Phosphorus-Fluoride Exchange (PFEx)

~Another good reaction for click chemistry~

2022/11/10(Thr) M2 Tomoyuki Fukuta

Table of contents

- 1. Introduction : Application using other P(V) reagents
- 2. K. B. Sharpless suggests the utility of "PFEx"
- 3. Biological application of P(V)-F derivatives
- 4. Summary & Perspective

Introducing Phosphorus group provides divergent features.

Phosphate

- ✓ Catalytic single step phosphorylation
- ✓ Ser/Thr kinase-like chemoselectivity (no Tyr phosphorylation)
- ✓ High functional group-tolerance
- ✓ New phosphorylating active species

Kanai, M et. al. ACS Cent. Sci. 2020, 6, 2, 283-292

Thiophosphate (P-S bond)

Baran, P. et. Al .Nat. Chem. 2021, 12, 2760.

Phosphinate (P-C bond)

Org. Biomol. Chem., 2013, 11, 119-129

Phosphoamidate (P-N bond)

P(V) reagents are desirable for complex substates

Traditional P(V) reagents

Recent advances of P(V) reagents for bioconjugation

PSI reagents

See Fujiyoshi-san's Lit 2021.7.29 in detail

Baran, P. et. al. J. Am. Chem. Soc. 2020, 142, 41, 17236-17242

Chlorothiophosphate

High His-selectivity in protein substrates

K.B. Sharpless suggests the utility of "PFEx".

K.B. Sharpless

Phosphorus(V) Fluoride Exchange (PFEx): Multidimensional Click Chemistry from Phosphorus(V) Connective Hubs

Shoujun Sun Cold Spring Harbor Laboratory, Christopher J. Smedley La Trobe University,

Joshua A. Homer © Cold Spring Harbor Laboratory, Qing-Qing Cheng Scripps Research Institute,

K. Barry Sharpless Scripps Research Institute, John E. Moses Cold Spring Harbor Laboratory

Abstract

We report catalytic Phosphorus Fluoride Exchange (PFEx) as the latest advance in connective click-reaction technology. Emulating Nature, PFEx reaches into the biological world and creates stable tetrahedral P(V)- connections through efficient phosphorus-fluoride exchange chemistry. We showcase PFEx through the coupling of P(V)-F hubs with aryl alcohols, alkyl alcohols, and amines, delivering stable, multidimensional P(V)-O and P(V)- N connected products. The reactivity profile of P-F hubs surpasses that of their P-Cl counterparts, both in reaction performance, rate, and outcome, qualifying PFEx as a true click reaction. The rate of PFEx transformations is significantly enhanced by Lewis amine base catalysis [e.g., 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD)]. When using substrates comprising multiple P-F bonds, selective, serial exchange reactions are realized through judicious catalyst selection. Synthesis of the final products (in up to 4 steps) allows controlled projections to be deliberately installed along 3 of the 4 tetrahedral axes departing the P(V) central hub. The unique reactivity window of PFEx allows for selective, modular click-reactions to be performed in series (e.g., SuFEx-PFEx-CuAAC) to rapidly generate complex multidimensional molecules, rendering PFEX a perfect addition to the click chemistry toolbox.

Comparison between P(V)-F and P(V)-Cl

less stable

stable

Good leaving group (CI)

Poor leaving ability (F)

React w/o activation

Activation is required (F- or imidazole)

Activation by CsF

Application of P(V)-F was limited.

Feature of P(V)-F compounds

Comparison of Stability/Reactivity: F vs Cl

P(V)-F bond is relatively stable, which means low reactivity.

Synthesis

Synthesis of P(V)-F compound is well-investigated, but the application is limited.

Selectivity of P(V)-Cl and P(V)-F; O or N?

TABLE II

Product yields from the phosphylation of ethanolamine

	,	0 ↑ X—P	_7		% yield of product			
Dhamhalating	X—r—Z Y					magnetic nance		
Phosphylating agent	X	Y	Z	% reaction*	N—P	O—P	N—P	O-P
Sarin DFP Chlorosarin DCIP Tabun TEPP	i-PrO i-PrO i-PrO i-PrO EtO EtO	CH ₃ i-PrO CH ₃ i-PrO NMe ₂ EtO	F F Cl Cl CN OP(O)(OEt) ₂	100 47 100 100 95 88	0 0 84 92 72 66	92 47 8 4 23 †	0 0 70 65 70 65	71 26 4 0 15

^{*}Based on the residual phosphylating agent, as determined by n.m.r. †O-Phosphorylation cannot be excluded because of interference from diethyl phosphoric acid.

O-selective

Predominant reaction w/ N

$$X = CI, OP(O)RR', CN, F$$

 π interaction between p(Y)-d(P)

= Electrophilicity of P-center 1 < 2 < 3

How selectivity changes?

X = CI, OP(O)RR', CN, F

 π interaction between p(Y)-d(P)

= Electrophilicity of P-center 1 < 2 < 3

How selectivity changes?

TABLE 4 Variation in selectivity with phosphylating agent (RR'P(O)X)

		Company of the second s	Selectivity (In yield P—N yield P—O)				
R	R'	Sum of Hammett σ values of R and R'	X = CI	OP(O)RR'	CN	F	
1 Me ₂ N	Me ₂ N	-1.2	1.8	_			
2 Me ₂ N 3 PriO	EtO PriO	-0.85 -0.57	3.13	2.68	1.15 -1.27	< -4	
PriO	Me	-0.46	2.35	2.37	< -4	< -4	
Me	Me	-0.34	1.39	0.02	_	_	
	P	-X Bond Energy (kcal) (21)	80	96	80.5*	120	

*Value for P-CH₃.

As for P(V)-Cl

More active P produced more P-N product.

As for the leaving group (X)

Poorer leaving ability, more P-O product.

S_N2 reaction

Good leaving ability

More nucleophilic

Follow the equation

$$v = k[Nu][PCl]$$

S_N2 reaction

Good leaving ability

RO
$$^{CI}_{P=0}$$
Me $^{H_2N}_{OH}$

More nucleophilic

Follow the equation

$$v = k[Nu][PCl]$$

Si(VI)-F 136 kcal/mol

S_N2 reaction

Good leaving ability

RO
$$P=0$$
Me H_2N
OH

More nucleophilic

Follow the equation

$$v = k[Nu][PCl]$$

Short summary

P(V)-F is stable reagent

traditional activation method

J. Am. Chem. Soc. **1984**, 106, 4, 1060-1065

PFEx

Activation by Silicon

P(V)-F 123 kcal/mol P(V)-O ~100 kcal/mol Si(VI)-F 136 kcal/mol

Table of contents

- 1. Introduction : Application using other P(V) reagents
- 2. K. B. Sharpless suggests the utility of "PFEx"
- 3. Biological application of P(V)-F derivatives
- 4. Summary & Perspective

Initial trial of "PFEx" drawing insight from classical SuFEx

SuFEx

- ✓ Developed by K.B. Sharpless *et al* in 2014
- ✓ Si mediates very fast reactions of S-F as electrophiles.

Sharpless, K. B. et. al. Angew. Chem. Int. Ed. 2014,53, 9430 – 9448

Initial trial of "PFEx" drawing insight from classical SuFEx

SuFEx

PFEx (This work)

PFEx successfully occurred in good yields using various Ar-Si ester.

- ✓ Developed by K.B. Sharpless *et al* in 2014
- ✓ Si mediates very fast reactions of S-F as electrophiles.

Sharpless, K. B. et. al. Angew. Chem. Int. Ed. 2014,53, 9430 – 9448

Accelerated SuFEx click chemistry

Accelerated SuFEx (ASCC); external Si additives

Moses, et. al. Angew. Chem. Int. Ed. 2022, 1, e202112375.

In situ generation of Silyl ester

Accelerated SuFEx click chemistry

Accelerated SuFEx (ASCC); external Si additives

Moses, et. al. Angew. Chem. Int. Ed. 2022, 1, e202112375.

In situ generation of Silyl ester

Employed ASCC conditions to PFEx

Optimization for PFEx

Base screening

Entry	Catalyst	pK_aH (MeCN)	Time (h)	Conversion (%) ^a
1	P₄- ^t Bu	42.7	1	>99
2	P ₂ - ^t Bu	33.5	1.5	>99
3	TBD	26.2	5	>99
4	BTMG	~26	14	91
5	DBU	24.3	14	80
6	P₁- ^t Bu	26.9	14	10
7	TMG	23.7	14	9
8	DPG	18.8	14	Trace
9	BEMP	27.5	14	66
10	MTBD	25.0	14	64
11	DMAP	18.0	14	0
12 ^b	TBD	26.2	2	>99
13°	TBD	26.2	7	16
14 ^d	TBD	26.2	7	20

Stronger base is necessary for deprotonation of phenol.

Polyfluorinated organophosphorus compounds

Activation by CsF

Polyfluorinated organophosphorus compounds

With substrates comprising multiple P-F bonds an opportunity for diversity orientated clicking is presented.

The orthogonal reactivity between PFEx and other click reactions

The striking difference in reactivity between P-F and S-F clickable hubs creates a window of opportunity for orthogonal connective chemistry.

Reason?

bond	$\Delta H_{\rm bond}$ (kJ/mol)
P-H	322
P-P	201
P-F	490.
P-Cl	326
P-Br	264

bond	$\Delta H_{\rm bond}$ (kJ/mol)
S-H	347
S-S	266
S=S	425
S-F	327
S-Cl	253
S-Br	218

bond	$\Delta H_{\rm bond}$ (kJ/mol)
Si-H	393
Si-Si	340.
Si-O	452
Si-F	565
Si-Cl	381
Si-Br	310.

Short summary

- ✓ P(V)-F derivatives are stable but once activated, show sharp reactivity.
- ✓ PFEx is orthogonal over other click reactions.

Angew. Chem. Int. Ed. 2022, 1, e202112375.

Table of contents

- 1. Introduction : Application using other P(V) reagents
- 2. K. B. Sharpless suggests the utility of "PFEx"
- 3. Biological application of P(V)-F derivatives
- 4. Summary & Perspective

Sarin

P(V)-F shows activated serine-selective reactivity.

Mechanism of action; Irreversible phosphonylation of Ser

Serine at Catalytic triad

.... A set of three coordinated amino acids in the active site of enzymes

.... Found in Serine hydrolases (SHs)

Ex) Serine esterase Serine protease Phospholipase

https://www.chegg.com/homework-help/questions-and-answers/amino-acid-serine-form-catalytic-triad-amino-acid-cysteine-form-catalytic-dyad-q18222430

Activity-based protein profiling (ABPP) for SHs

No reaction w/ denatured proteins

Identification of SH activity enzyme from rat tissues

Cravatt, B. F. et. al. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 14694.

Phospholipase-selective probe

Reactivity of 1 and 2 with poorly-investigated lipase

Good features for identification of CDTA

https://www.mfc.co.jp/product/kouso/phospholipase/index.html

Cravatt, B. F. et. al. J. Am. Chem. Soc. 2010, 132, 10, 3264-3265.

Further application of ABPP and perspective of P(V)-F

Cell Chem. Biol. 2020, 27, 937.

https://sites.rutgers.edu/moschitto-lab/research/

SuFEx for divergent application

- ✓ React with Ser/ Tyr/ Lys/His
- ✓ Target identification and validation
- ✓ Mapping of enzyme binding site (other than SH)
- ✓ Covalent drugs

P(V)-F could be another CR with high selectivity toward O.

Summary

PFEx

- is another good reaction for click chemistry
- the transformation proceeds smoothly like SuFEx
- original feature derived from P; Selectivity toward O
- further development (activation by LA or H network) is desired

Phosphorus-oriented selectivity

Preliminary example of labeling

Appendix

Trivalent Phosphoryl reagent; P(III) reagents

Nat. Chem. 2021, 12, 2760.

- ✓ Alcohol-selective phosphorylation over Amine
- X Containing oxidation steps X No-selectivity among OH

P(V) reagents are desirable for protein labeling (w/o oxidation step)

Warning in case of handing P(V)-F compounds

General Procedure A:

To a solution of the desired substituted phosphoramidic dichloride (1.00 equiv) in acetone (0.125 M) was added KF (8.00 equiv). The reaction mixture was rapidly stirred at room temperature for 3 h and then filtered through Celite[®]. The solvent was removed under reduced pressure to give the desired phosphoramidic difluoride. The shelf-life of these compounds is limited (up to 3 days at -20 °C) and so they should be converted to the more stable phosphoramidofluoridates as soon as possible.

Caution! Substituted phosphoramidic difluorides are assumed to be extremely toxic and should only be handled in a well-ventilated fume cupboard with concentrated NaOH on hand to quench any spills and wash glassware.

Raw data of Mechanistic study

TABLE 1 Reaction conditions and products from the reaction of ethanolamine with phosphylating agents

Pho	Phosphylating agent (RR'P(O)X)		Chemical	³¹ P Chemical shifts (p.p.m.) and % material at end of reaction					Reaction conditions	
R	R'	X	shift (p.p.m.)	N-Phosphyl derivative	O-Phosphyl derivative	RR'P(O)OH	Other products	Time (h)	Temperature†	
Me ₂ N EtO EtO EtO Pr¹O Pr¹O Pr¹O CH ₃ CH ₃	Me ₂ N Me ₂ N Me ₂ N Me ₂ N Pr ¹ O CH ₃ CH ₃ CH ₃	Cl Cl OP(O)RR' F OP(O)RR' CN OP(O)RR' CN Cl OP(O)RR'	-29.7 -16.9 0 -5.2* +15 +24.2 -20.5 -10.5 -62.0 -51.5	-23.6 (22%) -18.8 (84%) -18.6 (4%) -7.9 (44%) -8.1 (22%) -32.5 (43%) -41.1 (61%) -39.0 (22%)	-19.0 (3.5%) -11.1 (11%) -11.9 (13%) +2.0 (3%) +2.5 (78%) -29.9 (4%) -29.6 (95%) -55.7 (15%) -54.4 (19%)	+2.0 (50%) -19.8 (53%) -19.8 (5%) -33.3 (21%) -33.9 (59%)	-30.9 (2%), -7.2 (3%) +12.7 (1%) +9.6 (3%)	24 28 24 120 72 56 72 48 2	R.T. R.T. Reflux R.T. R.T. R.T. R.T. R.T. R.T. R.T.	

^{*}Doublet.

[†]R.T. stands for room temperature.

Synthesis of P(V)-F compounds

Phosphoramidic difluoride

9a 92%^a **9b** 85%^a **9f** 69%^a **10a** 91% 10f **10c** 91% **10e** 83% 10d 86% 95%

Phosphoramidofluoridate

Reaction mechanism of phosphoryl transfer

Domon, K.; Fujiyoshi, K.; Kanai, M.; et al. ACS Cent. Sci. 2020, 6, 283

A_N + D_N R₂PEP intermediate RO P-O R'O O O O

Fujiyoshi, K.; Motomu, K.; et al. Synlett 2021, 32, 1135

Vantourout, J.; Baran, P.; et al.

J. Am. Chem. Soc. 2020, 142, 17236 M2 Fujiyoshi

Phosphorous Fluoride derivatives

Representative P(V)-F derivatives

Mechanism of action; Irreversible phosphorylation of Ser

http://molecules.a.la9.jp/acetylcholine%20esterase.html

Serine hydrolases

PF probeとしての活用法

https://www.sciencedirect.com/science/article/pii/S245194 5619300753

FP probe for detection of Serine hydrase

H₃C(H₂C)₁₅O

sn-1 selective probe, 1

sn-2 selective probe, 2

Polysorbate-Like
ABPP Probe

Cravatt, B. F. et. al. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 14694. Cravatt, B. F. et. al. J. Am. Chem. Soc. **2010**, 132, 10, 3264–3265. Li, N. et. al. Anal. Chem. **2022**, 94, 24, 8625–8632.

- ✓ SH selective
- ✓ Broad reactivity across the SH class

more selective for reacting with phospholipases (over other SHs)

In cell lysate

Serine protases Phospholipases

The broad-spectrum serine hydrolase probe

SuFEx

Nat. Rev. Chem. 2018, 2, 202.

- Robust connection
- High functional group tolerance
- Fast kinetics
- Easy operation

4

SuFEx

Activation with Ca(NTf)₂ (Lewis acid)

$$\begin{array}{c} R_1R_2NH \\ OOO \\ RSF \end{array} \xrightarrow{\begin{array}{c} Ca(NTf_2)_2 \ (1 \ equiv) \\ \hline t\text{-amylOH} \end{array}} \begin{array}{c} OOO \\ RSSN \\$$

Proposed mode of activation

Effect of Ca salt

Selectivity of nucleophile

RSO₂F in Biological Context

electrophilic probe to modify proteins protein labeling

H+ mediated switch-on

- -> specificity to microenvironment
- Activation of S-F in special environment
- Proximity driven reaction
- Ser, Tyr, Lys, Thr, His, Cys

<u>Examples</u>

- Covalent drugs
- Target identification and validation
- Mapping of enzyme binding sites, substrates and protein-protein interactions.
- Late-stage functionalization (LSF) of bioactive molecules

SuFEx for activity-based protein profiling

PNAS, 2019, 116, 18809.

アニリンとrefluxするとPFも反応してしまう

Entry	Electrophile	% remaining SM	Product (% HPLC yield)	Analytical method
7	(xii)	0	PhHN N-Ph (27) PhHN NH O (73)	LC-MS
8	(xiii) α-chloroketone	0	Unidentified mixture	LC-MS
9	(xiv)	11	(55) (55) (55) (54)	LC-MS

^{*&}quot;Refluxing aniline" test was performed by heat the neat mixture of respective electrophiles (1.0 mmol) with 1.3 mL aniline at 184 °C.

Imidazole acts as nucleophilic catalyst

https://pubs.acs.org/doi/10.1021/ja1034733

Selective-phosphorylation using imidazole as a nucleophilic catalyst

Miller, S. J. et. al. J. Am. Chem. Soc. **2001**, 123, 41, 10125–10126

Miller, S. J. et. al.J. Am. Chem. Soc. **2013**, 135, 33, 12414–12421

Kinase mimic catalyst for asymmetric phosphorylation of inositol

Site-selective phosphorylation of the enantiotopic 1- and 3positions of the inositol ring Site-selective phosphorylation of three distinct hydroxyl groups within the complex glycopeptide

52

内在性のMgを使ってこういうactivation

https://pubs.rsc.org/en/content/articlelanding/2005/cc/b506344b

Other synthetic method for P(V)-F

$$R = Z$$

$$R' = Z$$

$$R'$$

$$Z = N = N$$

$$R = N + 2 R''COF$$

$$Z = F + 2 R''CON = N$$

J. Chem. Soc., Perkin Trans. 1, 1994, 817-820

Activating reagent for minimal-protection phosphate

J. Am. Chem. Soc. 2022, 144, 17, 7517–7530

リン酸化体を釣ってくる方法

内在性のキナーゼを使ってbiotinを導入

https://pubs.acs.org/doi/10.1021/ja066828o

Phosphoimidazole (pyrophosphorylation)

btNPE-imidazolide (1)

塩基でデヒドロアラニンにしてチオールあ などの1,4-付加

(phosphotyrosineには使えない)

https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/cbic.202200407

樹脂を使ってリン酸基にアミンを縮合する方法

https://pubs.acs.org/doi/pdf/10.1021/cb6003564

P-N化合物の特性

レムデシビルなどのプロドラックのphophateのマスキング保 護基として使われている

Phosphoryl amidazeで切ってたけど、これにすると酵素非依存で放出される

proton transfer

https://onlinelibrary.wiley.com/doi/10.1002/anie.202008665

Bond dissociation energy

Average Bond Enthalpies							
bond	$\Delta H_{\rm bond}$ (kJ/mol)	bond	$\Delta H_{\rm bond}$ (kJ/mol)	bond	$\Delta H_{\rm bond}$ (kJ/mol)	bond	$\Delta H_{\rm bond}$ (kJ/mol)
С-Н	413	N-H	391	О-Н	467	Н-Н	432
C-C	347	N-N	163	0-0	146	H-F	565
C=C	614	N=N	418	0=0	495	H-Cl	427
C≡C	839	N≡N	941	O-F	185	H-Br	363
C-N	305	N-O	201	O-Cl	203	H-I	295
C=N	613	N=O	607	O-Br	156		
$C \equiv N$	891	N-F	272	0-S	364	F-F	154
C-O	358	N-Cl	200.	O=S	522	Cl-Cl	239
C=O	743	N-Br	243	O-P	335	Br-Br	193
C≡O	1072			O=P	544	I–I	149
C-F	485				-		
C-Cl	339						
C-Br	276						

bond	ΔH_{bond} (kJ/mol)
Si-H	393
Si-Si	340.
Si-O	452
Si-F	565
Si-Cl	381
Si-Br	310.

238

318

264

259

573

C-I

C-Si

C-P

C-S

C=S

bond	$\Delta H_{\rm bond}$ (kJ/mol)
P-H	322
P-P	201
P-F	490.
P-Cl	326
P-Br	264

bond	$\Delta H_{\rm bond}(kJ/mol)$
S-H	347
S-S	266
S=S	425
S-F	327
S-Cl	253
S-Br	218