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Silylenes in Organic Synthesis
Silicon reagents have been developped in organic synthesis (protective group,

Mukaiyama aldol reaction, allylation, etc.), but highly reactive silicon reagents

have not been used for organic synthesis.
Among such kind of reagents, silylenes are silicon analogue of carbenes. Although

carbenes have been widely used in organic chemistry, application of silylenes in
organic synthesis is rare.
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1. Ag catalyzed silylnene transfer

Silylenes are known to react with olefins to form silatyclopropanes.
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1-1. Ag catalyzed silylene transfer

As stated above, silylenes are generated under harsh conditions, so

the substrate of silacyclopropanation has been limited.

Woerpel et. al. reported Ag catalyzed silylene transfer condition

which is milder than classical conditions and enable to use various alkenes
as substrate.

Cirakovic, J.; Driver, T. G.; Woerpel, K. A.
JACS 2002, 124, 9370 TABLE 1. Catalyst Screening for the Silylene Transfer

{(Eq I)
~+Bu tBu catalyst
Si. +aBrTY —— Si—tBu + O (1) entry {10 mol %) temp. “C tinw “etransfert !
t-Bu /Q
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Catalyst loading can be reduced T——3a0CTOTT; = n T
to as little as 1 mol %. “As determined by TH MMR spactroscopic analysis of the

reaction mixture. ¥ Reaction took place in n sealed NMR tube wirh
Cal): s o solvent,

Various substrates can torelate under this condition.
And the reaction proceeds stereospecifically and diastereoselectively.
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® Mechanistic study .
To clalify the mechanism of silver catalyzed silylene transfer reaction, they

| studies including kinetic studies. Driver, T. G.; Woerpel, K. A.
conducted severa g JACS 2004, 126, 9993
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Considering all these results, they proposed catalytic cycle shown in next page. 3/8




®Proposed catalylic cycle
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1-2. Reactions with corbonyl compounds

Although various silacyclopropanes are useful for C-C bond forming reaction,
isolation is diifictlt and-itreduces the utility.
Woerpel has developped one pot procedure from alkene.

Cirakovic, J.; Driver, T. G.; Woerpel, K. A. entry R MX,, R'R?CO dr “s yielg®
JOC 2004, 69, 4007 o
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interesting inversion of regioselectivity

“ 20 mol % of MX,, used. *Isolated yield over rwo steps after

using Zn salt or Cu salt purification by flash chromatography.
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purification by flash chromatography. . activation hlpe is dlffereni 4 /8




kN

Silylene transfer to o, p-unsaturated carbonyl compounds gave synthetically

useful compounds.
Calad, S. A.; Woerpel, K. A. JACS, 2005, 127, 2044

X 3 . .
O:S{\ Bu ’B”\S{Ct)-au By Silylsilver complex was attacked by
o , (v 90” - O-8""Y " more nucleophlic carbonyl to form
R)H/\Rz AgOCOCF, - R)\(\Rz ""R’S/\\Rz ) silacarbonyl ylide, then ring closure
R (1-5 mol%) R R’ @ occuredto give oxasilacyclopenten.
Sa-f 6 7a-f
; (7)
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o . . .
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PhCHO, i ° Y pr”oH FBU Mvukaiyama Aldol reaction in the presence
7a » fﬁfﬁ'ﬁy) :;o/ gfo/ of Lewis acid in one pod.
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Z o-Si Silylene transfer/ Ireland-Claisen rearr.
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(1 mot%) ~ | © o "R O) carbon center in high diastereoselectivity.
R
13a. R=Ph 14 16a. 96%, 97:3 dr
13b, R = Me 15b, 95%. one isomer

1-3. Synthesis of (+)-5-epi-Acetomycin

They afforded enantioselective synthesis of 5-epi-Acetomycin using their silylene

transfer/ Ireland-Claisen rearr. reaction.
retrosynthetic analysis
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Cu salt was optimal for this substrate.
(product inhibition was seen upon
scale-up of silver catalyzed reaction.)
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Silalactone was opened by
nucleophilic addition to silicon center.

5/8

Transition state of
Ireland-Claisen rearr.
(i-Pr group positioned
at equatorial)




Scheme 6. Synthesis of (+)-3-epi-Acctomycin . . .
) (+)->-ep Y Si group was used to intfroduce oxigen

o'f“é'igu\/r by Tamao oxidation.

4o 1-TPAP.NMO PhMe,C(OOH)

2. Melli, Me” XA\ _iPr KH n-BuNF This Tamao oxidation condition was

89% (2 steps) Me 98% based on their report.

20 The features of this condition are
strong base and applicability toward

OH OH 1 Il';g%z"“"o o 0 hindered silicon groups.

MeMec' NPT W Me/gio B-Keto acid was prone to
Me ii) Ac,0. 41% M oac decarboxilation at rt..
2 (15-opietomyen  (hundled quickly under 0°C)

2. Silylene complex
2-1. Preparation of silylene comlex
Base-stabilized silylene complexes were prepared by two groups in 1987.

HMPT,  CO o

. 2 Et;N; HMPT Y.

(1-BuO),SiCl; + [HFe(CO)yl —— "BUO“""SizF'e\ Zybill et al.

| ~CO
[~ a4 +
//CMe

Cp*(PMe;3),RuSiPh,(OTf) NaBPh MeCN Q N7 BPh,

372 + NaBP o .
2 e Megp RT3 ph Tiley et. al.

Me;P Ph

The.;e complexes show sp{charocfer at Si.
Three ieliable preparation methods of base-free silylene complex:
have been developped.

»" Anionic substituent abstraction 7+ BPhy

[ =
CH,Cl, \

* : __ci...SEt ; ;
Cp*(PMe;),RuSi(SEH),OTf + NaBPhy ————» MeaP"'/RU—&‘SEi high Lewis

-NaOTf Me,P qgldlty at
i silicon center
w" Coordination of a free silylene =\
t-Bu -N. N Silicon atom of
- t-Bu i t-Bu L
N hv, THF l this type of comlex
[ Si: 10°C OC'-MO:CO shows only weak
N + Mo(CO), ——> oc”* S, co Lewis acidity due to
-Bu Si g, . ”
n-Donation from twonitrogen and sterically t-Bu- N N’t Bu Us donation from
(bulky substituents stabilizes the free silylenes.) \—/ nitrogen.
w"o-Hydrogen migration
yerogen mig - -  MeB(CFs)
i-pr_ I-Pr i-pr 1°Pr i-Pr 7T
\I A\l \l H
[ /PiSi Mes + B(C6F5)3 —_— ,Pi\Si Mes| —» /Pt':Si :"M
i-Pr/T 4 “Mes i-P(/T d “Mes i p /T es
i-pr H i-pr H Cpr

Vacant coordiﬁJation site on platinum induce
a-hydrogen migration. 6/8



2-2. Novel hydrosilyiation

To achieve catalytic reaction using silylene complex, Si-H oxidative addition followed by

a hydrogen migration should occur directly from primary or secondary silanes.
H ﬁ

SleR 2 LM /
L,M—R —_— ™A
) -RH s, 5; i ﬁ

H-SIRR’
Me,pun MO y e Me,pun M
& --" Htoluene "f,, \
oxidative SiH,R', a-hydrogen fk,'qja R’ = alky!, <—r\l;e H R
addition migration aryl or H 2
Mork, B. V.; Tilley, T. D.

Angew. Chem., Int. Ed. 2003, 42, 357

ey reguctive
SHR' elimination . @ . .
L,M—H —_— [LnM—SiHH‘z ] This result showed that direct silylene
AN -RH complex formation from silanes is

R

) possible in the presence of a weak ligand.

N\

Tilley et. al. realized the catalytic hydrosilylation using silylene complex.
Glaser, P. V.; Tilley, T. D. JACS, 2003, 123, 13640

Silane Alkene Producs - Isolated Couditions:
Yield loadiug of 5.
cat. 1%0) solvent,
H alkene reacrion time
silane  + > product g Thexene PhSitHoHex (7} 057 CgHe
1.3 eq. 3 150
. ethene PhSi(H)2CHCHz 8} 4 “%. CHaClp
3h
B T+ - etheile - PhSiH)2CD2CD2H (91 = Z% CD2Clp
Et dy 3n N
¢ E cvclohese PhSi(H)2Cy (10: kN 2% CgHg
t Q Okt ne 180
cat= . . - Stovene PRSKH)2CH2CHoPh o3 M, CpHa
i-Pr P"R‘.’:Si"'Ph B(C4Fs)s ‘ (11) 111
3T e ‘H B i-metavl- {zitrans-1-{PhSIHY - i it CHaClp
J evelonese 2-Me(CsH i) 112) 18n
ae
- Hexs: I-hexene Hex2SiHy (14) 5 1% CgHg
Hz 180

® Features of this hydrosilylation
¢ anti-Markovnikov selectivity
? only primaly silanes can participate in this reaction
? cis-stereochemistry of addmon
? C,D4 gave only Ph_ L;—D as detectable product (no H/D shuffling)
H
® Mechanistic considerarion
¢ [2=+2n] cycloaddition of the Ru=Si with alkene

= h M

\ “oH \ H

i- Pfs}Ru--Su’ i-PrsP Ru--Sl’ !:> Observed anti-Markovnikov
HOH HZH lectivit n't be explained.
.ﬂ' pr \mmmi selectivity ca exp
R
disfavored favored
() Chalk-Harrod type mechanism
Czta 5 M>// 3 HSRg It can't explain two observation
/S"ﬂa Why secondary silanes can't participate?
" ® @/ / H/D shuffling should be observed by following
asw:k /s"*3 this mechanism.

AN M@ should be reversible 7/ 8




(O Hydroboration type mechanism (their proposed mechanism)

’

=

J

It can explain all the observation.
anti-Markovnikov selectivity
—> large substituents away from
ruthenium center

primary silane selectivity
—> required for formation of a
hydrogen-substituted silylene
cis addition
—> concerted hydrosilylation

no H/D shuffling
— imeversible $i-H addition step

DFT calculation showed that the highest energy transition state of this process is

Heo H H H R
[Rul=Si_ <— [ry}-§. »
H P/h-> H “Ph (
e :
[Ru]-Si. o
H YPh H.R {H
PhS|H3(\1\(\ H,[ vl ®I"Ph
[Ru}- Sa i He . R</
H “Ph [Ru]:Siy,
&J, H Ph
.
more than 8 kcal/mol lower than that of Chalk-Harrod mechanism.
Appendix

Furstner, A.: Krause, H.; Lehmann, C. W.

Cem. Commun 2001, 2372
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Stable free silylene has the ability to be a ligand of cross coupling recction like

NHC ligand.

To make silylene reagent more powerful tool in organic synthesis...

Expand the application as ligand for other cross coupling reactions.

C-H insertion

R

L

R

OH

Further improvement of Tamao oxidation or new conversion method of
siicon moiety should be required for efficient transformation in organic synthesis.
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