Total Synthesis of Ingenol

contents

1. Introduction
2. What's In/Out chemistry?
3. Synthesis of Ingenane core
4. Tanino \& Kuwajima's total synthesis
5. Summary

1. Introduction

Structual Features and Synthetic Challenges

1) Trans-fused bicyclo[4,4,1]undecane ring
2) Highly strained inside-outside intrabridgehead stereochemistry of the BC ring
3) cis-triol segment located on upper face

Comparison of Ingenol and Isoingenol (in-H) (out-H)

ΔE rel (kcal/mol)	Ingenol	(Paquete, L. A.)
First total synthesis (yeah)	2002	no activity

Bioactivity

Tumor promoting, antileukemic, and anti-HIV properties (activation of PKC)

Biosynthesis

pyrophosphate

lathyrol (5)

daphnane

History

1) Ingenol was isolated by Hecker, E. and co-workers in 1968

Although no details are known, a 1,2-alkyl shift (ex. WagnerMeerwein rearrangement) connects tiglanes to ingenanes.
2) Zeckmeister, K. and co-workers determined its structure by X-ray crystallography in 1970
3) Synthetic approach to Ingenol

Funk, R.
Rigby, J. H.
1993(J. Org. Chem.)
1998(Tetrahedron, Lett.)
4) Total synthesis of Ingenol

Winkler, J. D.
Tanino, K. and Kūwājimā, T.
2002(J. am. Chem. Soc.)
Kigoshi, H. (formal synthesiş)
Wood, J. L.
2002(J. am. Chem. Soc.)
2004(J. Org. Chem.)
2004(J. am. Chem. Soc.)
5) Synthetic Studies toward 13-Oxyingenol Kigoshi, H.

Angle Definition
C-H in : $0^{\circ}<\theta<90^{\circ}$
C-H out : $90^{\circ}<\theta<180^{\circ}$

Figure 2. Homeomorphic isomerisation

Table 1. MM2 Calculated Steric Energies of Lowest Energy Conformations of Bicyclic Hydrocarbons (in kcal/mol) ${ }^{a}$

${ }^{a}$ All data is taken from reference 36 unless otherwise stated. ${ }^{b}$ Calculation by present authors. ${ }^{c}$ Data from ref 77 .

Figure 3. An in,out-bicyclic compound (A) at equilibrium with an intertwined out,out conformation (B). ${ }^{34}$

Half-twist
methylene groups in the bridges, out,out-isomer is itself usually severely strained.

3/17

Amines

41 Ione pair out/out

43
flat nitrogen atom

10 lone pair in/in

1,4-diazabicyclo-[2,2,2]-octane (DABCO, 41)
1,5-diazabicyclo-[3,3,3]-undecane (43)
1,6-diazabicyclo-[4,4,4]-tetradecane (10)

Transannular interactions involving inside functionally

4a, $\mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{H}$,
4b, R=Me, R' =OMe
proton sponge
Proton is strongly caught, and not detached.
Table 1. Calculated (B3LYP/6-311+G*//B3LYP/6-31G*) PA and $\mathrm{p} K_{\mathrm{a}}$ Values

diamine	gas-phase PA $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	$\mathrm{p} K_{\mathrm{a}}$ $\left(\mathrm{H}_{2} \mathrm{O}\right)^{\mathrm{a}}$	$\mathrm{p} K_{\mathrm{a}}$ $\left(\mathrm{MeCN}^{\mathrm{b}}\right.$	$\Delta E(\mathrm{i})$ $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	$\Delta E(\mathrm{ii})$ $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
4a	1028	11.9	18.1		
4b	1089	20.1	23.2		

${ }^{a}$ Relative to $\mathrm{Me}_{3} \mathrm{~N}, \mathrm{p} K_{\mathrm{a}}=9.81 .{ }^{b}$ Relative to $\mathrm{Me}_{3} \mathrm{~N}, \mathrm{p} K_{\mathrm{a}}=17.61$.

Inside-monoprotonated ion could not be deprotonated easily.

syn-RRRRH ${ }^{+}$

$1 R, 4 R, 8 R, 11 R /$
$1 R, 4 R, 8 R, 11 S /$
1S,4S,8S,11R

Table 2. Calculated (B3LYP/6-311+G*//B3LYP/6-31G*) PA and $\mathrm{p} K_{\mathrm{a}}$ Values for diastereomers of
15,16-dimethyl-15,16-diazatricyclo[9.3.1.14,8]hexadecane

diamine	gas-phase PA $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	$\mathrm{p} K_{\mathrm{a}}$ $\left(\mathrm{H}_{2} \mathrm{O}\right)^{a}$	$\mathrm{pK} K_{\mathrm{a}}$ $\left(\mathrm{MeCN}^{b}\right.$	$\Delta E(\mathrm{i})$ $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	$\Delta E(\mathrm{ii})$ $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
syn-RRRR	1105	23.6	30.4	43	-23
anti-RRRR	1022	9.8	16.7	16	33
Syn-RRRS	1091	21.4	28.0	36	-18
Anti-RRRS	1025	10.4	16.9	13	24
Syn-RSRS	1082	19.9	26.5	41	-3
Anti-RSRS	1071	19.1	25.4	45	13
Syn-RRSS	1107	24.5	30.9	93	24
Anti-RRSS	1031	10.9	17.8	2	7
Syn-RSSR	1093	21.5	28.9	59	2
anti-RSSR	1014	9.5	16.1	-1	22

${ }^{a}$ Relative to $\mathrm{Me}_{3} \mathrm{~N}, \mathrm{p} K_{\mathrm{a}}=9.81 .{ }^{b}$ Relative to $\mathrm{Me}_{3} \mathrm{~N}, \mathrm{p} K_{\mathrm{a}}=17.61$.

syn-RRRR

anti-RRRR

anti-RRRR H^{+}

Enatioselective epoxidaton by threitol-strapped Manganese porphyrin

Background
Collman, J. P. et al., Bull. Chem. Soc. Jpn., 1988, 61, 47
The "picnic-Basket" Strategy

Scheme 1. Strategy for catalysis by "picnic-basket" porphyrins.

1,5-dicyclohexylimidazole binds to the unhindered face of the manganese porpjirin

10

Collman, J. P. et al., J. Am. Chem. Soc. 1993, 115, 3834
Collman, J. P. et al., J. Am. Chem. Soc. 1995, 117, 692

Out/Out

Out/In

$$
\begin{array}{r}
\text { 4: } \mathrm{X}=\mathrm{H}, \mathrm{H} \\
\text { 7: } \mathrm{X}=\mathrm{MnCl}
\end{array}
$$

5: $X=H, H$
8: $\mathrm{X}=\mathrm{MnCl}$

6: $X=H, H$
9: $\mathrm{X}=\mathrm{MnCl}$

Table 3. \% ee from the Asymmetric Epoxidation of 4-Chlorostyrene and cis- β-Methylstyrene Catalyzed by Manganese Threitol-Strapped Porphyrins: Effect of Added Pyridine or 4-tert-Butylpyridine ${ }^{a}$

Table I. Asymmetric Epoxidation of Aromatic Olefins with 9 (Yields are based upon iodosylbenzene.)

substrate	reaction $T,{ }^{\circ} \mathrm{C}$	yield, \% ${ }^{\text {b }}$	ee, \% ${ }^{\text {c }}$	configuration ${ }^{\text {d }}$	best reported ee, \%e
	25	86	69	$R(+)$	$57 f$
	25	82	70	$R(+)$	51^{g}
	25	65^{h}	79	$(-)^{i}$	16^{8}
	$\begin{array}{r} 25 \\ 0 \end{array}$	$\begin{aligned} & 89 \\ & 76 \end{aligned}$	$\begin{aligned} & 77 \\ & 80 \end{aligned}$	$\begin{aligned} & 1 R, 2 S(-) \\ & 1 R, 2 S(-) \end{aligned}$	92^{j}
	$\begin{array}{r} 25 \\ 0 \\ -10 \end{array}$	$\begin{aligned} & 85 \\ & 67 \\ & 26 \end{aligned}$	$\begin{aligned} & 84 \\ & 87 \\ & 88 \end{aligned}$	$\begin{aligned} & 1 R, 2 S(+) \\ & 1 R, 2 S(+) \\ & 1 R, 2 S(+) \end{aligned}$	83*
	25	81	21	$1 S, 2 S(-)$	56^{k}

Figure 1. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2}$ in $\left[\mathrm{D}_{8}\right]$ toluene at $-80^{\circ} \mathrm{C}$ (the arrows denote exchanging species; * and ** denote unknown and known impurities, respectively).

in,out-2 exhibited a single signal in the ${ }^{31} \mathrm{P}$ NMR spectrum at $-50^{\circ} \mathrm{C}$. But at $-90^{\circ} \mathrm{C}$, two signals were observed. This implies that a degenerate in,out/out, in homeomorphic isomerization is rapid on the NMR time scale.

Figure 2. Low-temperature ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of in,out-2.

3. Synthesis of Ingenane core

Winkller's route

Funk's approach

Rigby's approach

Wood's Route

Prepared in 10 steps from a chiral terpene

Ingenol

23

4. Tanino \& Kuwajima's total synthesis of Ingenol

Preparation of key intermidiate 14

1) $\mathrm{TIPSCI}, \mathrm{DMAP}$

DMF, 100\%
2) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 84 \%$
3) $\mathrm{SO}_{3} \bullet p y r i d i n e$ DMSO, $\mathrm{Et}_{3} \mathrm{~N}, 97 \%$

12

1) BuLi, THF; $\left(\mathrm{CH}_{2} \mathrm{O}\right) \mathrm{n}, 91 \%$
2) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 99 \%$

Dicobalt hexacarbonyl complex
(i) Introduction

Saito (M1) Literature seminar(2010)
Omae et al., Appl. Organometal.. Chem, 2007, 21, 318

Organocobalt compounds in organic synthesis have three characteristic reacitons.
A) A high affinity to $\mathrm{C}-\mathrm{C} \pi$-bonds or $\mathrm{C}-\mathrm{N} \pi$-bonds.
B) A high affinity to carbonyl groups.
C) Easily tending to form square-planar bipyramidal six-coordination structures at the square-planar position, and to bond with one or two carbon atoms at axial position.

Nicholas reaction, Pauson-Khand reaction and $[2+2+2]$ cyclizaiton are based on character A. (Pauson-Khand reaction is also based on character B)
(ii) Nicholas reaction (character A)

mutualy bridged bond between $\mathrm{Co}-\mathrm{Co}$ and $\mathrm{C} \equiv \mathrm{C}$

Figure 1. Structure of dicobalt hexacarbonul diphenyl acetylene. ${ }^{69}$.

The cation at the β-position of the cobalt is stabilized by dicobalt hexacarbonyl acetylene moiety.

Ref : Mayr et al., JACS, 1998, 120, 900

D

1) Li , liq NH_{3} 67\% (2 steps)
2) CHBr_{3}, aq. NaOH $\mathrm{BnEt}_{3} \mathrm{NCl}$
$\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{O}, 71 \%$

17
2) TBHP, $\mathrm{Ti}(\mathrm{OiPr})_{4}$
MS4A, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

18

19

Introduction of hydroxyls for tetraol 28

28

27

1) $\mathrm{Zn}, \mathrm{NH}_{4} \mathrm{Cl}$

Ingenol

5. Summary

Total synthesis of Ingenol
Winkler, J. D.------------------------------ [2+2]-photocycloaddition racemic total synthesis - 43 steps, 0.007% yield

Tanino, K. and Kuwajima, I.Nicholas reaction and pinacol rearrangement racemic total synthesis - 45 steps, 0.03% yield

Wood, J. L. ring-closing metathesis assymmetric synthesis - 35 steps, 0.002% yield

