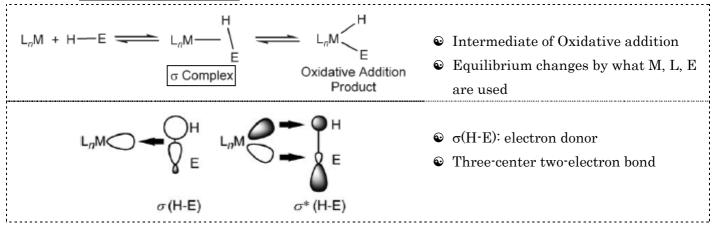
Metal / σ-bond interactions

- toward an understanding of C-H activation -

Contents


1 σ -complex (η^2 -R-H bonds)	2
1.1 Formation of σ-complex	2
1.2 Structure and Dynamics of σ-Complex $(MH_m(\eta^2-E-H)_n)$ $(n=m\neq 0)$	2
1.2.1 E = H	3
1.2.2 E = Si	5
1.2.3 E = C	5
2 σ-CAM (σ-bond Complex Assisted Metathesis)	6
2.1 Non-classical metathesis mechanism	6
2.2 Catalytic cycle via σ-CAM	
2.2.1 Borylation	7
2.2.2 Hydrogenation, HydroSilylation	7
2.3 σ-CAM for the E-E bonds (E≠H)	
3 Various Types of Mechanism ~ or more simple mechanism? ~	8
3.1 C-H hand activation mechanisms	

Main source

Robin N. Perutz and Sylviane Sabo-Etienne Angew. Chem. Int. Ed. 2007, 46, 2578

1 σ -complex (η^2 -R-H bonds)

1.1 Formation of σ-complex

Characterized by X-ray diffraction and NMR:

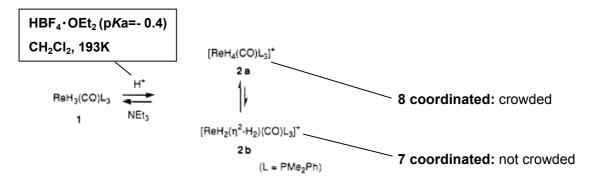
E = H, Si, B, C (etc.?)

1.2 Structure and Dynamics of σ -Complex (MH_m(η^2 -E-H)_n) (n=m \neq 0)

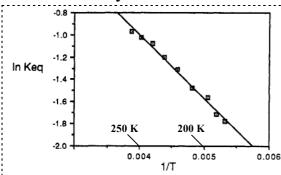
1.2.1 E = H

This type of complex is the most studied family.

 \odot First observation of η^2 -H₂ complex (X-ray diffraction, Neutron diffraction): W(CO)₃(PⁱPr₃)₂(η^2 -H₂)


(Kubas. G. J. et. al JACS 1984, 106, 451)

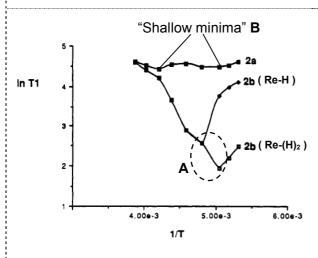
• First observation of the equilibrium between (η^2-H_2) and (η^1-H)


(Xiao-Liang Luo et. al, JACS 1990, 112, 6912)

 (η^2-H_2) ligand in maltihydride complex is not so stable

→ Forcible introduction of hydrogen into complex using strong acid

¹H NMR analysis


 $K_{\text{eq}} = [2\mathbf{b}]/[2\mathbf{a}]$: Determined by the ¹H NMR integration

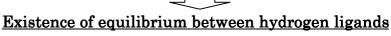
 $\Delta H = 1.1 \pm 0.2 \text{ kcal mol}^{-1}$

→ 2b is slightly less stable than 2a

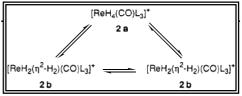
 $\Delta S = 2.4 \pm 0.8 \text{ cal mol}^{-1} \text{ K}^{-1}$

 \rightarrow Result of the rotation of the $\eta^2\text{-}H_2$ ligand in 2b (in $CH_2Cl_2)$

Ti(msec): longitudinal relaxation time (縦緩和時間)


(T_1 value mainly depends on temperature and atom density around the target atom)

Phenomena A


 \rightarrow Due to the exchange of η^2 -H₂ and (H)₂ ligands of **2b**

Phenomena B

→ Due to the exchange between 2a and 2b

• How is T_1 observed?: *JACS* **1988**, *110*, 4126)

Search for detail exchange mechanism...

Gibbs free energy of activation

$$\begin{cases} \mathbf{2b} \to \mathbf{2b} & \text{Degenerate} & \Delta G_1^{\ddagger}(213K) = 9.9 \pm 0.2 \text{ kcal mol}^{-1} \\ \mathbf{2b} \to \mathbf{2a} & \text{Oxidative addition} & \Delta G_2^{\ddagger}(213K) = 11.6 \pm 0.4 \text{ kcal mol}^{-1} \end{cases}$$

If
$$2\mathbf{b} \to 2\mathbf{b}$$
 include $2\mathbf{b} \to 2\mathbf{a} \to 2\mathbf{b}$ process: $\Delta G_1^{\ \ddagger} \geq \Delta G_2^{\ \ddagger}$

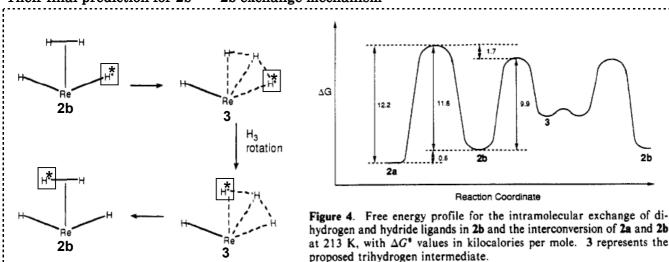
But this time:

$$\Delta G_1^{\ \ddagger} < \Delta G_2^{\ \ddagger}$$

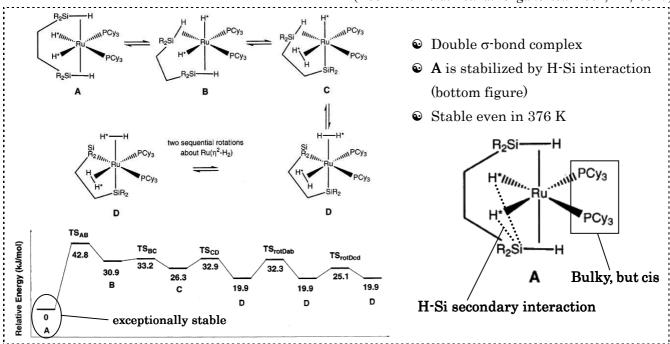
 $2b \rightarrow 2b$ is not via OA/RE route.

Activation enthalpy and activation entropy of 2b → 2a

$$\Delta H_2^{\ddagger} = 1.0 \pm 0.4 \text{ kcal mol}^{-1}, \qquad \Delta S_2^{\ddagger} = -42 \pm 2 \text{ cal mol}^{-1} \text{ K}^{-1}$$
 (1)

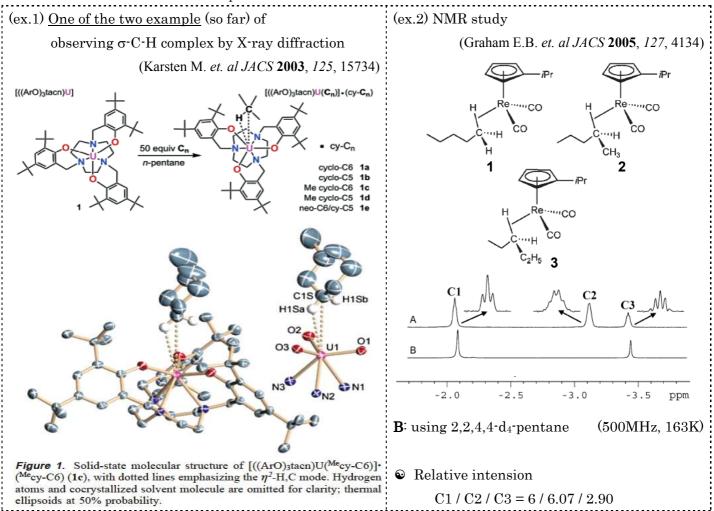

cf.) trans-IrX(CO)(PPh)₂ + H₂ trans-IrXH₂(CO)(PPh)₂ (X = halogen)
$$\Delta H^{\ddagger} = 10 - 12 \text{ kcal mol}^{-1}, \qquad \Delta S^{\ddagger} = -20to - 24 \text{ cal mol}^{-1} \text{ K}^{-1}$$
 (2) (William H. Saunders, Jr. *et. al JACS* **1985**, *107*, 8049)

In spite of <u>intramolecular</u> mechanism of (1),


 ΔS^{\dagger} of (1) is smaller than that of (2) which is <u>intermolecular</u> mechanism.

• ...But in this paper, no more direct observation could not achieved.

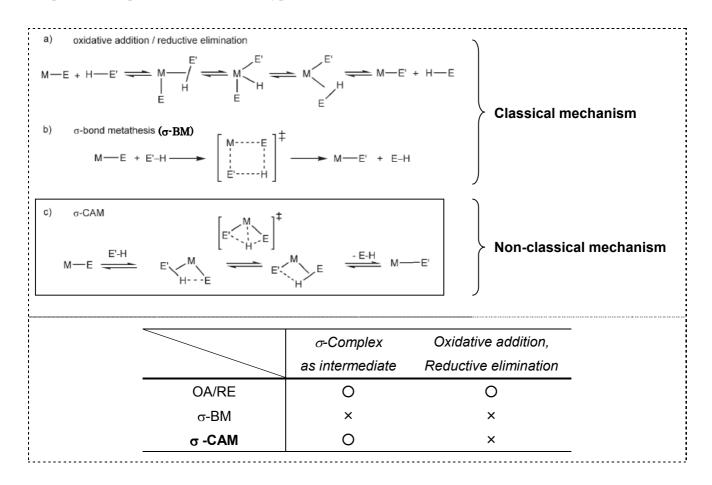
Their final prediction for 2b → 2b exchange mechanism



- © Compound 3 cannot be detected at least NMR because of this middle instability.
- This is also the first example of having described <u>non-classic</u> σ metathesis mechanism

1.2.3 E = C

Direct observation of $\sigma\text{-C-H}$ complex is rare so far.

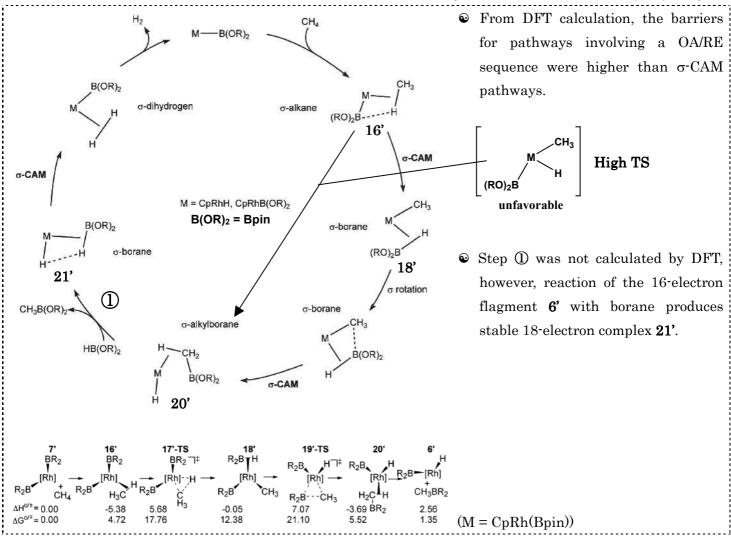


It is so difficult to observe σ -C-H bonds unless using finely tuned complex, for example, using low-valent, coordinatively unsaturated, tris-aryl oxide uranium(III) complex (ex.1).

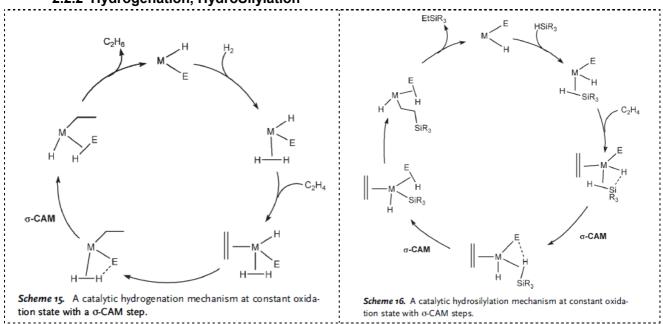
2 <u>σ-CAM (σ-bond Complex Assisted Metathesis)</u>

2.1 Non-classical metathesis mechanism

Some of the examples shown in the section 1 are about <u>non-classical</u> behavior of σ -complex. In order to explain these phenomena, another type of metathesis mechanism was invented.



2.2 Catalytic cycle via σ-CAM


Following examples are estimated by experimental evidences and DFT calculation.

2.2.1 Borylation

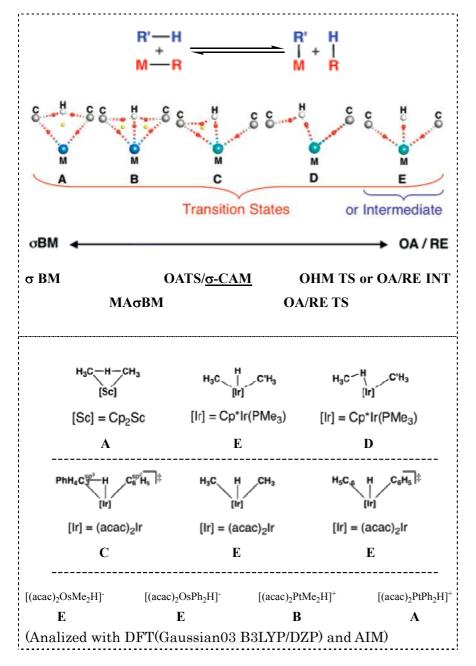
(Michael B. H. et. al JACS 2005, 127, 2538)

2.2.2 Hydrogenation, HydroSilylation

2.3 σ-CAM for the E-E bonds (E#H)

$$M-E+E'-E'$$
 $M-E'+E-E'$
 $M-E'+E'$
 $M-E'+E$

Scheme 19. A σ -CAM sequence for the reaction of E-E bonds (E \neq H).


- © Ultimate version of σ-CAM.
- agostic C-C complex is known, but
 σ-C-C complexes are not known

3 Various Types of Mechanism ~ or more simple mechanism? ~

3.1 <u>C-H bond activation mechanisms</u>

(Michael B. H. et. al JACS 2007, 129, 12068)

Recently, several groups have suggested alternative mechanisms that appear to be in between OA/RE and σ -BM. Michael *et al.* tried to unify this chaotic situation.

ΜΑσΒΜ

metal-assisted σ -bond metathesis

OATS

oxidatively added transition state

σ-CAM

 σ -bond complex assisted metathesis

OHM

oxidative hydrogen migration

OA/RE

oxidative addition/ reductive elimination

TS: transition state

INT: intermediate