Cross-Electrophile Coupling
 M2 Takayuki Wakaki 20150919

Contents

1. Introduction
2. Cross-Electrophile Coupling
3. Cross-Electrophile Coupling ~co-catalyst system

1. Introduction

The advent of transition-metal catalyzed strategies for forming new C-C bonds has revolutionized the field of organic chemistry.

Losartane

Liquid cristal display

Cross-Coupling vs Reductive Cross-Coupling

commercially available (2011)
R-B 5000
R-I 80000
R-Br 700000
demerit of organometallic reagent \Rightarrow Special care to exclude oxgen moisture.
\Rightarrow Inherent reactivity ($\mathrm{RMgX}, \mathrm{RZnX}$)
\Rightarrow Basic reagent require to facilitate transmetalation.

Reductive dimerization of electrophiles were known(Wurtz, Ullman), but general methods have lagged far behind cross-couplings.

Wurtz coupling

$$
2 \text { Alkyl—X } \xrightarrow{\mathrm{Na}} \text { Alkyl—Alkyl }
$$

Ullman coupling

$$
2 \mathrm{Ar}-\mathrm{X} \xrightarrow{\mathrm{Cu}} \mathrm{Ar}-\mathrm{Ar}
$$

Cross Selectivity-Major Approach-

(C. Gosmini et al. J. Org. Chem. 2003, 68, 1142.)

Effects of increasing the equivalents of one substrate on maximum statistical yield and waste.

$\mathrm{n}=1 \quad 50 \%$ maximus statistical yield , 1:1 product : dimers
$\mathrm{n}=2 \quad 80 \%$ maximus statistical yield, 1:1.25 product : dimers
$\mathrm{n}=3 \quad 86 \%$ maximus statistical yield , $1: 1.67$ product : dimers

Less wasteful approach is the development of catalysts able to differentiate the two electrophilic reagents.

Dr. Daniel J. Weix

Cross-Coupling of Nucleophiles with Electrophiles
\(\xrightarrow[\begin{array}{l}nucleophile

transmetalation\end{array}]{\mathrm{R}^{1} \cdot \mathrm{~B}(\mathrm{OH})_{2}}+\underset{\)| electrophile |
| :--- |
| oxidative addition |$}{\mathrm{R}^{2} \cdot \mathrm{X} \xrightarrow{\mathrm{Pd}}} \mathrm{R}^{1 \cdot R^{2}}+\mathrm{R}^{2} \cdot \mathrm{R}^{2}+\mathrm{R}^{1} \cdot \mathrm{R}^{1}$

Cross-Electrophile Coupling - This Work

R X	$\mathrm{R}^{2} \cdot \mathrm{X} \longrightarrow$	$R^{1} \cdot R^{2}+R^{2} \cdot R^{2}+R^{1} \cdot R^{1}$
electrophile	electrophile	factors that favor or disfavor
oxidative addition	oxidative addition	selectivity unknown

Dr. Daniel J. Weix
BA : Collumbia University (Thomas Katz)
PhD : UC Berkeley (Jonathan Ellman)
Postdoctoral fellow : Yale University and the University of Illinois (John Hartwig)
Independent career : the University of Rochester as associate professor (2014)

Research : Cross-electrophile coupling reactions Ni and Co

2. Cross-Electrophile Coupling

Initial Discovery of The Coupling of Aryl-I with Alkyl-I

Dual-ligand Ni catalyst system

Substrate Scope

Coupling of Alkyl-Br with Ar-Br or Ar-CI

${ }^{a}$ Reactions were assembled on the benchtop on 0.5 mmol scale in 2 mL of 1,3 -dimethyl-3,4,5,6-tetrahydro-2(1 H)-pyrimidinone (DMPU). The reaction mixtures were heated for $3.5-36 \mathrm{~h}$, and reaction progress was monitored by GC analysis. See Supporting Information for full details. ${ }^{b}$ Yield of 3a was determined by GC analysis vs an internal standard and is corrected. ${ }^{c}$ The amounts of these products are area \% (A\%) data. ${ }^{d}$ Reaction conducted with $5 \mathrm{~mol} \% 4$ and $5 \mathrm{~mol} \% \mathbf{5}$. ${ }^{e}$ Reaction run on 1 mmol scale; yield reported is the isolated yield. ${ }^{{ }^{f} \text { Reaction run with } 5 \mathrm{~mol} \%}$ $4 / \mathrm{NiI}_{2} \cdot x \mathrm{H}_{2} \mathrm{O} /$ pyridine. ${ }^{g}$ Reaction run with no nickel. ${ }^{h}$ Reaction run at $70^{\circ} \mathrm{C}$. ${ }^{i}$ Reaction run at $80^{\circ} \mathrm{C}$. ${ }^{j} \mathrm{TMSCl}$ and 1,2 -dibromoethane ($4 \mu \mathrm{~L}$ each) were added sequentially as the last two reagents to the reaction vial.

JACS, 2012, 134, 6146.

Substrate Scope of Aryl and Alkyl Bromides

${ }^{a}$ Reaction conditions: organic halides (0.75 mmol each $), \mathrm{NiI}_{2} \cdot x \mathrm{H}_{2} \mathrm{O}(0.054-0.078 \mathrm{mmol})$, ligand ($0.05-0.075 \mathrm{mmol}$), pyridine ($0.05-0.075 \mathrm{mmol}$), sodium iodide (0.19 mmol), zinc dust ($>10 \mu \mathrm{~m}, 1.5 \mathrm{mmol}$), and DMPU (3 mL) were assembled on the bench in a 1 dram vial and heated for $5-41 \mathrm{~h}$ under air. Yields are of isolated and purified product. ${ }^{b}$ Average of two runs. ${ }^{c}$ Used 1.25 equiv of alkyl bromide (0.94 mmol$) .{ }^{d}$ The 2-bromoheptane contained $11 \% 3$-bromoheptane (NMR). Product $3 n$ was isolated as an $83: 17$ ratio of $3 n$:heptan-3-ylbenzene (NMR). ${ }^{e}$ Isolated as an inseparable mixture with benzyl butyrate; yields determined by NMR analysis of this mixture. ${ }^{I}$ Isolated as an inseparable mixture of (E) and (Z) isomers. ${ }^{8}$ Isomer ratio determined by NMR analysis. ${ }^{h}$ Starting material (2-bromo-2-butene) was an 88:12 ratio of (Z) and (E) isomers.

Chemoselectivity and Functional Group Compatibility

${ }^{a}$ Reaction conditions: organic bromides (0.75 mmol each), $\mathrm{NiI}_{2} \cdot x \mathrm{H}_{2} \mathrm{O}(0.054 \mathrm{mmol})$, ligand (0.05 mmol), pyridine (0.05 mmol), sodium iodide (0.19 mmol), zinc dust ($>10 \mu \mathrm{~m}, 1.5 \mathrm{mmol}$), and DMPU (3 mL) were assembled on the bench in a dram vial and heated for $3.5-23 \mathrm{~h}$ under air. ${ }^{b}$ Yields are of isolated and purified product. ${ }^{c}$ Average of two runs. ${ }^{d}$ Run at $80^{\circ} \mathrm{C}$ and with 1 equiv of sodium iodide. ${ }^{e}$ Run with 1.25 equiv of alkyl

A. $\quad \mathbf{R}^{\mathbf{1}-\mathrm{I}} \xrightarrow{\mathrm{Mn}^{0}} \mathrm{R}^{\mathbf{1}} \cdot \mathrm{Mn}-\mathrm{I} \xrightarrow{[\mathrm{Ni}]} \mathrm{R}^{\mathbf{1}}-\mathbf{R}^{\mathbf{2}}$
B. $\quad \mathbf{R}^{1}-\mathrm{I} \xrightarrow{[\mathrm{Ni}]} \mathrm{R}^{\mathbf{1}-[\mathrm{Ni}]-I} \xrightarrow{\mathbf{R}^{\mathbf{2}}-[\mathrm{Ni}]-\mathrm{I}} \mathbf{R}^{\mathbf{1}-\mathbf{R}^{\mathbf{2}}}$
C. $\quad R^{1}-I \xrightarrow{[\mathrm{Ni}]} \mathrm{R}^{1}-[\mathrm{Ni}]-\mathrm{I} \xrightarrow{\mathrm{R}^{2}-\mathrm{I}} \mathrm{R}^{\mathbf{1}-R^{2}}$
D. $R^{1}-I$

$\mathbf{R}^{\mathbf{1}}-\mathbf{R}^{\mathbf{2}}$
A)in situ formation of an organometallic reagent followed by cross-coupling
B)transmetalation between two organonickel species
C)sequential oxidative additions at a single nickel center
D)radical chain reaction

JACS, 2013, 135, 16192.

A)in situ formation of an organometallic reagent followed by cross-coupling

Scheme 6. Direct Insertion of Zinc and Activated Zinc

Zn^{0}

$$
\underset{2}{\mathrm{C}_{8} \mathrm{H}_{17}-\mathrm{Br}} \xrightarrow[\substack{\mathrm{BrCH} \\ 2 \\ \mathrm{CMPU} \mathrm{CH}_{2} \mathrm{Br} \text { (cat.) }}]{\mathrm{TMSCl} \text { (cat.) }} \mathrm{C}_{8} \mathrm{H}_{17}-\mathrm{ZnBr} \quad 10 \%^{a}
$$

${ }^{a} \mathrm{GC}$ yield at 24 h based on unreacted $\mathbf{1}$ or $\mathbf{2}$, corrected vs dodecane internal standard.
1)Tolerance of functional groups
2)Direct insertion slower than reductive coupling. (left scheme) 3) Zn to TDAE nonmetallic reducing agent. (6 turnover number) From above, $A \Rightarrow x$

Mechanism B

$$
\text { B. } \quad R^{1}-I \xrightarrow{[\mathrm{Ni}]} R^{1}-[\mathrm{Ni}]-I \xrightarrow{R^{2}-[\mathrm{Ni}]-I} R^{1}-R^{2}
$$

B)transmetalation between two organonickel species

Figure 3. Change of the molar ratio of 3aa/5a (red circles) and 3aa/ 4a (blue triangles) with catalyst concentration, suggesting product and dimers arise from different mechanisms. Exponential fits: solid blue line, $f(x)=121.05 x^{-0.824}, R^{2}=0.94$; dashed red line, $f(x)=$ $723.81 x^{-1.063}, R^{2}=0.92$.

stoichiometric experiment \Rightarrow dimer was obtained mainly.
B)second-order dependence on Ni concentration
(K. Osakada et al. Coord. Chem. Rev. 2000, 198, 379.) If cross-coupled product was obtained by a similar transmetalation mechanism, [cross]/[dimer] = 1 (independence on [Ni]).

Mechanism C \& D~ begin with Ar-Ni-I or Alkyl-Ni-l? ~

Potential mechanisms for cross-electrophile coupling

$$
\begin{aligned}
& \text { C. } \begin{array}{lll}
R^{1}-I & \xrightarrow{[N i]} & R^{1}-[\mathrm{Ni}]-I \\
\\
\text { D. } \quad R^{1}-I & R^{2}-I & R^{1}-R^{2} \\
{[\mathrm{Ni}]} \\
R^{1}-[\mathrm{Ni}]-I & R^{2 \cdot} \\
R^{1}-R^{2}
\end{array} \\
& \\
&
\end{aligned}
$$

C)sequential oxidative additions at a single nickel center D)radical chain reaction

Table 2. Selectivity in Oxidative Addition to $(\mathrm{L}) \mathrm{Ni}^{0}(\mathrm{cod})^{a}$

		yield $(\%)^{c}$			
substrate	total conv $(\%)^{b}$	alkyl-H or Ph-H	4a	3aa	5a
Ph-I	89	49	21	13	NA
$\mathrm{H}_{17} \mathrm{C}_{8}$-I	19	0	NA	51	45

${ }^{a}$ A 1:1 mixture of 1a:2a was added to a DMF solution of $\mathbf{6}$. Samples were analyzed by GC. Reported values are an average of data using between 2 and 40 equiv each of $\mathbf{1 a}$ and $\mathbf{2 a}$ to $\mathbf{6}$. See Supporting Information for full experimental details. ${ }^{b}$ Conversion with respect to amount of 6 . ${ }^{\circ}$ Yield with respect to amount of 6 . NA $=$ not applicable.

Scheme 2. Apparent Reversibility of Oxidative Addition

isolated
quantitative, 99% cross-selective

isolated
56% yield, $>99 \%$ cross-selective

9 and 10 generated in situ
$60^{\circ} \mathrm{C}, 1.5-8 \mathrm{~h}$ From $9(\mathrm{X}=\mathrm{I}), 14: 1$ 5a:3aa
From $10\left(X=\mathrm{C}_{8} \mathrm{H}_{17}\right), 270: 1$ 5a:3aa

These stoichiometric studies \Rightarrow initial oxidative addition of $\mathrm{Ar}-\mathrm{I}$ to $\mathrm{Ni}(0)$

Radical intermediate \& Which one is more reasonable C or D?

Potential mechanisms for cross-electrophile coupling
C. $R^{1}-I$
[Ni] D)radical chain reaction

C : $\mathrm{Ni}^{\mathrm{II}}(\mathrm{Ar})(\mathrm{X}) \xrightarrow{\text { Alkyl-X }} \mathrm{Ni}^{\mathrm{IV}}\left(\right.$ Ar)(Alkyl)X $\mathbf{2}_{2}$ an alkyl radical intermediate. at the same nickel center.
$\mathrm{D}: \mathrm{Ni}^{\prime \prime}(\mathrm{Ar})(\mathrm{X}) \xrightarrow{\text { Alkyl }^{\circ}} \overbrace{\text { Ar-Alkyl }}^{\text {Ni }}$ Alkyl-X
1)must involve a radical intermediate
2)The radical is generated and consumed at different nickel centers.
from the right Figure, U/R depends on [Ni]. $\Rightarrow D$ is reasonable.
D. $\quad R^{1}-I \xrightarrow{[\mathrm{Ni}]} \mathrm{R}^{1}-[\mathrm{Ni}]-\mathrm{I} \xrightarrow{\mathrm{R}^{2 \cdot}} \mathrm{R}^{\mathbf{1}-R^{2}}$
C) sequential oxidative additions at a single nickel center
1)Oxidative addition may or may not involve
2)The radical would be generate and consumed

Figure 4. Ratio of \mathbf{U} (3ad, includes olefin isomers) to \mathbf{R} (3ad') formed in reactions at different catalyst concentrations, showing that the degree of rearrangement, a measure of the radical lifetime, depends upon nickel concentration. The data shown are for $50-100 \%$ conversion to avoid fluctuations in active catalyst concentration at the beginning of the reaction. Error bars are the standard deviation of the data used for the plot. Linear fit: $f(x)=0.417 x+1.83 ; R^{2}=0.984$. The same experiment run with unactivated Mn gave the same conclusion, but the reactions had longer induction periods (Figure

Scheme 3. Radical Clock Experiments ${ }^{a}$

Reaction with (L)Nill(2-tol)I (11): ND 56% yield (Ar=tol, 3cb')
Standard catalytic reaction with 1a: ND 35% yield (Ar=Ph, 3ab')

${ }^{a} \mathrm{ND}=$ none detected. Catalytic reaction as in Table 1, entry 1.
 S2).

Hypothesis for Self-Initiation

3. Co-Catalyst System

Co-Catalyst System

Nickel-Catalyzed Regiodivergent Opening of Epoxides with Aryl Halides: Co-Catalysis Controls Regioselectivity

$\xrightarrow{(\mathrm{L}) \mathrm{NiBr}_{2}} \mathrm{C}-\mathrm{Ar}$
Problematic Point

Table 2. Nickel/Iodide Co-catalyzed Epoxide Ring-Opening with Aryl Halides ${ }^{a}$

entry	deviation from above	yield (\%) ${ }^{\text {b }}$	2:3
1	none	81	>95:5
2	no TEA $\cdot \mathrm{HCl}$	32	89:11
3	$15 \mathrm{~mol} \% \mathrm{NaI}$	67	>95:5
4	$25 \mathrm{~mol} \% \mathrm{Bu}_{4} \mathrm{NI}$ in place of NaI	79	95:5
5	$12.5 \mathrm{~mol} \% \mathrm{ZnI}_{2}$ in place of NaI	46	88:12
6	$12.5 \mathrm{~mol} \% \mathrm{MnI}_{2}$ in place of NaI	61	95:5
7	no NaI, 12 h	68	>95:5
8	no NaI, 24 h	75	>95:5
9	$25 \mathrm{~mol} \% \mathrm{NaBr}$ in place of NaI	52	>95:5
12	NiI_{2} in place of $\mathrm{NiI}_{2} \cdot x \mathrm{H}_{2} \mathrm{O}$	86	>95:5
13	2 equiv of Mn in place of Zn	59	95:5
14^{c}	2 equiv of TDAE in place of Zn	$48^{\text {d }}$	>95:5
15	heated to $60{ }^{\circ} \mathrm{C}$ for 12 h	50	93:7
16	$\mathrm{I}-\mathrm{Ph}$ in place of $\mathrm{Br}-\mathrm{Ph}$	51	91:9

${ }^{a}$ Reactions were run with 1 equiv of $\mathrm{Et}_{3} \mathrm{~N} \cdot \mathrm{HCl}$ and 2 equiv of zinc dust; 0.1 equiv nickel catalyst, ligand; 0.2 equiv pyridine, 0.25 equiv sodium iodide, and 1.34 equiv of 1a in 3 mL DMPU. ${ }^{b}$ Uncorrected GC yield of 2aa. ${ }^{c}$ TDAE $=$ tetrakis (dimethylamino) ethylene. ${ }^{d}$ Bromobenzene (52%) remained, but no biaryl or benzene was formed.

Substrate Scope

with NaI, Py, and $\mathbf{Z n}^{\mathbf{0}}$

61\%
86:14 trans:cis
81\% 99\% es
with $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ and $\mathrm{Mn}^{\mathbf{0}}$

75\% 99:1 trans:cis

93\%

62\%
3.5:1 mixuture of regioisomers

Enantioselective Arylation of meso-Epoxides

Optimization
[Ti] (10 mol\%)

${ }^{a}$ Reactions were run with 1.0:2.0:0.1:0.1:0.1 $\quad \mathrm{Et}_{3} \mathrm{~N} \cdot \mathrm{HCl} / \mathrm{Mn}^{0} /$ titanocene $/ \mathrm{NiCl}_{2}$ (dme)/bipyridine in DMPU with stirring for 12 h at rt . Assay yields (GC area \%) are shown, with an isolated yield in parentheses. Enantiomeric excesses were determined by chiral-phase

Substrate Scope

otho-substituted... didn't work well.

using
VinyIOTf
59\%, 82\% ee

99\%, 93\% ee

77\%, 87\% ee

71\%, 84\% ee

Formation of [3, 3, 0]Bicycoocatanol Products

With the smaller titanocence dicloride 1, only rearranged product was formed.
\Rightarrow The coupling of the β-titanoxy radical with an aryInickel intermediate is slowed by steric interactions.

Proposed Catalytic Cycle

Coupling of Benzyl Mesylates with Ar-X

Target Reaction : Diarylmethanes from cross-electrophile coupling

Their reported conditions

Problems (under their reported conditions)

Chem. Sci. 2015, 6, 1115.

Mechanism based solution

Ar-l was also employed as coupling partners. Added Nal depressed the yield only slightly. $(13,9)$ $\Rightarrow P h l$ competes with in situ formed Bnl more effectively than PhBr for oxidative addition to nickel.

copsif(II) buffsןoc入su!ug (co(bc))

Entry	X	Catalyst ${ }^{\text {b }}$	Yield 3^{c} ($\mathrm{A} \%$)	3:4
1	Br	[Ni] only	3	1:1
2	Br	$\mathrm{Co}(\mathrm{Pc})$ only	0	ND: 3
3	Br	[$\mathrm{Ni} \mathrm{l}, \mathrm{Co}(\mathrm{Pc}$)	73	1: ND
4	Br	[Ni], CoCl_{2}	4	4:1
5	Br	[Ni$], \mathrm{NaI}$ (25 mol\%)	25	1:1
6	Br	[Ni$], \mathrm{Co}(\mathrm{Pc}), \mathrm{Mn}$ instead of Zn	64	4:1
7	Br	$\mathrm{NiBr}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}, \mathrm{Co}(\mathrm{Pc})$	1	1:6
8	Br	$\mathrm{No}[\mathrm{Ni}]$ and no $\mathrm{Co}(\mathrm{Pc})$	0	0:1
$9^{d, e}$	I	[Ni] only	71	7:1
10^{e}	I	$\mathrm{Co}(\mathrm{Pc})$ only	0	ND: 1
$11^{\text {d,e }}$	I	[$\mathrm{Ni} \mathrm{l}, \mathrm{Co}(\mathrm{Pc}$)	83	17:1
12	I	[$\mathrm{Ni} \mathrm{l}, \mathrm{Co}(\mathrm{Pc}$)	83	83:1
13	I	[Ni], NaI (25 mol\%)	64	8:1
14	I	[Ni$], \mathrm{Co}(\mathrm{Pc}), \mathrm{Mn}$ instead of Zn	42	$1.4: 1$
${ }^{a}$ Reactions run at 0.25 M in DMA. BnOMs was formed in situ from				
$\mathrm{BnOH}, \mathrm{Ms}_{2} \mathrm{O}$ (1.44 equiv.), and $\mathrm{EtN}(\mathrm{i}-\mathrm{Pr})_{2}$ (1.6 equiv.). See ESI. ${ }^{b}[\mathrm{Ni}]=$				
$7 \mathrm{~mol} \% \mathrm{NiBr}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $5 \mathrm{~mol} \%$ dtbbpy. ${ }^{19} \mathrm{Co}(\mathrm{Pc})=1 \mathrm{~mol} \%$ cobalt				
phthalocyanine. ${ }^{c}$ Yields and ratios reported as GC area\%. ${ }^{d}$ Reaction				

Optimization \& Substrate Scope

Preliminary enantioconvergent coupling

Multimetallic Catalysed Cross-coupling of Aryl Bromides with Aryl Triflates

Nature, 2015, 524, 454-457.

Selectivities of Nickel and Palladium

3

1 eq. each

5

a) (dppp)PdCl2 and (bpy)NiBr2 (10 mol\%)

b) (bpy)NiBr2 (10 mol\%)

C) (dppp)PdCl2 (10 mol\%)

Conditions for the Multimetal-Catalyzed Cross-Ulmann Reaction

Summary

