Cross-Electrophile Coupling

M2 Takayuki Wakaki 20150919 1. Introduction

2. Cross-Electrophile Coupling

3. Cross-Electrophile Coupling ~ co-catalyst system

1. Introduction

The advent of transition-metal catalyzed strategies for forming new C-C bonds has revolutionized the field of organic chemistry.

Reductive dimerization of electrophiles were known(Wurtz, Ullman), but general methods have lagged far behind cross-couplings.

Wurtz coupling

Ullman coupling

$$2 \operatorname{Ar} - X \xrightarrow{Cu} \operatorname{Ar} - \operatorname{Ar}$$

Cross Selectivity-Major Approach-

Less wasteful approach is the development of *catalysts* able to differentiate the two electrophilic reagents.

Dr. Daniel J. Weix BA : Collumbia University (Thomas Katz) PhD : UC Berkeley (Jonathan Ellman) Postdoctoral fellow : Yale University and the University of Illinois (John Hartwig) Independent career : the University of Rochester as associate professor (2014)

Research : Cross-electrophile coupling reactions Ni and Co

2. Cross-Electrophile Coupling

Dual-ligand Ni catalyst system

GC yield.

A		+		Nil ₂ •xH ₂ O (10.7 mol%) dtbpy(1) (5 mol%) dppben(2) (5 mol%)		%)		$Me_2N \qquad NMe_2$ $Me_2N \qquad NMe_2$ $TDAE$	
	Ar-X ¹ (Ph-I) <i>1 eq.</i>	•	alkyl—X ² (I-C ₈ H ₁₇) <i>1 eq.</i>		(10 mo (2 eq.) 60-80 °		(Ph-C ₈ H ₁₇)		
Entry		Devia	tion from Standard Cond	tions	Yield (%) ^b	<i>t-</i> Bu	dtbpy <i>_t</i> -Bu	dppben	
1	none				88	>=	=\ /=(PPh ₂	
2	10 mol %	1 in pl	lace of a mixture of	1 and 2	83				
3	10 mol %	2 in pl	lace of a mixture of	1 and 2	19	Ċ	-N N/	PPh ₂	
4	5 mol % 1	in pla	ice of a mixture of 1	and 2	81				
5	no ligands				6	By	products		
6	no Mn ⁰ added				<1	E	Biaryl, β-Hydride E	limination,	
	7 pyridine omitted 8 $Br-C_8H_{17}$ in place of $I-C_8H_{17}$				67		Bialkyl, Reduce Ar		
					85 77		, , , , , , , , , , , , , , , , , , ,		
9		Br-Ph in place of I-Ph				Dı	ual-ligand system		
10			r-Ph in place of I-		65	W	With Pyridine, fewer products		
11	TDAE in p	place o	of Mn ⁰ , 2.5 equiv of	$I - C_8 H_{17}$	$-C_8H_{17}$ 57 from β -Hydride elimination				
mmol	of 1, 0.025	mmol	mmol each), 0.054 of 2 , 0.05 mmol c	of pyridine, 1 mm	ol of Mn ⁰		sing TDAE as redu turnover number)		
powde	er, and 2 ml	L of D	OMPU were heated	for up to 24 h. b	Corrected		JACS, 20	10, 132, 920.	

JACS, 2010, 132, 920. ₉

Coupling of Alkyl-Br with Ar-Br or Ar-Cl

^{*a*}Reactions were assembled on the benchtop on 0.5 mmol scale in 2 mL of 1,3-dimethyl-3,4,5,6-tetrahydro-2(1*H*)-pyrimidinone (DMPU). The reaction mixtures were heated for 3.5–36 h, and reaction progress was monitored by GC analysis. See Supporting Information for full details. ^{*b*}Yield of 3a was determined by GC analysis vs an internal standard and is corrected. ^{*c*}The amounts of these products are area % (A%) data. ^{*d*}Reaction conducted with 5 mol % 4 and 5 mol % 5. ^{*e*}Reaction run on 1 mmol scale; yield reported is the isolated yield. ^{*f*}Reaction run with 5 mol % 4/NiI₂·*x*H₂O/pyridine. ^{*g*}Reaction run with no nickel. ^{*h*}Reaction run at 70 °C. ^{*i*}Reaction run at 80 °C. ^{*j*}TMSCl and 1,2-dibromoethane (4 μ L each) were added sequentially as the last two reagents to the reaction vial.

JACS, 2012, 134, 6146.

11

Substrate Scope of Aryl and Alkyl Bromides

^{*a*}Reaction conditions: organic halides (0.75 mmol each), NiI₂·*x*H₂O (0.054–0.078 mmol), ligand (0.05–0.075 mmol), pyridine (0.05–0.075 mmol), sodium iodide (0.19 mmol), zinc dust (>10 μ m, 1.5 mmol), and DMPU (3 mL) were assembled on the bench in a 1 dram vial and heated for 5–41 h under air. Yields are of isolated and purified product. ^{*b*}Average of two runs. ^{*c*}Used 1.25 equiv of alkyl bromide (0.94 mmol). ^{*d*}The 2-bromoheptane contained 11% 3-bromoheptane (NMR). Product **3n** was isolated as an 83:17 ratio of **3n**:heptan-3-ylbenzene (NMR). ^{*c*}Isolated as an inseparable mixture with benzyl butyrate; yields determined by NMR analysis of this mixture. ^{*f*}Isolated as an inseparable mixture of (*E*) and (*Z*) isomers. ^{*g*}Isomer ratio determined by NMR analysis. ^{*h*}Starting material (2-bromo-2-butene) was an 88:12 ratio of (*Z*) and (*E*) isomers.

Chemoselectivity and Functional Group Compatibility

^{*a*}Reaction conditions: organic bromides (0.75 mmol each), NiI₂.*x*H₂O (0.054 mmol), ligand (0.05 mmol), pyridine (0.05 mmol), sodium iodide (0.19 mmol), zinc dust (>10 μ m, 1.5 mmol), and DMPU (3 mL) were assembled on the bench in a 1 dram vial and heated for 3.5–23 h under air. ^{*b*}Yields are of isolated and purified product. ^{*c*}Average of two runs. ^{*d*}Run at 80 °C and with 1 equiv of sodium iodide. ^{*e*}Run with 1.25 equiv of alkyl bromide (0.94 mmol). ^{*f*}Zinc was activated in situ with TMS-Cl and 1,2-dibromoethane (6 μ L each).

 A) *in situ* formation of an organometallic reagent followed by cross-coupling
 B) transmetalation between two organonickel species
 C) sequential oxidative additions at a single nickel center
 D) radical chain reaction

JACS, 2013, 135, 16192.¹⁴

 a GC yield at 24 h based on unreacted 1 or 2, corrected vs dodecane internal standard.

Tolerance of functional groups Direct insertion slower than reductive coupling. (left scheme) Zn to TDAE nonmetallic reducing agent. (6 turnover number) From above, A⇒×

15

Ratio of Product/Dimer

4a (blue triangles) with catalyst concentration, suggesting product and dimers arise from different mechanisms. Exponential fits: solid blue line, $f(x) = 121.05x^{-0.824}$, $R^2 = 0.94$; dashed red line, $f(x) = 723.81x^{-1.063}$, $R^2 = 0.92$.

B)second-order dependence on Ni concentration

(K. Osakada et al. Coord. Chem. Rev. 2000, 198, 379.) If cross-coupled product was obtained by a similar transmetalation mechanism, [cross]/[dimer] = 1 (independence on [Ni]). \Rightarrow cross selectivity at low temperature (above figure)

stoichiometric experiment \Rightarrow dimer was obtained mainly.

Mechanism C & D~ begin with Ar-Ni-I or Alkyl-Ni-I? ~

These stoichiometric studies \Rightarrow initial oxidative addition of Ar-I to 17

(2)

(3)

Radical intermediate & Which one is more reasonable C or D?

S2).

Scheme 3. Radical Clock Experiments^a

Ph-I 1a 12.5-50 mM (L)Ni^{II}I₂ Ph 12.5-50 mM py U (3ad) TMS-CI (0.04 equiv) Mn powder (2 equiv) R (3ad') DMF, 60 °C, 6-25 min 2d 25 20 15 U/R 10 5ŀ 0 5 10 15 20 25 30 35 40 45 50 55 60 Concentration of Catalyst (mM) 18 conclusion, but the reactions had longer induction periods (Figure

3. Co-Catalyst System

		Ar ^{-X} + [Ni] ↓ [Ni] ↓ [Ni] ↓ X	R ^{-Y} [Ni] or co-catalyst R [•]	[Ni] (co-catalyst)	Ar ^R
	Mechanism	R-Y	Co-catalyst	R•	Group
1	SET halogen abstraction	Alkyl-X	[Ni ^l]	Alkyl*	Weix, Ni ^l /Ni ^{III} , 2013
2	photoredox SET oxidation	Ar-N ₂ ⁺	Ru(bpy)₃Cl₂	Ar•	Sanford, Pd/Ru, 2011
3	photoredox SET reduction	Bn−BF ₃ K Ar−NMe₂ AlkyI−CO₂ ⁻	Ir(F-bpy)₂(bpy)PF ₆ hυ, -e⁻	Bn* ArN(Me)CH ₂ * Alkyl*	Molander, Ni/Ir, 2014 Doyle and Macmillan, Ni/Ir, 2014
4	SET reductive ring opening	R √0	Cp₂Ti ^{III} CI ►	R O[Ti ^{IV}]	Weix, Ni/Ti, 2014
5	SN ₂ followed by homolysis	Bn–OMs	Co ^l (Pc) ►	Bn•	Weix, Ni/Co, 2015

Nickel-Catalyzed Regiodivergent Opening of Epoxides with Aryl Halides: Co-Catalysis Controls Regioselectivity

Enantioselective Arylation of meso-Epoxides

^{*a*}Reactions were run with 1.0:2.0:0.1:0.1 Et₃N·HCl/Mn⁰/titanocene/NiCl₂(dme)/bipyridine in DMPU with stirring for 12 h at rt. Assay yields (GC area %) are shown, with an isolated yield in parentheses. Enantiomeric excesses were determined by chiral-phase GC or SFC analysis.

Formation of [3, 3, 0]Bicycoocatanol Products

only rearranged product was formed.

⇒The coupling of the β -titanoxy radical with an arylnickel intermediate is slowed by steric interactions.

Chem. Sci. 2015, 6, 1115.

Solution & Optimization

Ar-I was also employed as coupling partners. Added Nal depressed the yield only slightly. (13, 9) \Rightarrow PhI competes with in situ formed BnI more effectively than PhBr for oxidative addition to nickel.

Ph

Entry

1	Br	[Ni] only	3	1:1	
2	Br	Co(Pc) only	0	ND:3	
3	Br	[Ni], Co(Pc)	73	1: ND	
4	Br	$[Ni], CoCl_2$	4	4:1	
5	Br	[Ni], NaI (25 mol%)	25	1:1	
6	Br	[Ni], Co(Pc), Mn instead of Zn	64	4:1	
7	Br	$NiBr_2 \cdot 3H_2O$, $Co(Pc)$	1	1:6	
8	Br	No [Ni] and no Co(Pc)	0	0:1	
$9^{d,e}$	Ι	[Ni] only	71	7:1	
10^e	Ι	Co(Pc) only	0	ND:1	
$11^{d,e}$	Ι	[Ni], Co(Pc)	83	17:1	
12	Ι	[Ni], Co(Pc)	83	83:1	
13	Ι	[Ni], NaI (25 mol%)	64	8:1	
14	Ι	[Ni], Co(Pc), Mn instead of Zn	42	1.4:1	
^{<i>a</i>} Reactions run at 0.25 M in DMA. BnOMs was formed <i>in situ</i> from $BrOH$ Ma O (4.44 equiv) and $BtM(i Br)$ (4.6 equiv) for BH [Ni]					

BnOH, Ms₂O (1.44 equiv.), and EtN(i-Pr)₂ (1.6 equiv.). See ESI. ^b [Ni] = 7 mol% NiBr₂·3H₂O and 5 mol% dtbbpy.¹⁹ Co(Pc) = 1 mol% cobalt phthalocyanine. ^c Yields and ratios reported as GC area%. ^d Reaction run at 60 °C. ^e Reaction complete within 1 h.

Multimetallic Catalysed Cross-coupling of Aryl Bromides with Aryl Triflates

Nature, 2015, 524, 454-457.

Conditions for the Multimetal-Catalyzed Cross-Ulmann Reaction

