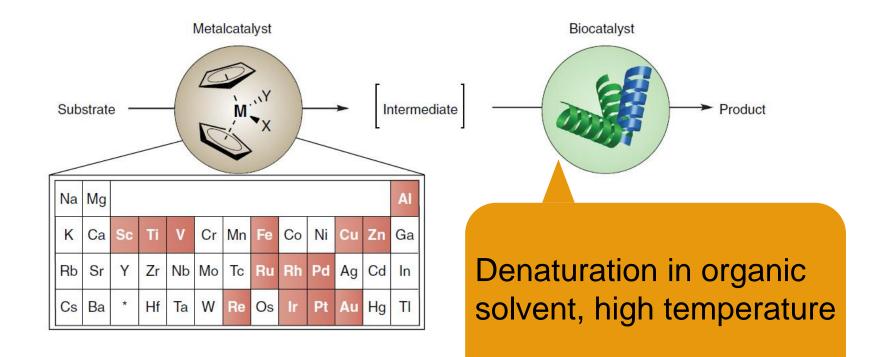
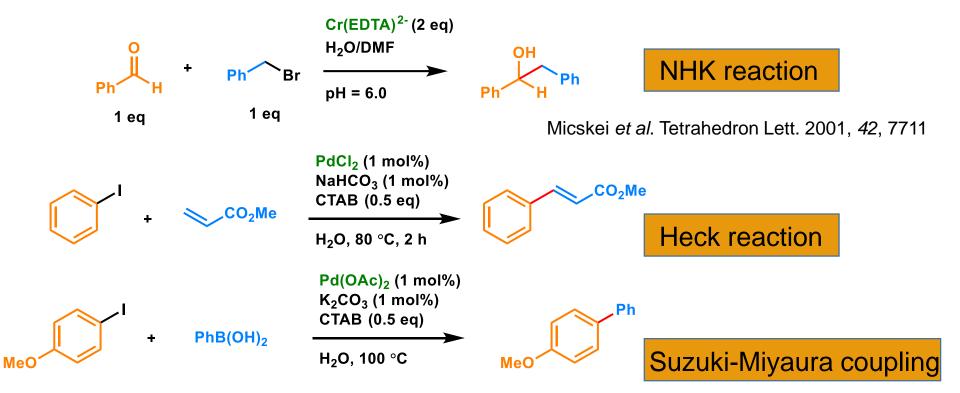

Achievement of Protein Thermostability by Amino Acid Substitution

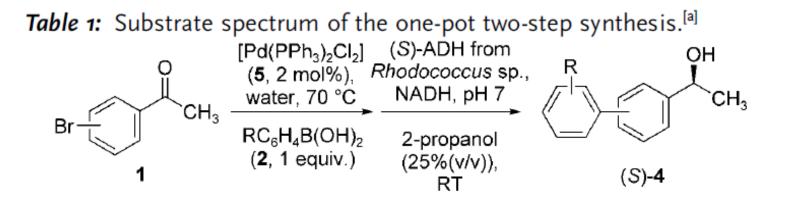
2018/6/30 M1 Majima Sohei


Contents of Today's seminar

- Introduction
- Study on hyperthermophilic enzymes to understand the origin of thermostability
- Acquiring thermostability by amino acid substitution
- Summary


New type of synthesis: combination of chemocatalyst and biocatalyst

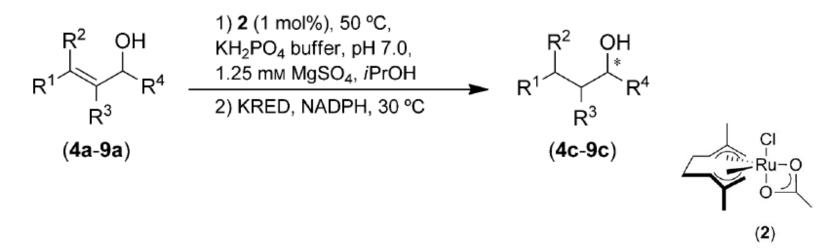
New type of synthesis: combination of chemocatalyst and biocatalyst


Organic reactions in aqueous media

 $*CTAB = C_{16}H_{32}NMe_{3}Br$, amphiphilic molecule

Bhattacharya *et al.* Tetrahedron Lett. 2005, *46*, 3557 ⁵

Examples of the reactions

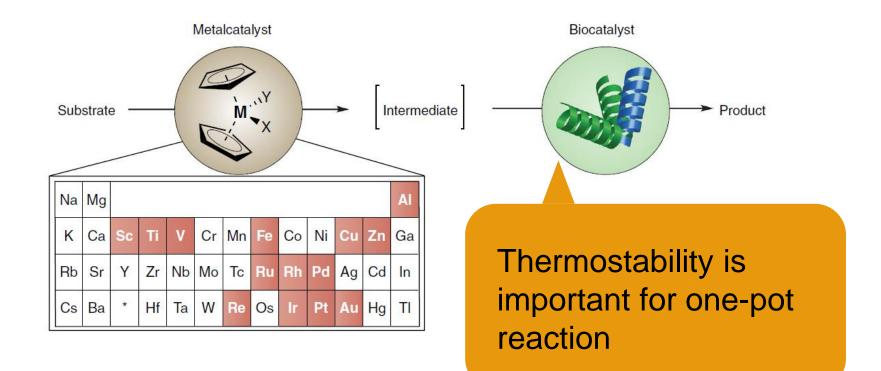


combination of Suzuki-Miyaura coupling and enzymatic stereoselective reduction of ketone

Cool down, pH adjustment is necessary

Burda *et al*, Angew. Chem. Int. Ed. 2008, *47*, 9551 6

Examples of the reactions

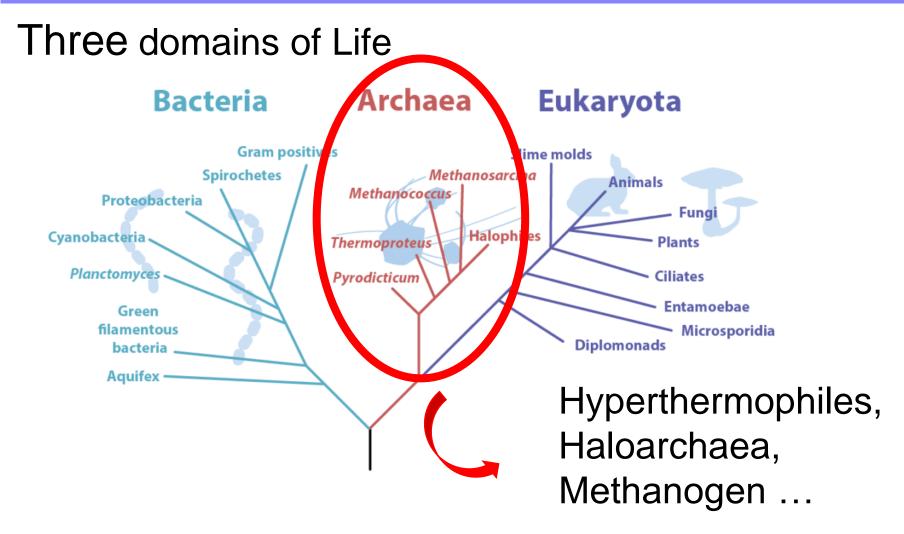


combination of Ru-catalyzed olefin isomerization and enzymatic stereoselective reduction of ketone.

Cool down is necessary

Sabin, *et al.* Angew. Chem. Int. Ed. 2016, *55*, 8691 ⁷

New type of synthesis: combination of chemocatalyst and biocatalyst



Contents of Today's seminar

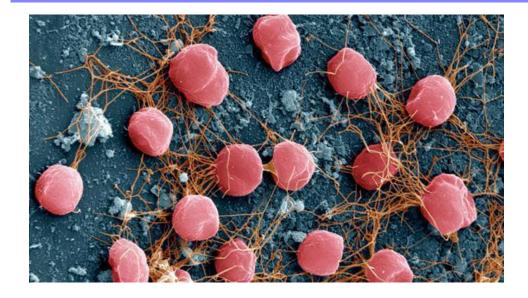
Introduction

- Study on hyperthermophilic enzymes to understand the origin of thermostability
- Acquiring thermostability by amino acid substitution
- Summary

What are Hyperthermophiles?

https://openoregonstate.pressbooks.pub/microbiology/chapter/archaea/

Woese et al, Proc. Natl. Acad. Sci. USA 87 (1990)


What are Hyperthemophiles?

Hyperthermophiles live under extremely hot conditions (>80 °C)

TABLE 1. Hyperthermophile diversity

Organism (references)	Growth conditions	Isolation/habitat	Metabolic properties	
Acidianus infernus (301)	90°C, pH 2.0, 0.2% NaCl	Hot water, mud, and marine sediments at hot springs in Italy, the Azores, and the United States	Facultative aerobe, obligate chemolithotrophic growth by S^0 oxidation (aerobic) or by S^0 reduction with H_2 (anaerobic)	6 ton
A. ambivalens (106, 384)	80°C, pH 2.5	Solfataric source, Leirhnukur fissure, Iceland	Facultative anaerobe, chemolithoautotroph; uses either $S^0 + O_2$ (yielding H_2SO_4) or $S^0 + H_2$ (yielding H_2S) as energy source.	A CONTRACTOR
Thermoproteales				
Thermoproteus tenax (33, 382)	88°C, pH 5.0	Solfataric fields, Iceland	Anaerobe, facultative chemolithoautotroph; heterotrophic growth on glucose, starch, glycogen, a few alcohols, a few organic acids, peptides, and formamide by S ⁰ respiration; H ₂ S required; produces acetate, isovalerate, and isobutyrate from peptone + S ⁰	
T. neutrophilus (104, 295)	85°C, pH 6.8	Hot spring, Iceland	Anaerobe, facultative autotroph; acetate >> succinate > propionate can be used as carbon sources	
T. uzoniensis (33)	90°C, pH 5.6	Uzon caldera, Kamchatka peninsula	Anaerobe; ferments peptides, producing acetate, isovalerate, and isobutyrate; S ⁰ stimulates growth.	Hydrothermal ve
Pyrobaculum islandicum (148)	100°C, pH 6.0	Geothermal power plant, Iceland	Anaerobe, facultative heterotroph (growth on peptide substrates with S^0 , $S_2O_3^{2^-}$ sulfite, L- cystine, or oxidized glutathione as electron acceptors; grows chemolithoautotrophically on CO_2 , $S^0 + H_2$, (produces H_2S)	in deep sea.
P. organotrophum (148)	102°C, pH 6.0	Solfataric fields, Iceland, Italy, and Azores	Anaerobe, obligate heterotroph; growth on peptide substrates with S ⁰ , 1-cystine, or oxidized glutathione as electron acceptor	
P. aerophilum ^b (355)	100°C, pH 7.0, 1.5% NaCl	Shallow marine boiling-water holes, Iischia, Italy		https://www.brh.co.jp/co mmunication/shinka/201 5/post_000022.html

Application of Hyperthemophiles

The DNA polymerase of this archaea is used for PCR.

Pyrococcus furiosus Optimum growth temperature: 100 °C

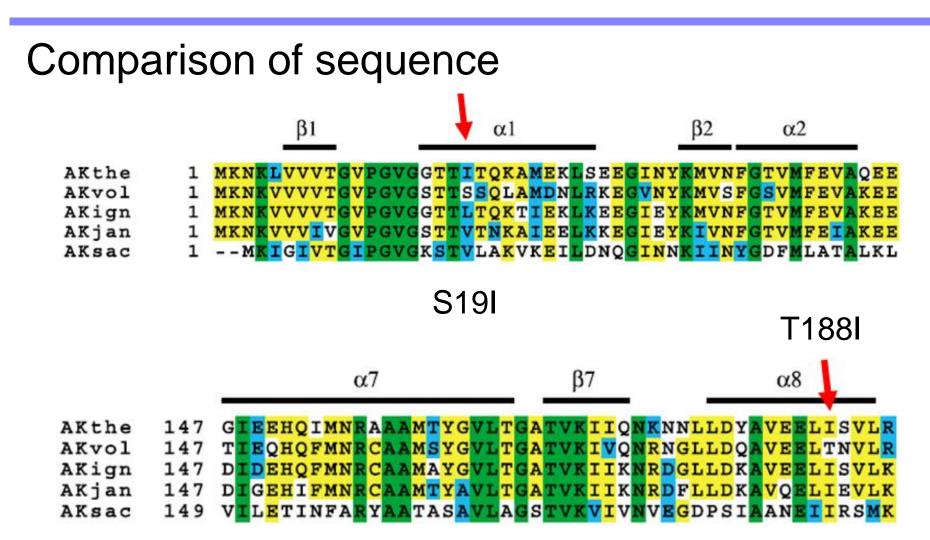
Why are these proteins stable to heat ???

https://alchetron.com/Pyrococcus-furiosus

https://rechtsmedizin.med.uni-rostock.de/arbeitsbereiche/forensische-genetik/

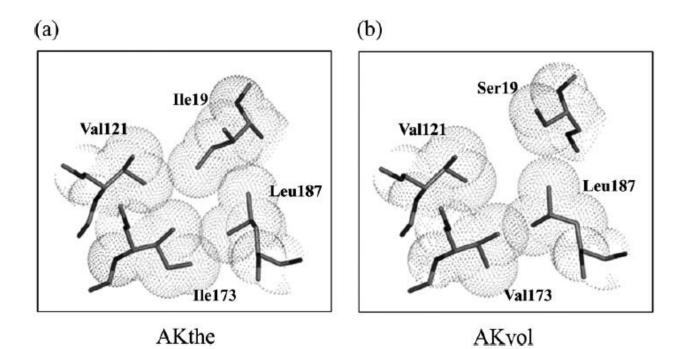
The origin of protein stability

thermophilic mesophilic Comparison of homolog proteins Stability comes from several factors such as; Hydrophobic interactions Solvent Accessible Surface Area Ion pairs Hydrogen bond Cation- π interaction Covalent bond and so on ...


Hydrophobic interactions

One of the most important factor Study on Adenylate Kinase(AK) AK_{the}, AK_{jan}: thermophilic AK_{vol}: mesophilic

	Construction	Temperature optimum	Tm	ΔTm
AKvol		37 °C	69 °C	0 °C
J36V		45 °C	73 °C	+4 °C
V160J		53 °C	74 °C	+5 °C
٢٨٢		60 °C	89 °C	+20 / 0 °C
AKjan		83 °C	103 °C	0 °C
AKthe		68 °C	86 °C	


amino acid sequence Philips et al, J. Mol. Biol. 2003, 330, 1087 14

Hydrophobic interactions

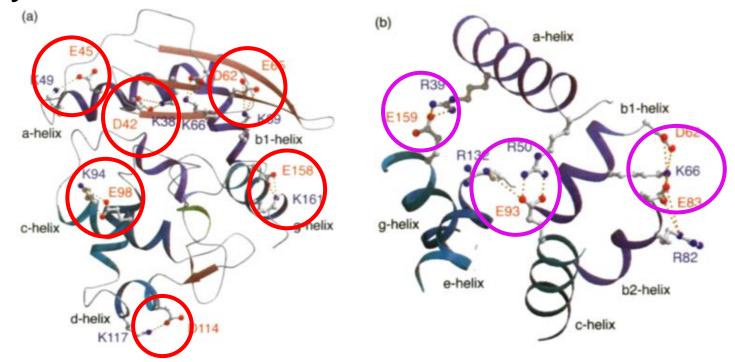
Philips et al, J. Mol. Biol. 2003, 330, 1087 ¹⁵

Hydrophobic interactions

N-terminal and C-terminal is stabilized by hydrophobic interaction.

Solvent Accessible Surface Area

Study on O⁶-methylguanidine-DNA methyltransferase

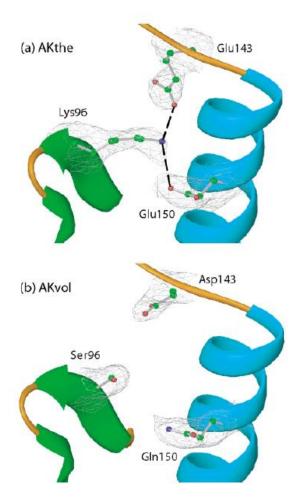

Table 1. Comparison of solvent-accessible surface areas

	Pk-MGMT	AdaC
Total solvent-accessible surface area (Å ²)	8160	8339
SASA of hydrophobic residues (Å ²) (% of total)	1935 (24)	2638 (32)
SASA of polar residues (Å ²) (% of total)	1797 (22)	2752 (33)
SASA of charged residues (Å ²) (% of total0	4428 (54)	2949 (35)
No. of residues in crystal structure	169	165
No. (% of total) of hydrophobic residues	75 (44.4)	78 (47.3)
No. (% of total) of polar residues	46 (27.2)	50 (30.3)
No. (% of total) of charged residues	48 (28.4)	37 (22.4)

Kai, *et al.* J. Mol. Biol. 1999, 292, 707 ¹⁷

Ion pairs

Study on O⁶-methylguanidine-DNA methyltransferase



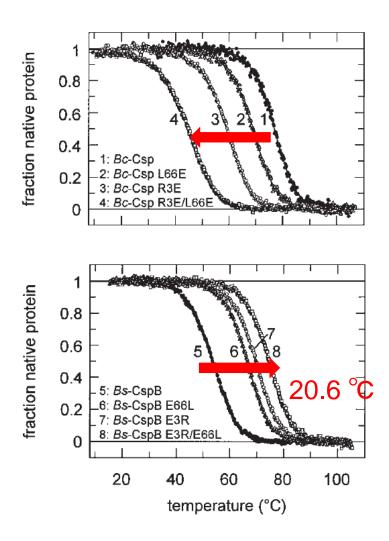
✓ Intrahelix/Interhelix ion pairs stabilize protein.

Kai, et al. J. Mol. Biol. 1999, 292, 707 18

Ion pairs

Study on adenylate kinases

Important for loop-stabilization


Philips et al, J. Mol. Biol. 2003, 330, 1087

Contents of Today's seminar

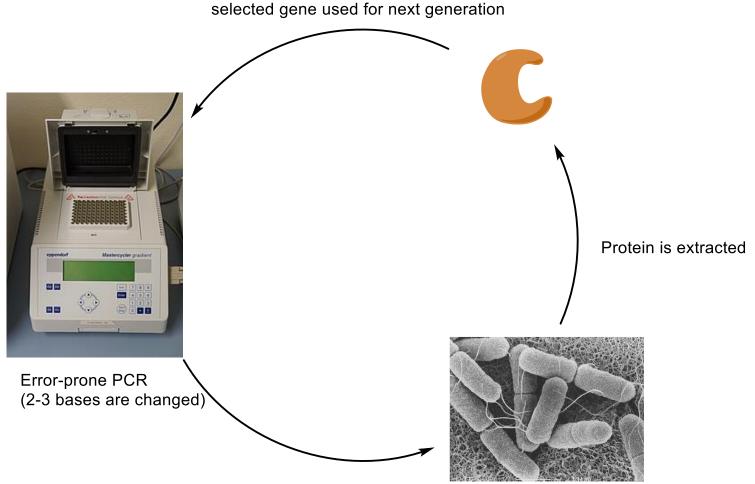
- Introduction
- Study on hyperthermophilic enzymes to understand the origin of thermostability
- Acquiring thermostability by amino acid substitution

• Summary

Improvement of stability by substitution

Bc-Csp: thermophilic *Bc*-CspB: mesophilic (Csp:cold shock protein)

Arg ... electrostatic interaction Leu ... decreases the polarity around this residue to favor intramolecular hydrogen bond


Improvement of stability by substitution

Two methods

Direct Evolution Method

Rational Design Method

Cause evolution by "artificial selection"

DNA is introduced to E. Coli

Study on subtilisin E (peptidase)

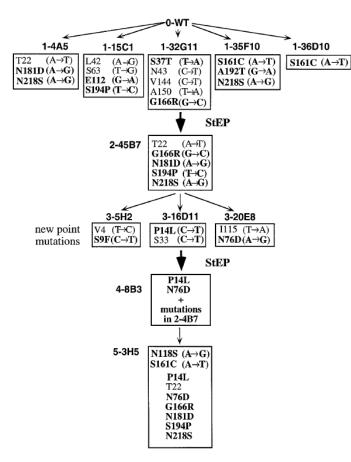
Table I. Thermostability of wild-type and evolved subtilisins E

Generation	Subtilisin E variant	dT ₅₀ (°C)	$t_{1/2}$ (min)
------------	----------------------	-----------------------	-----------------

65°C 75°C 80°C 83°C

0	Wild-type	0	4.9		
	4A5	8.2	44.2		
	15C1	7.6	35.5		
1	32G11	2.3	9.8		
	35F10	7.8	39.5		
	36D10	3.1	15.2		
2	45B5	13.1	250 8.7		
	5H2	14.0	345 12.0		
3	16D11	14.1	368 12.8		
	20E8	14.2	391 13.6		
4	8B3	15.2	<u> </u>	5.3	
5	3H5	17.2	1030	10.3	3.53

 $t_{1/2}$... time that 50% of activity is lost at a fixed temperature T_{50} ... temperature that 50% of activity is lost during a fixed time

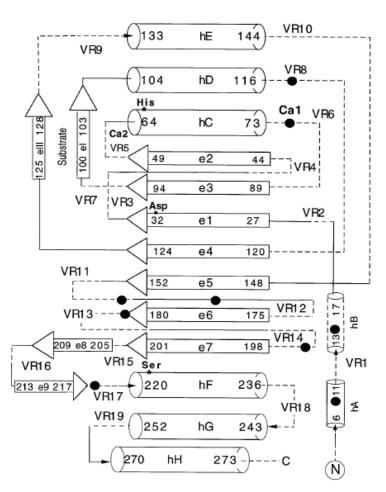

Zhao et al. Protein engineering. 1999, 12, 47 24

Study on subtilisin E (peptidase)

Generation	Subtilisin E variant	Specfic activity (U/mg)	kcat (s ⁻¹)	K _M (mM)	k _{cat} /K _M (s ⁻¹ mM ⁻¹)
0	Wild-type	20.0	25.4	0.385	66.0
	4A5	40.0	52.4	0.388	135
	15C1	21.0	29.4	0.384	76.6
1	32G11	44.2	30.6	0.158	193
	35F10	40.6	52.3	0.383	136
	36D10	19.8	25.6	0.385	66.5
2	45B7	69.9	55.6	0.152	366
	5H2	71.6	58.8	0.155	379
3	16D11	73.0	57.1	0.150	381
	20E8	72.2	56.2	0.151	372
4	8B3	72.5	56.5	0.153	369
4 5	3H5	71.0	55.8	0.151	373

Activity increased.

Study on subtilisin E (peptidase)



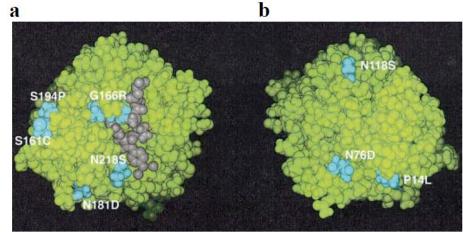

Analysis of mutation

Table III. Effects of amino acid substitutions on thermostability and activity (hydrolysis of s-AAPF-*p*NA) of subtilisin E

	Stability	Activity
89F	+	0
P14L	+	0
S37T	0	0
N76D	+	0
N118S	+	0
S161C	+	0
G166R	+	+
N181D	+	0
A192T	0	0
S194P	+	(+)
N218S	+	+

Fig. 4. Lineage and mutations in evolved thermostable subtilisin E variants. Base mutations are shown in parentheses.

Fig. 6. Space-filling model of 5-3H5 subtilisin E showing the eight thermostabilizing mutations (cyan) and peptide substrate s-AAPF-pNa (gray). (b) View after rotation of (a) by 180°.

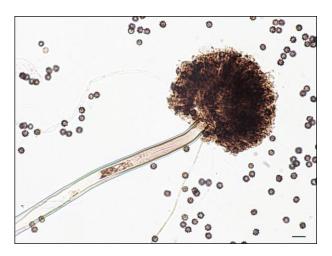
Mutation at loop position. Mutated amino acids exist on the surface.

Computer-based estimation of stability

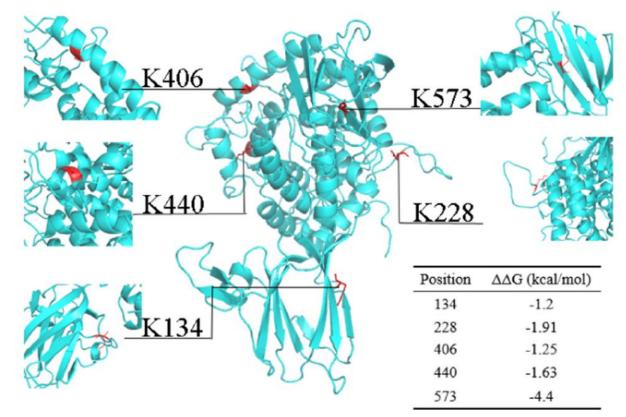
Efficient screening is achieved.

✓ Substitution candidates are estimated by calculation.

Study on L-rhamnosidase (r-Rha1) Identified from *Aspergillus niger* (コウジカビ)


Increasing thermostability by substituting Lys to Arg. (constructing new hydrogen bonds and cation- π interactions)

García *et al.* Archives of Biochemistry and Biophysics. 2012, 528, 118 Ni, *et al.* Int. J. Biol. Macromol. 2018, *112*, 14 ²⁹


Study on L-rhamnosidase (r-Rha1)

Software for 3D structure ... Modeller 9.15 for minimum energy ... Minimization protocol for site mutation ... Mutation Energy protocol

García *et al.* Archives of Biochemistry and Biophysics. 2012, 528, 118 Ni, *et al.* Int. J. Biol. Macromol. 2018, *112*, 14 ³⁰

The selected mutant positions as a result of calculation

Fig. 1. The selected mutant positions and $\Delta\Delta G$ values of 134, 228, 406, 440 and 573. The diagram showed a structural model based on comparative protein modeling using Modeller 9.15. The table in the lower right corner showed the values of the predicted Gibbs free energy changes ($\Delta\Delta G$) for the substitution of Lys with Arg on these positions.

Ni, et al. Int. J. Biol. Macromol. 2018, 112, 14

Stability and activity of single mutants

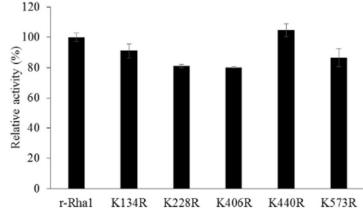


Fig. 2. The relative activities of five single mutants compared to the wild type r-Rha1.

Table 1

Enzymatic properties of r-Rha1 and single-site mutants.

Samples	T _{opt} (°C)	$\mathrm{pH}_{\mathrm{opt}}$	$t_{1/2}$		
			60 °C (h)	65 °C (min)	70 °C (min)
r-Rha1	60	4	8.0	39	4.0
K134R	60	4	<2.0	6.5	2.6
K228R	60	5	6.0	34	4.2
K406R	60	5	10	50	4.6
K440R	60	5	8.5	50	5.8
K573R	60	4	8.3	49	5.0

Ni, et al. Int. J. Biol. Macromol. 2018, 112, 14

Stability and activity of single/double mutants

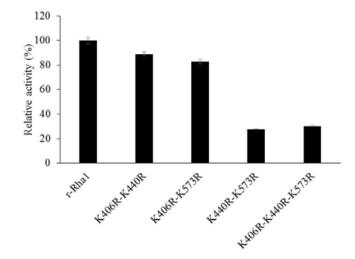


 Table 2

 Enzymatic properties of r-Rha1 and combinational mutants.

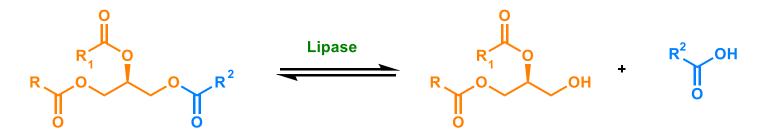
Samples	T _{opt} (°C)	pH_{opt}	t _{1/2}		
			60 °C (h)	65 °C (min)	70 °C (min)
r-Rha1	60	4	8.0	39	4.0
K406R-K440R	60	4	9.6	60	6.8
K406R-K573R	60	4	11	62	7.5

Fig. 3. The relative activities of the wild type r-Rha1 and the multiple-site mutant enzymes.

Table 3

Kinetic parameters of r-Rha1 and combinational mutants.

Enzyme	K_m (mM)	$k_{\rm cat}$ (s ⁻¹)	$k_{\rm cat}/K_m ({\rm s}^{-1}{\rm m}{\rm M}^{-1})$
Wild-type	10.779	$1.741 imes 10^4$	1.615×10^{3}
K406R-K440R	12.158	$1.415 imes 10^4$	1.164×10^{3}
K406R-K573R	23.083	$7.302 imes 10^3$	3.163×10^{2}


Analysis

For destabilized mutants Hydrophobic interactions may be hindered.

For K406R-K440R and K406R-K573R No extra intramolecular interactions, compared to single mutants. May be due to the compactness of the protein.

Study on Candida rugose lipases (CRL)

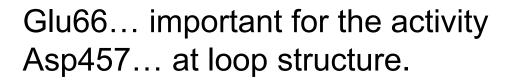
• Lipase can catalyze hydrolysis and esterification.

• Starts inactivation at 45 °C

Study on the protein stability

Three prediction algorithms were used.

- FoldX ... estimates Gibbs energy of protein folding from empirical data.
- Rosetta ddg_monomer ... predicts mutation-induced stability change.
- I-Mutant3.0 ... predicts stability of mutants from database


Study on the protein stability

Result of estimation

 Table 1
 Stable mutants identified by all three computational methods and correspondent estimated value

Mutants	FoldX ^a (kcal mol ⁻¹)	Rosetta ddg_monomer ^a (kcal mol ⁻¹)	I-Mutant 3.0 ^b (kcal mol ⁻¹)
Asp457Phe	-6.08	-12.41	0.09
Asp457Leu	-4.73	-4.71	0.47
Asp457Met	-4.95	-5.15	0.15
Asp457Tyr	-4.99	-11.96	0.07
Asp457Trp	-4.21	-10.03	0.18
Glu66Phe	-2.63	-3.07	0.32

^{*a*} Rosetta ddg_monomer returns negative value for stabilizing mutations. The greater the absolute value of negative numbers, the greater likelyhood to be more stable. ^{*b*} Positive values predicted by I-Mutant 3.0 indicate that induced mutations are more stable.

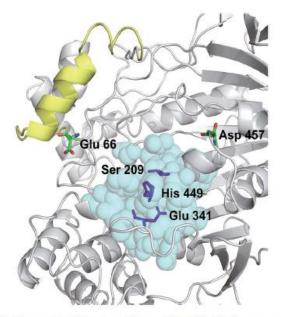
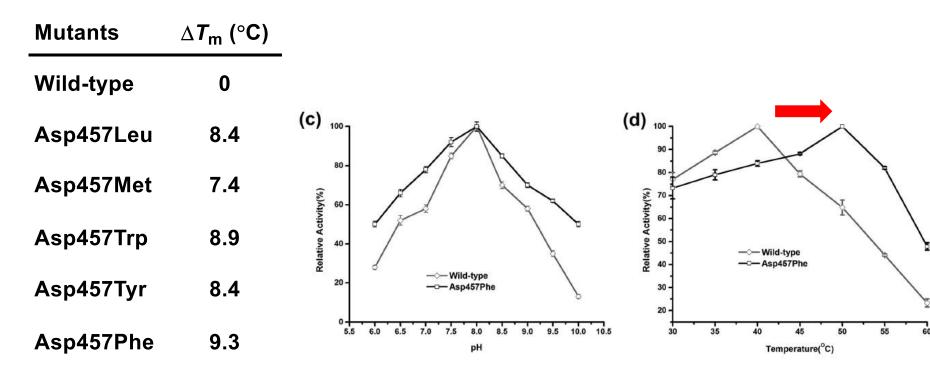



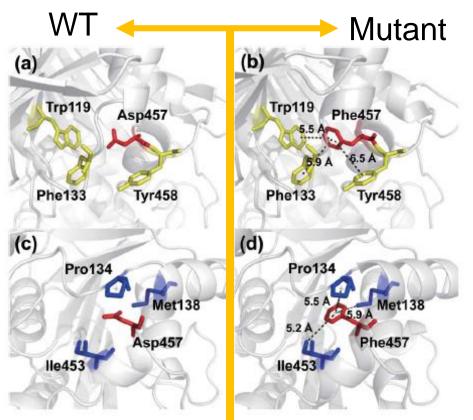
Fig. 1 Positions of mutated residues. Catalytic triad, magenta sticks; residues around 5 Å of the catalytic triad, cyan balls; lid structure, yellow. Positions of Glu66 and Asp457 are also shown.

Results

Asp457Phe was most effective
 Higher stability to acidic/alkaline condition
 Higher optimal temperature achieved

Xu, Yan, et al. RSC Adv. 2018, 8, 1948

Comparison of kinetic parameters


Enzyme	$T_{\rm opt}$ (°C)	$K_{\rm m}{}^a \left(\mu M\right)$	k_{cat}^{a} (s ⁻¹)	$k_{\rm cat}/K_{\rm m} \left({\rm s}^{-1} \mu {\rm M}^{-1}\right)$
WT	40	8.5 ± 0.8	4006 ± 127	473 ± 30
Asp457Phe	50	9.2 ± 0.7	4234 ± 151	461 ± 19

✓ Kinetic parameters (K_m , k_{cat} , k_{cat} / K_m) of the mutant was inferior to WT, but it's negligible.

✓ What is the origin of stability???

Analysis

Protein models were constructed by SWISS.

 ✓ aromatic interaction network and hydrophobic interaction

✓ Hydrophobic interaction increases pH tolerance, for it decreases SASA (solvent accessible surface area).

Summary

- The origin of protein thermostability is derived from several factors.
- Thermostability can be increased by the single or several substitution of amino acids.
- Thermostability can be increased by artificial amino acid substitution.

Appendix

Deamidation of proteins

A. Deamidation by the general acid-base mechanism

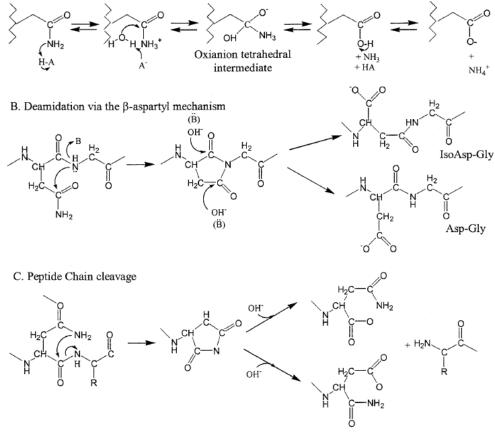


FIG. 3. Mechanisms of protein degradation involving Asn residues.

These reactions are prohibited so far as protein is folded correctly.

Hensel *et al.* Biochem. Soc. Symp. 1992, 58, 127

Zeikus et al. MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS. 2001, 65, 1