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Conventional glycosyl donors (ionic pathway)

(a) C-Glycosylation via glycosyl electrophilic/cationic species

(b) C-Glycosylation via glycosyl anionic species

Challenges
・Dependence on the structures of donors/acceptors.

・Unstable glycosyl donors.

・Harsh reaction conditions.

・Incompatible with free hydroxyl group.

・Byproduct (ex. glycal, glycosidic bonds )

・Stereochemical purity of the glycosyl donors.

Y. Yang, B. Yu, Chem. Rev. 2017, 117, 12281–12356.
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Reactive glycosyl intermediates

Y. Yang, B. Yu, Chem. Rev. 2017, 117, 12281–12356.

Y. jiang. et al. Angew. Chem. Int. Ed. 2023, 62, e202305138.

Regardless of the stereochemical purity of the glycosyl donors, both anomers 

will eventually converge to the sugar radical of the same conformation.
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Factors determining stereoselectivity

Stabilizing interaction between SOMO and LUMO of the neighboring C-O bond

① Anomeric effect

② SOMO-LUMO interaction

The axial radical is more stable and nucleophilic because of the interaction 

between the lone pair on the ring oxygen and the radical orbital.

H. Togo, W. He, Y. Waki, M. Yokoyama, Synlett, 1998, 700–717.

Giese, B. Angew. Chem. Int. Ed. 1989, 28, 969–980.

H. Abe, S. Shuto, A. Matsuda, J. Am. Chem. Soc. 2001, 123, 11870.
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Factors determining stereoselectivity

H. Abe, S. Shuto, A. Matsuda, J. Am. Chem. Soc. 2001, 123, 11870.

L. Y. Xu, N. L. Fan, X.-G. Hu, Org. Biomol. Chem. 2020, 18, 5095–5109.

③ Conformation restriction

(2.70 kcal/mol)*                          (0.94 kcal/mol)*                   (0.00 kcal/mol)*

(0.00 kcal/mol)*                             (3.55 kcal/mol)*                                 

*relative energy Conformational restriction of the pyranose ring changes 

the stereoselectivity in the anomeric radical reaction.

1                                                   2                                            3            4 

5                                                   6
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Factors determining stereoselectivity

④ Ligands effect in transition metal-catalyzed reactions 

J. Liu, C. Lei, H. Gong, Sci. China: Chem., 2019, 62, 1492–1496.

Bulky Ni-tridentate ligand complex seems to overcome the α-stereoselectivity

J. Liu, H. Gong, Org Lett, 2018, 20, 7991–7995.

F. Zhu, M. A. Walczak, J. Am.Chem.Soc. 2020,142,15127–15136.
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(a) Homolytic activation of C-O bonds via redox-active groups

(b) Carbon radicals from aldehydes via C-C bond cleavage                                    (d) Carbon radicals from alcohols via C-O bond cleavage

(c) Carbamoyl radicals from amines via C-C bond cleavage

Formation of carbon radicals from alcohols via C-O bond cleavage

(a) Á. Gutiérrez-Bonet. et al. ACS Catal. 2016, 6, 8004.

(b) Á. Gutiérrez-Bonet. et al. J. Am. Chem. Soc. 2017,139, 12251.

(c) N. Alandini. et al. Angew. Chem. Int. Ed. 2020, 59, 5248.

(d) Wei, Y., Ben-Zvi, B., Diao, T. Angew. Chem. Int. Ed. 2021, 60, 9433.
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Proposed mechanism and optimized conditions

Wei, Y., Ben-Zvi, B., Diao, T. Angew. Chem. Int. Ed. 2021, 60, 9433.

・High temperature is required to facilitate DHP fragmentation 

and the subsequent decarboxylation.

・High α-selectivity because of C2, C3 and C4 substituents

(A) Proposed mechanism for C-aryl glycosylation based on DHP derived estes

(B) Optimized conditions

G. Ya. Dubur, Ya. R. Uldrikis, Chem. Heterocycl. Compd. 1972, 5, 762.
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Substrate scope

Wei, Y., Ben-Zvi, B., Diao, T. Angew. Chem. Int. Ed. 2021, 60, 9433.

・Performing the synthesis of 17 on a 1.94-gramscale afforded 21 in 82% isolated yield.

・A lower temperature led to the formation of a byproduct derived from the coupling of 7 to PhBr.
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Stereoselectivity

Derivatization of (+)-sclareolide from deoxygenative cross coupling

・Mannopyranoses display α-selectivity.

・Glucopyranoses display poor reactivity 

and stereoselectivity.

・The poor selectivity can be attributed to the contradictory

preferences by the steric and the stereoelectronic effect.

Wei, Y., Ben-Zvi, B., Diao, T. Angew. Chem. Int. Ed. 2021, 60, 9433.
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Factor causing poor stereoselectivity of glucopyranoside

・B2,5 conformation has a planar (sp2-like) radical center with a radical orbital having high p-character.

・B2,5 conformation has potential to form both anomers through α- and β- attack.

・In the transition state the radical center has more pyramidal (sp3-like) radical center.

J. Dupuis, et al. Angew. Chem. Int. Ed, 1984, 23, 896–898.

H. Abe, S. Shuto, A. Matsuda, J. Am. Chem. Soc. 2001, 123, 11870.

H. Togo, W. He, Y. Waki, M. Yokoyama, Synlett, 1998, 700–717.

planar radical center
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Factor causing poor stereoselectivity of glucopyranoside

Adak, L. et al. J. Am. Chem. Soc. 2017, 139, 10693–10701.

・Fluctuating conformational changes of the glucosyl radical leads to varied α/β selectivity.

・Contradictory preferences by the steric and the stereoelectronic effect are the factor of 

fluctuating conformational changes. 
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Short summary

✓ Bench-stable.

✓ Easily accessible.

✓ Diastereoselective in furanoside.

 Stereoselectivity of glucopyranose.

 Protection of the hydroxyl groups.

 High temperature.

Homolytic activation of hydroxyl group and formation of radicals

Wei, Y., Ben-Zvi, B., Diao, T. Angew. Chem. Int. Ed. 2021, 60, 9433.
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Heteroaryl glycosyl sulfones as practical donors for C-aryl glycosylation

Q. Wang, et al. Angew. Chem. Int. Ed. 2023, 62, e202301081.

J. Corpas, et al. Chem. Soc. Rev. 2022, 51, 6774–6823.
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Optimized conditions

Conditions A
・The reactions proceed under room temperature.

・2-Pyridyl sulfinate salt was detected as a byproduct.

Conditions B
・Benzothiazole and 2,2-bibenzothiazole were detected. W. Miao. et al. J. Am. Chem. Soc. 2018, 140, 880–883.
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Mechanistic studies

Q. Wang, et al. Angew. Chem. Int. Ed. 2023, 62, e202301081.
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a. 
・Aryl iron speciesⅰcould serve as a reducing agent by SET to the electrophilic heteroaryl sulfone.

・Radical anion undergoes direct S-C(glycosyl) bond cleavage to form glycosyl radical and sulfinate.

b. 
・Zn could serve as a reducing agent by SET to the more electrophilic heteroaryl sulfone.

・Radical anion undergoes S-C(2-benzothiazoyl) bond cleavage to give glycosylsulfonyl radical 

and 2-benzothiazoyl anion.

Proposed mechanisms for Fe- and Ni-catalyzed C-aryl glycosylation

J. M. E. Hughes, P. S. Fier, Org. Lett. 2019, 21, 5650–5654.

W. Miao, et al. J. Am. Chem. Soc. 2018, 140, 880–883.
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Fe-catalyzed desulfonylative arylation with diaryl zinc reagents
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Ni-catalyzed desulfonylative arylation with aryl iodides
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Stereodivergent C-aryl glycosylation

Q. Wang, et al. Angew. Chem. Int. Ed. 2023, 62, e202301081.

A. G. Orpen, et al. J. Chem. Soc. Dalton Trans. 1989, S1–S83.
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Direct synthesis of aryl C-glycosides by photoredox Ni-catalysed cross-coupling

Zhang, C., Xu, SY., Zuo, H. et al. Nat. Synth, 2023, 2, 251–260.

Takeda, D. et al. Org. Lett, 2021, 23, 1940–1944.

Liu, J., Lei, C., Gong, H. Sci. China Chem, 2019, 62, 1492–1496.

a. Classical routes to aryl C-glycosides that use protected intermediates

b. Direct, stereoselective synthesis of unprotected aryl C-glycosides
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Mechanistic studies

Markovic, T. et al. J. Am. Chem. Soc, 2018, 140, 15916–15923.

a. 

The trap of the allyl group in 16 to form a tetrahydrofuran ring in 17 suggests 

the intermediacy of glycosyl radical 18.

b. 

Glycosyl radicals is triggered by initial generation of a tolyl sulfonyl radical. 

    → Tolyl sulfonyl radical subsequently adds to the terminal alkene group of 19.

(Not a Ni-catalyzed allylic substitution process.)

Zhang, C., Xu, SY., Zuo, H. et al. Nat. Synth, 2023, 2, 251–260.
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Proposed mechanism

c.

Product 15e was formed in excellent yield and stereoselectivity, supporting the intermediacy of 22.

d.

An alternative pathway involving glycosyl radical addition to Ni(0) could be operating as well.
Gutierrez, O. et al. J. Am. Chem. Soc, 2015, 137, 4896–4899.

Zhang, C., Xu, SY., Zuo, H. et al. Nat. Synth, 2023, 2, 251–260.
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Condition optimization

・The potentially competing reactions was not observed.

(a) C–O coupling between the free hydroxyl groups in 8 with 9

(b) C–S coupling between TolSO2Na with 9

・The direct C–S coupling with 9 to form 12 became the dominant 

process using pyridine-2-thiol instead of TolSO2Na (entry9).

Cabrera-Afonso, M. et al. Chem. Sci, 2018, 9, 3186–3191.

Terrett, J. A. et al. Nature, 2015, 524, 330–334.

MacQueen, P. M. et al. J. Am. Chem. Soc, 2018, 140, 5023–5027.

Zhang, C., Xu, SY., Zuo, H. et al. Nat. Synth, 2023, 2, 251–260.



29

Substrate scope of aryl halides 

Zhang, C., Xu, SY., Zuo, H. et al. Nat. Synth, 2023, 2, 251–260.
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Substrate scope of glycosyl donor

Zhang, C., Xu, SY., Zuo, H. et al. Nat. Synth, 2023, 2, 251–260.
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Computed pathway of the reaction between glucopyranosyl radical and OA complex

The ligated metal unit clashes with both the sugar ring system and the C2-hydroxyl group.

Zhang, C., Xu, SY., Zuo, H. et al. Nat. Synth, 2023, 2, 251–260.

steric hinderance
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Comparing the activation free energies of reactions

Zhang, C., Xu, SY., Zuo, H. et al. Nat. Synth, 2023, 2, 251–260.

steric hinderance

The radical addition using protected radical to the OA complex becomes considerably more difficult. 
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Conformational stability of protected and unprotected glucosyl radicals

T. Miura, et al. Chem. Commun, 2023, 59, 8564.

H. Abe, S. Shuto, A. Matsuda, J. Am. Chem. Soc. 2001, 123, 11870.

・The most stable conformation for the tetraacetyl glucosyl radical is B2,5 ( or 1S5) conformation.

・The most stable conformation for the protecting-group-free glucosyl radical is 4C1 conformation.

・The 2-OP and 3-OP groups of the protected glucosyl radical adopt a pseudo-axial position 

to reduce steric repulsion, resulting in the formation of the B2,5 conformation.

・Steric factors are negligible in the unprotected glucosyl radical, 

leading to the preferable existence of the 4C1 conformation.
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Summary

Synthesis of Aryl C-Glycosides via Radical Pathway

✓ Independence on the structures of donors.

✓ Mild conditions.

✓ Functional group tolerant.

2-2. Stereoselective C-aryl glycosylation by catalytic cross-coupling of heteroaryl glycosyl sulfones

✓ Bench-stable and easily accessible donors.

✓ Distinct mechanisms and activation modes.

✓ Access to both α and β isomers for key sugars.

2-3. Direct synthesis of unprotected aryl C-glycosides by photoredox Ni-catalysed cross-coupling

✓ Stereoconvergent, diastereoselective

✓ Protecting groups unnecessary

✓ Bench-stable and easily accessible donors
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(a) Previously reported method

(b) New method via glycosyl radical

Appendix: Aryl C-glycosides

 Three steps     Harsh conditions

Chao, E. C.; Henry, R. R. Nat. Rev. Drug Discovery 2010, 9, 551−559.

(a) Aguillón, A. R. et al. Org. Proc. Res. Dev. 2018, 22, 467–488.

(b) Zhang, C., Xu, SY., Zuo, H. et al. Nat. Synth, 2023, 2, 251–260.

SGLT2 inhibitors against typeⅡdiabetes

✓ One step      ✓ Mild conditions 
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Appendix : Optimization of the coupling reaction

Wei, Y., Ben-Zvi, B., Diao, T. Angew. Chem. Int. Ed. 2021, 60, 9433.
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Appendix: Extended reaction scopes of 2-2

Q. Wang, et al. Angew. Chem. Int. Ed. 2023, 62, e202301081.
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Appendix: Screen of photocatalyst and ligands

Zhang, C., Xu, SY., Zuo, H. et al. Nat. Synth, 2023, 2, 251–260.
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Appendix: Screen of nickel catalysts and solvents

Zhang, C., Xu, SY., Zuo, H. et al. Nat. Synth, 2023, 2, 251–260.



41

Appendix: Screen of RSO2Na additive

Zhang, C., Xu, SY., Zuo, H. et al. Nat. Synth, 2023, 2, 251–260.
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Mamidyala, S. K. et al. J. Am. Chem. Soc. 2012, 134, 1978–1981

Appendix: Synthetic applications

Aguillón, A. R. et al. Org. Proc. Res. Dev. 2018, 22, 467–488.

Zhang, C., Xu, SY., Zuo, H. et al. Nat. Synth, 2023, 2, 251–260.

a. Synthesis of ASGPR ligand by literature methods 

compared with this work.

b. Synthesis of gliflozins.

a.

b.
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Appendix: Relative free energies of intermediates and transition structures

Zhang, C., Xu, SY., Zuo, H. et al. Nat. Synth, 2023, 2, 251–260.
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