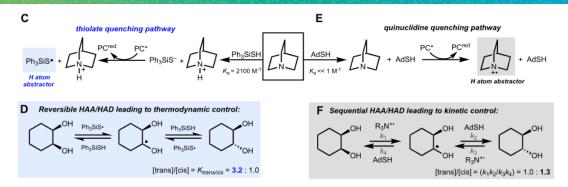
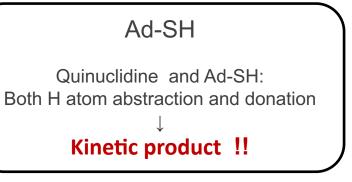
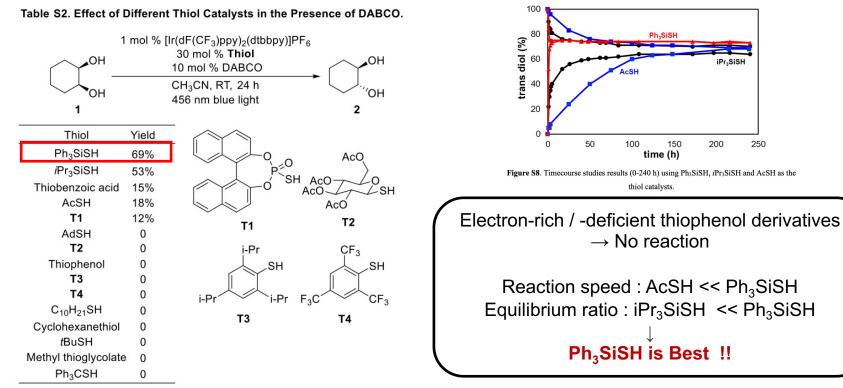
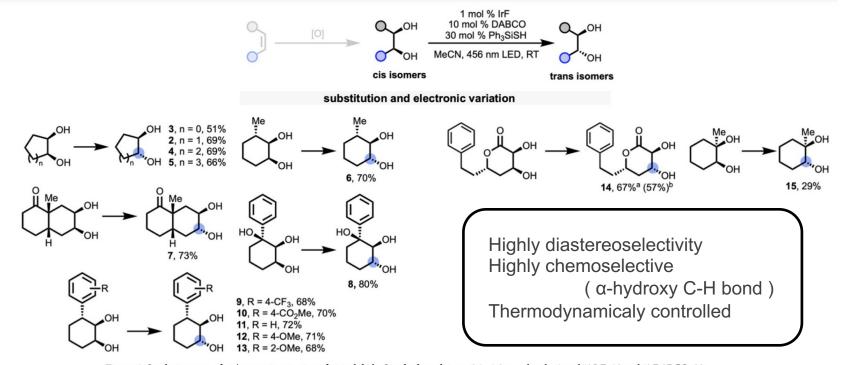



Figure 3. Mechanistic experiments and proposed mechanism. (A) Cyclic voltammetry studies interrogating Ph₃SiSH-catalyzed conditions. (B) Cyclic voltammetry studies interrogating AdSH-catalyzed conditions. Proposed (C) thiolate and (E) quinuclidine quenching mechanisms. (D) Reversible HAA/HAD leads to thermodynamic control. (F) Sequential HAA/HAD leads to kinetic control. See Supporting Information for full experimental details.


Ph₃SiSH Ph₃SiSH : Both H atom abstraction and donation The reaction is reversible Thermodynamic product !!

Optimization of Thiol in the Presence of DABCO


Reaction timecourse

Optimization

Yu-An Zhang et al. J. Am. Chem. 2022, 144, 599-605.

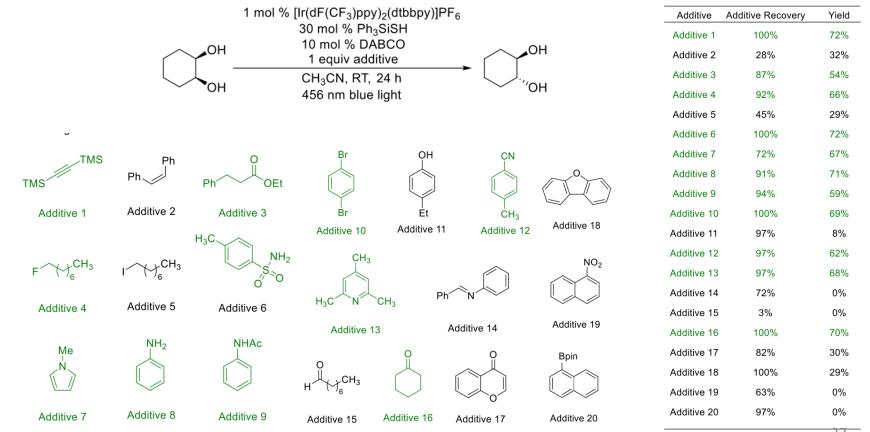
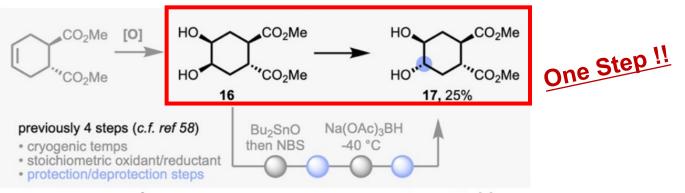


Figure 4. Synthetic scope of *cis/trans* epimerization of vicinal diols. Standard conditions: 0.1-1.0 mmol scale, 1 mol % IrF, 10 mol % DABCO, 30 mol % Ph₃SiSH, 0.2 M MeCN, 23 °C, 24 h, 456 nm blue LED. Percent yields reported are isolated yields (average of two runs). See the Supporting Information for full experimental details. ^aReaction was performed with 1 mol % IrF, 10 mol % quinuclidine, 50 mol % AdSH, 0.2 M MeCN, 23 °C, 24 h, 456 nm blue LED. ^bReaction was performed under standard conditions. Number in parentheses is ¹H NMR yield with nitrobenzene as internal standard. ^cReaction was performed with the *trans*-diaxial diol isomer **25** under standard conditions for 48 h. Number in parentheses is ¹H NMR yield with nitrobenzene as internal standard. ^dThe identity of the major and minor diastereomer was not determined.


Yu-An Zhang et al. J. Am. Chem. 2022, 144, 599-605.

Functional Group Compatibility

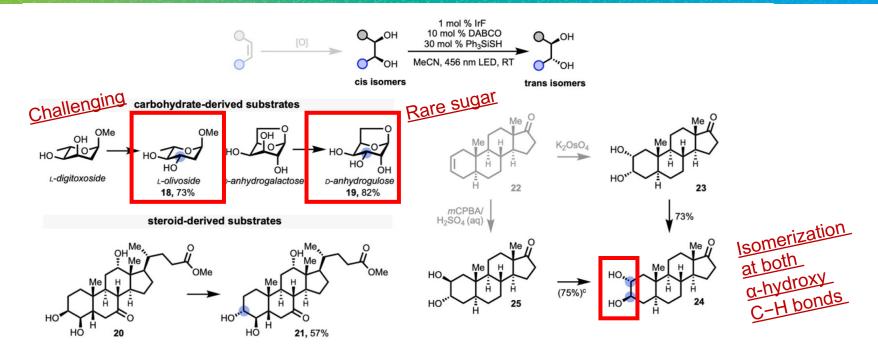
Yu-An Zhang et al. J. Am. Chem. 2022, 144, 599-605.

Comparison with Previous Synthetic Strategies

Yu-An Zhang et al. J. Am. Chem. 2022, 144, 599-605.

Previous methods

√ 4 steps


- ✓ Cryogenic temperature
- ✓ Stoichiometric oxidant / reductant
- ✓ Use of protecting groups

This method

✓ Only 1 step
✓ No cryogenic temperature
✓ No stoichiometric oxidant / reductant
✓ No use of protecting groups

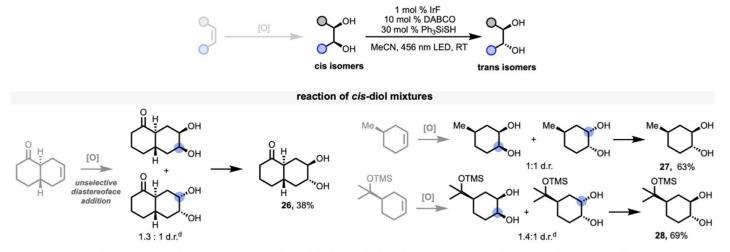

Substrate Scope of Sugars / Steroid

Figure 4. Synthetic scope of *cis/trans* epimerization of vicinal diols. Standard conditions: 0.1-1.0 mmol scale, 1 mol % IrF, 10 mol % DABCO, 30 mol % Ph₃SiSH, 0.2 M MeCN, 23 °C, 24 h, 456 nm blue LED. Percent yields reported are isolated yields (average of two runs). See the Supporting Information for full experimental details. ^aReaction was performed with 1 mol % IrF, 10 mol % quinuclidine, 50 mol % AdSH, 0.2 M MeCN, 23 °C, 24 h, 456 nm blue LED. ^bReaction was performed under standard conditions. Number in parentheses is ¹H NMR yield with nitrobenzene as internal standard. ^cReaction was performed with the *trans*-diaxial diol isomer **25** under standard conditions for 48 h. Number in parentheses is ¹H NMR yield with nitrobenzene as internal standard. ^dThe identity of the major and minor diastereomer was not determined.

Yu-An Zhang et al. J. Am. Chem. 2022, 144, 599-605.

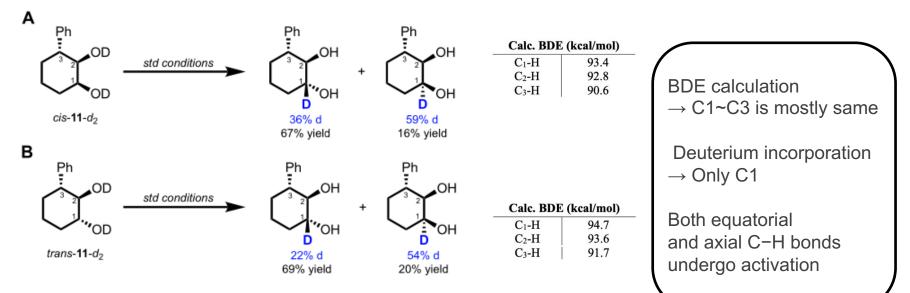


Figure 4. Synthetic scope of *cis/trans* epimerization of vicinal diols. Standard conditions: 0.1–1.0 mmol scale, 1 mol % IrF, 10 mol % DABCO, 30 mol % Ph₃SiSH, 0.2 M MeCN, 23 °C, 24 h, 456 nm blue LED. Percent yields reported are isolated yields (average of two runs). See the Supporting Information for full experimental details. ^aReaction was performed with 1 mol % IrF, 10 mol % quinuclidine, 50 mol % AdSH, 0.2 M MeCN, 23 °C, 24 h, 456 nm blue LED. ^bReaction was performed under standard conditions. Number in parentheses is ¹H NMR yield with nitrobenzene as internal standard. ^cReaction was performed with the *trans*-diaxial diol isomer **25** under standard conditions for 48 h. Number in parentheses is ¹H NMR yield with nitrobenzene as internal standard. ^dThe identity of the major and minor diastereomer was not determined.

The reaction from mixtures of cis-diols to the only 1 desired trans-diequatorial diastereomer is successful

Selectivity of a-hydroxy C-H Bond

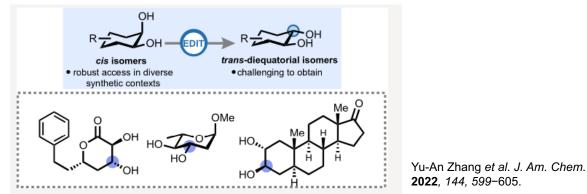


Figure 5. Deuterium incorporation studies showing selective α -hydroxy C-H bond isomerization starting from (A) *cis*-diol, and (B) *trans*-diol substrates.

Yu-An Zhang et al. J. Am. Chem. 2022, 144, 599-605.

A Change from Kinetic to Thermodynamic Control Enables Trans-Selective Stereochemical Editing of Vicinal Diols

✓ Catalyst system of direct access from cis-vicinical to trans-diequatorial vicinial diols

✓ Ph₃SiSH promotes reversible HAT and thermodynamic control

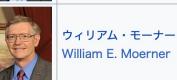
✓ Mild tools capable of tuning stereogenic centers

1. Introduction

2. Representative Researches

- Epimerization via Kinetic Control
- Epimerization via Thermodynamic Control
- Epimerization via Transient Thermodynamic Control

3. Summary


Nobel Prize in Chemistry

エリック・ベツィグ Eric Betzig

シュテファン・ヘル Stefan Hell

ジャン=ピエール・ソヴァ ージュ Jean-Pierre Sauvage

フレイザー・ストッダート Fraser Stoddart

ベルナルト・L・フェリン ハ Ben Feringa

ジャック・ドゥボシェ Jacques Dubochet

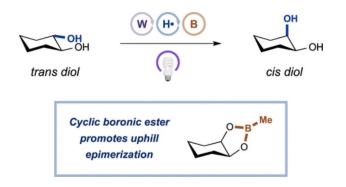
> ヨアヒム・フランク Joachim Frank

> > リチャード・ヘンダーソン Richard Henderson

フランシス・アーノルド

Frances Arnold

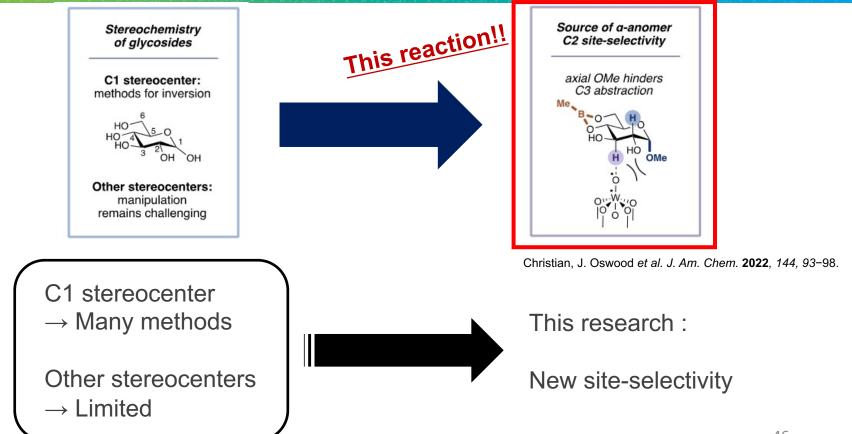
吉野彰 Akira Yoshino



デイヴィッド・マクミラン David MacMillan

Epimerization via Transient Thermodynamic Control

Selective Isomerization via Transient Thermodynamic Control: Dynamic Epimerization of trans to cis Diols



Christian, J. Oswood *et al. J. Am. Chem.* **2022**, *144*, 93–98.

✓ Boronic acid mediator
✓ Selectivity
✓ C2 site-selectivity

✓ Epimerization of trans to cis Diols✓ Transient thermodynamic control

Reaction Design of the Selective Epimerization

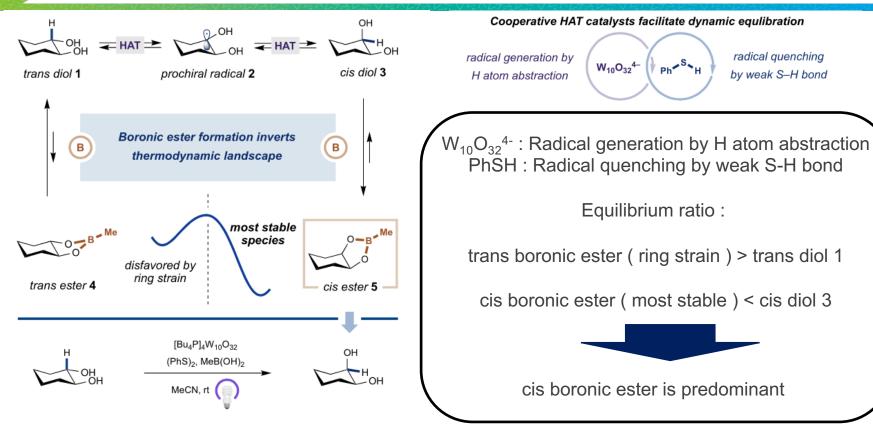
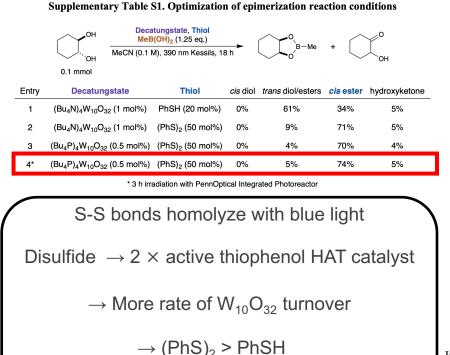


Figure 2. Reaction design of the selective epimerization.

Cooperative HAT catalysts facilitate dynamic equibbration

Equilibrium ratio :

cis boronic ester (most stable) < cis diol 3


cis boronic ester is predominant

W100324-

radical quenching

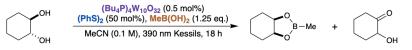
by weak S-H bond

Optimization of the Selective Epimerization

 $(Bu_4P)_4W_{10}O_{32}$: Better soluble

Supplementary Table S5: Evaluation of disulfides for the epimerization

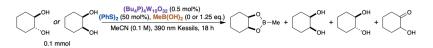
ОН	(Bu₄P)₄W ₁₀ O ₃₂ (0.5 mol%) (ArS) ₂ (50 mol%), MeB(OH) ₂ (1.25 eq.) MeCN (0.1 M), 390 nm Kessils, 18 h	О В-Ме	+	ССОН	
0.1 mmol					

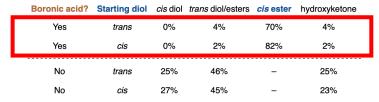

Entry	Disulfide	<i>cis</i> diol	trans diol/esters	<i>cis</i> ester	hydroxyketone
1	(PhS) ₂	0%	4%	70%	4%
2	(4-MeC ₆ H ₄ S) ₂	0%	4%	66%	2% Best
3	(2,4,6-Me ₃ C ₆ H ₂ S) ₂	0%	5%	60%	3%
4	(2,4,6- <i>i</i> PrC ₆ H ₂ S) ₂	0%	3%	57%	0%
5	(1-naphthyIS) ₂	0%	39%	41%	3%
6	(4-(MeO)C ₆ H ₄ S) ₂	7%	42%	26%	8%
7	(2,4-F ₂ C ₆ H ₃ S) ₂	0%	21%	47%	5%
8	(2,6-Cl ₂ C ₆ H ₃ S) ₂	0%	5%	18%	2%
9	(4-CF ₃ C ₆ H ₄ S) ₂	0%	4%	68%	4%
10	(3,5-dCF ₃ C ₆ H ₃ S) ₂	0%	3%	54%	5%

If necessary, disulfides were prepared from the corresponding thiols by perborate oxidation.²¹

Christian, J. Oswood et al. J. Am. Chem. 2022, 144, 93-98.

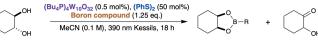
Optimization of the Selective Epimerization


Supplementary Table S2. Control reactions



0.1 mmol

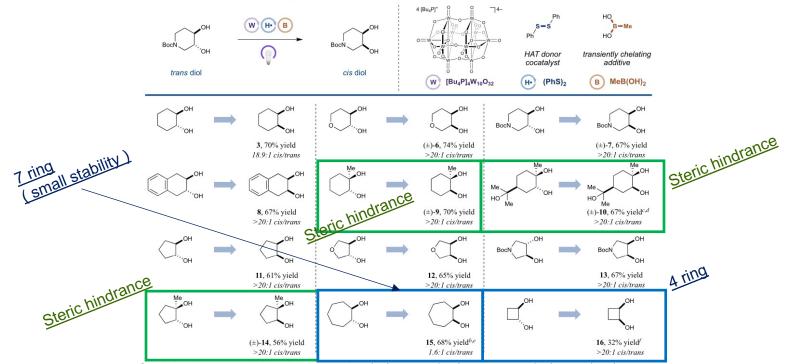
Entry	Deviation	<i>cis</i> diol	trans diol/esters	<i>cis</i> ester	hydroxyketone	
1	none	0%	4%	70%	4%	
2	no decatungstate	0%	100%	0%	0%	
3	no (PhS) ₂	0%	80%	13%	6%	
4	no MeB(OH) ₂	25%	47%	-	20%	
5	no light	0%	100%	0%	0%	


Supplementary Table S3. Convergence of diol isomers in boronic-acid-free epimerization

Christian, J. Oswood et al. J. Am. Chem. 2022, 144, 93-98.

Supplementary Table S4: Evaluation of boron chelators for the epimerization

0.1 mmol

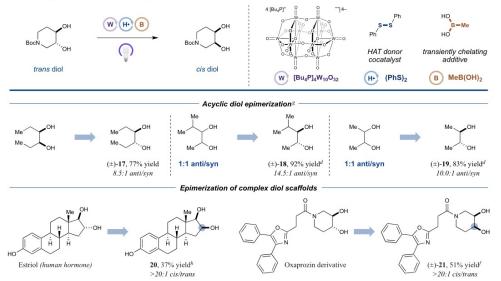

_	Entry	Boron	<i>cis</i> diol	trans diol/esters	<i>cis</i> ester	hydroxyketone	
	1	MeB(OH) ₂	0%	4%	70%	4%	Best
1	2	cPrB(OH) ₂	0%	7%	68%	10%	
	3	PhB(OH) ₂	0%	12%	64%	4%	
	4	(4- <i>t</i> Bu)C ₆ H ₄ B(OH) ₂	0%	15%	51%	7%	
	5	(4-MeO)C ₆ H ₄ B(OH) ₂	0%	9%	65%	10%	
	6	(2,4,6-Me)C ₆ H ₂ B(OH) ₂	0%	19%	49%	17%	
	7	(4-CF ₃)C ₆ H ₄ B(OH) ₂	0%	5%	61%	10%	
	8	(3,5-dCF ₃)C ₆ H ₃ B(OH) ₂	2 0%	23%	34%	14%	
	9	(MeBO) ₃ *	0%	10%	59%	8%	
	10	Ph₂BOH	0%	30%	33%	0%	
	11	B(OMe) ₃	0%	16%	53%	17%	
	12	B(OH) ₃	0%	22%	42%	21%	

S2 : $(PhS)_{2}$, $(Bu_4P)_4W_{10}O_{32}$, $MeB(OH)_2$, Light \rightarrow Necessary

S3 : Boronic acid \rightarrow trans - selectivity

Substrate Scope of trans- 1,2-Diols

Table 1. Scope Evaluation of trans-1,2-Diols^a

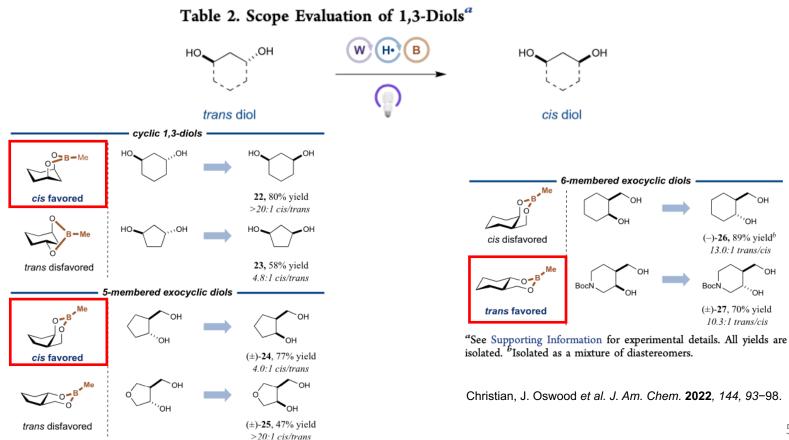


^aStandard conditions: 0.5 mmol of *trans* diol, 1.25 equiv of MeB(OH)₂, 0.5 mol % (PBu₄)₄W₁₀O₃₂, 50 mol % (PhS)₂, MeCN (0.1 M), 12–36 h of irradiation with a 365 nm LED plate in the Integrated Photoreactor at 20–30 °C then 1.5 equiv of pinanediol, 5 equiv of K₂CO₃, 4–24 h. See Supporting Information for full experimental details. All yields are isolated as single diastereomers unless noted otherwise. ^bIsolated as a mixture of diastereomers. ^c4 h of irradiation. ^dAnalytical yield from ¹H NMR vs mesitylene. ^e35 equiv of H₂O added. ^f1 mol % (PBu₄)₄W₁₀O₃₂, ^gAcyclic diol conditions: 0.1 mmol scale, 1% (PBu₄)₄W₁₀O₃₂, ^gAt i irradiation, isolated as a mixture of diastereomers from five combined reactions. ^h2 mol % (PBu₄)₄W₁₀O₃₂, ^gAt i MeCN/t-BuOH (0.02 M) as solvent.

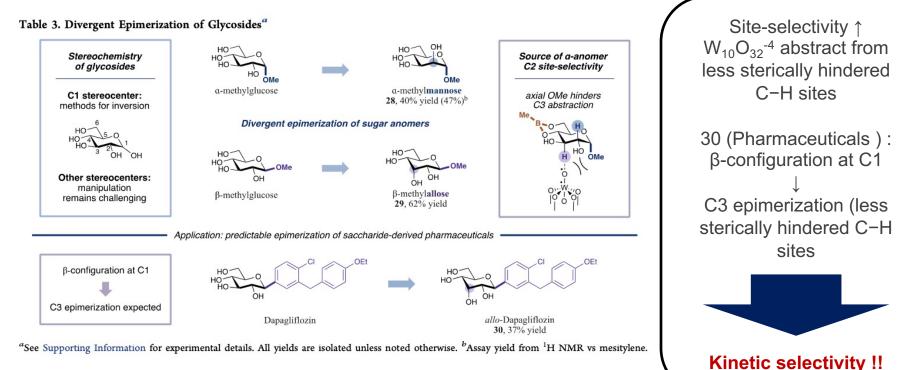
Christian, J. Oswood *et al. J. Am. Chem.* **2022**, *144*, *93–98*.

Substrate Scope of trans- 1,2-Diols

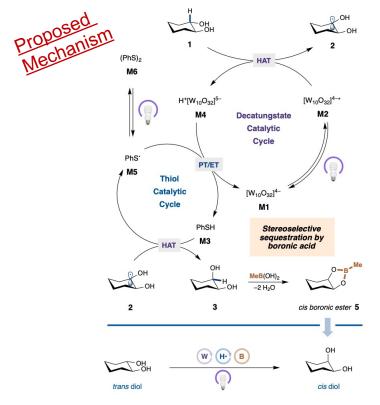
^aStandard conditions: 0.5 mmol of *trans* diol, 1.25 equiv of MeB(OH)₂, 0.5 mol % (PBu₄)₄W₁₀O₃, 50 mol % (PhS)₂, MeCN (0.1 M), 12–36 h of irradiation with a 365 nm LED plate in the Integrated Photoreactor at 20–30 °C then 1.5 equiv of pinanediol, 5 equiv of K₂CO₃, 4–24 h. See Supporting Information for full experimental details. All yields are isolated as single diastereomers unless noted otherwise. ^bIsolated as a mixture of diastereomers: ^c4 h of irradiation. ^dAnalytical yield from ¹H NMR vs mesitylene. ^c35 equiv of H₂O added. ^f1 mol % (PBu₄)₄W₁₀O₃₂. ^gAcyclic diol conditions: 0.1 mmol scale, 1% (PBu₄)₄W₁₀O₃₂ 24 h irradiation, isolated as a mixture of diastereomers from five combined reactions. ^b2 mol % (PBu₄)₄W₁₀O₃₂, 4:1 MeCN/t-BuOH (0.02 M) as solvent.


Acyclic diol : anti configuration is stable Synthetic utility

20 : Human hormone


21 :

diol- containing derivative of the pharmaceutical compound



Substrate Scope of Glycosides

Christian, J. Oswood et al. J. Am. Chem. 2022, 144, 93-98.

Short Summary

Supplementary Figure S6. Proposed reaction mechanism

Selective Isomerization via Transient Thermodynamic Control: Dynamic Epimerization of trans to cis Diols

✓ Epimerization of trans to cis Diols

- ✓ Transient thermodynamic control
- ✓ Methylboronic acid as a key chelating additive
- ✓ C2 site-selectivity

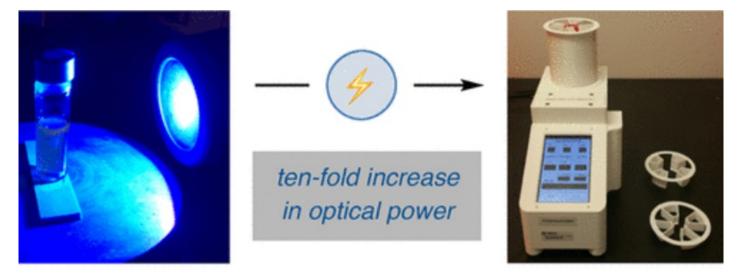
1. Introduction

- 2. Representative Researches
 - Epimerization via Kinetic Control
 - Epimerization via Thermodynamic Control
 - Epimerization via Transient Thermodynamic Control

3. Summary

Advantages of photoredox catalysis

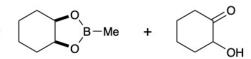
✓ No Prefunctionalization
✓ Mild conditions
✓ Minimally Protecting groups
✓ Selective reaction (site-, chemo-, diastereoselectivity)


Vision

✓ Carbohydrate synthesis without protecting groups
✓ New glycan synthesis

Thank you for your attention !!


Standardization and Acceleration of Photocatalytic Reactions


Chi "Chip" Le et al. ACS Cent Sci. 2017, 3, 6, 647–653.

Supplementary Table S6: Evaluation of solvents and cosolvents for the epimerization

0.1 mmol

Entry	(Co)solvent	<i>cis</i> diol	trans diol/esters	cis ester	hydroxyketone	
1	MeCN	0%	4%	70%	4%	
2	<i>t</i> BuCN	0%	45%	40%	7%	
3	PhCN	0%	3%	40%	3%	
4	acetone	0%	21%	62%	0%	
5	<i>t</i> BuOAc	0%	98%	2%	0%	
6	MeCN/tBuOH (9:1)	0%	93%	5%	3%	

Christian, J. Oswood et al. J. Am. Chem. 2022, 144, 93-98.

9	MeCN/tBuOAc (1:1)	0%	8%	61%	7%
10	MeCN/DCM (1:1)	0%	33%	44%	19%
11	MeCN/CHCl ₃ (1:1)	0%	78%	14%	7%
12	MeCN/PhCF ₃ (1:1)	0%	38%	39%	11%
13	$MeCN/o-C_6H_4F_2$ (1:1)	0%	31%	51%	11%
14	MeCN/p-C ₆ H ₄ F ₂ (1:1)	0%	89%	10%	4%
15	MeCN/HFIP (1:1)	0%	55%	15%	15%
16	MeCN/MeNO ₂ (1:1)	0%	12%	20%	7%