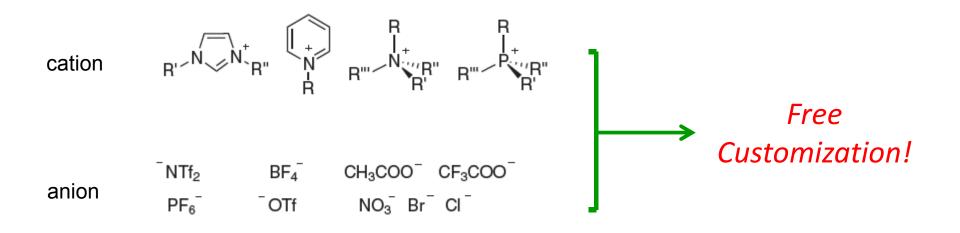

Ionic Liquids

Tomohiro Yamamoto 2012/11/5

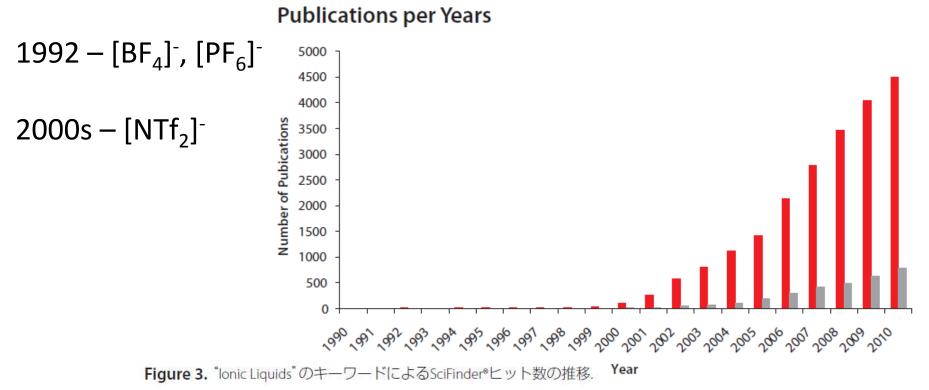
Solvents - classification



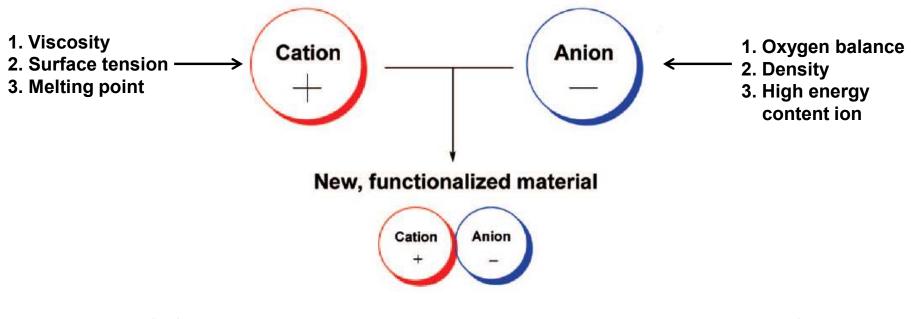
Contents

- 1. Basic
- 2. Application
 - 2-1. Organic Reaction
 - 2-2. Bioscience
 - 2-3. Supported Ionic Liquid Phase (SILP)
- 3. Summary

^{1. Basic} Definition


 Ionic Liquids are ionic compounds(salts) which are liquid below 100 °C. More commonly, Ionic Liquids have melting points below room temperature.

1. Basic History


 $1914 - [EtNH_3][NO_3]$ (m.p. $12^{\circ}C$) was first described.

1970s~1980s – imidazolium and pyridinium cation, halide anion

赤は論文、灰色は特許数を示す.

^{1. Basic} Designers solvent – ionic liquids (1)

Stability

Functionality

about 1000 ILs are described in the literature, 300 are commercially available. 1. Basic

Designers solvent – ionic liquids 2

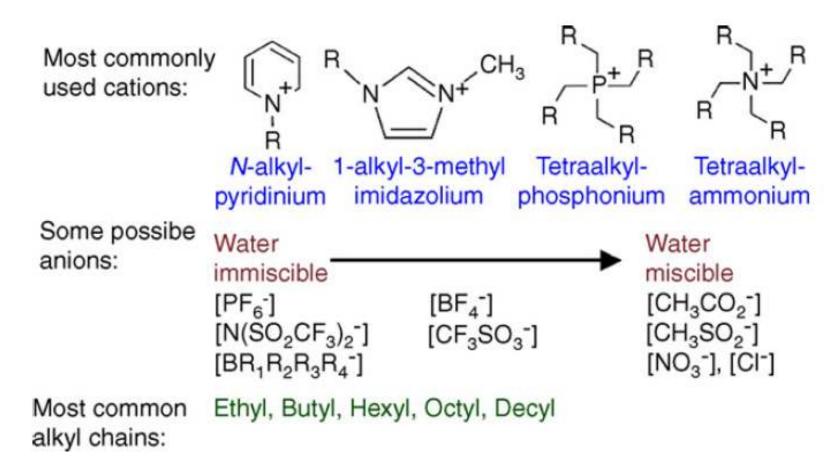
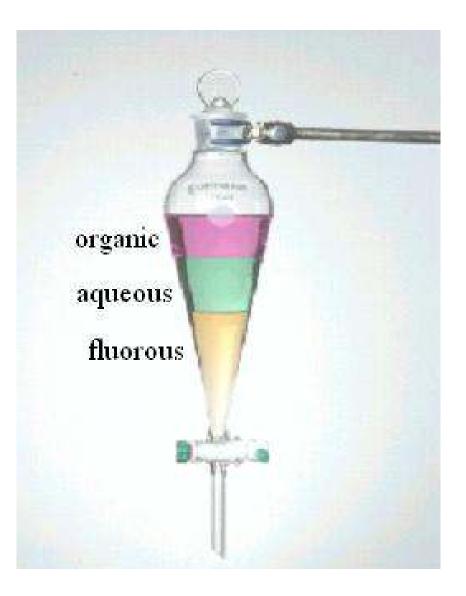
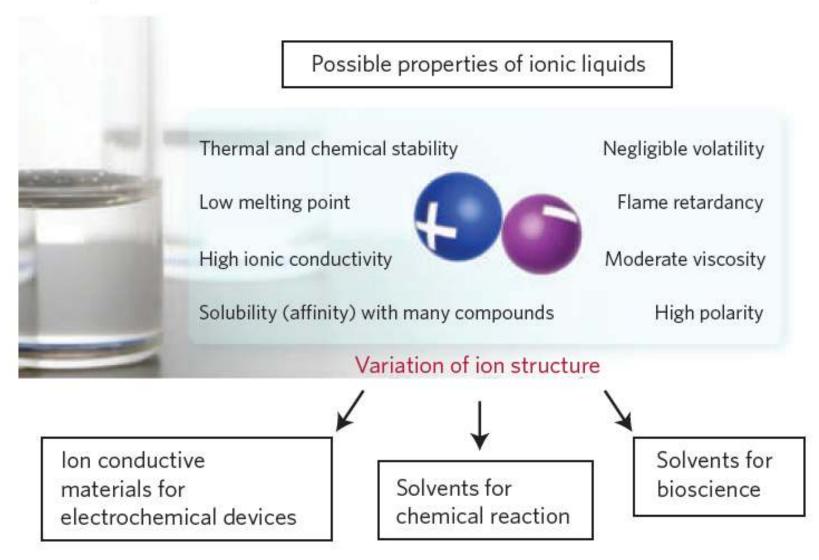



Fig. 3. Most commonly used cation structures and possible anion types [50]

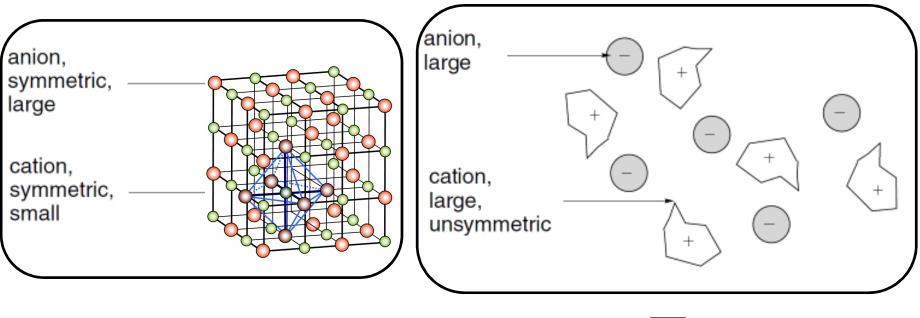
1. Basic Characteristics 1


$[BF_4]^{-}$ $[PF_6]^{-}$ $[NTf_2]^{-}$

Fluorous ILs are immiscible with both organic and aqueous solvents.

1. Basic Characteristics (2)

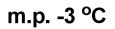
lonic liquids

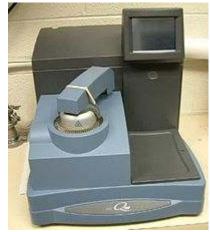


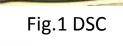
1. Basic Melting point (1)

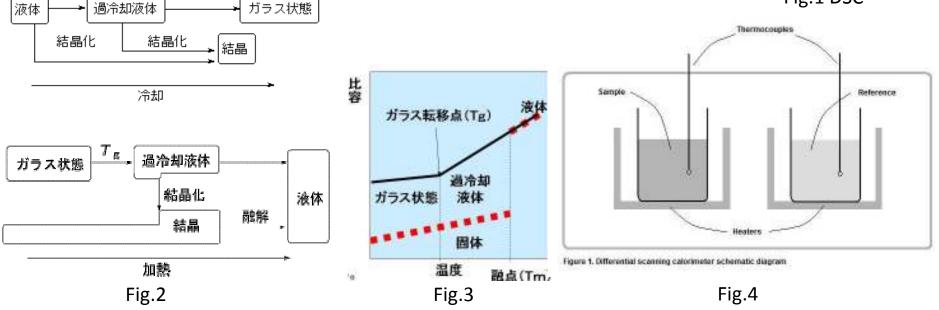
Cation	Anion	$T_{\rm m}/{}^{\rm o}{ m C}$
Na ⁺	C1 ⁻	801
Cs^+	Cl⁻	645
$(Pr)_4N^+$	Cl⁻	241
$N > N^+$	Cl⁻	87
	NO_3^-	38
$\sim N \gg N^+$	$\mathrm{BF_4}^-$	15
N > N > N > N > N > N > N > N > N > N >	$F_{3}C_{N} = \begin{matrix} O & \bigcirc \\ N \\ S \\ U \\ O \\ O \end{matrix} CF_{3}$	-3

cation and anion size m.p. high small low large


1. Basic Melting point 2




^{1. Basic} DSC (Differential Scanning Calorimetry) ①


DSC is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature.

Using this technique it is possible to observe fusion and crystallization events as well as glass transition temperatures T_q

ガラス転移

^{1. Basic} DSC (Differential Scanning Calorimetry) (2)

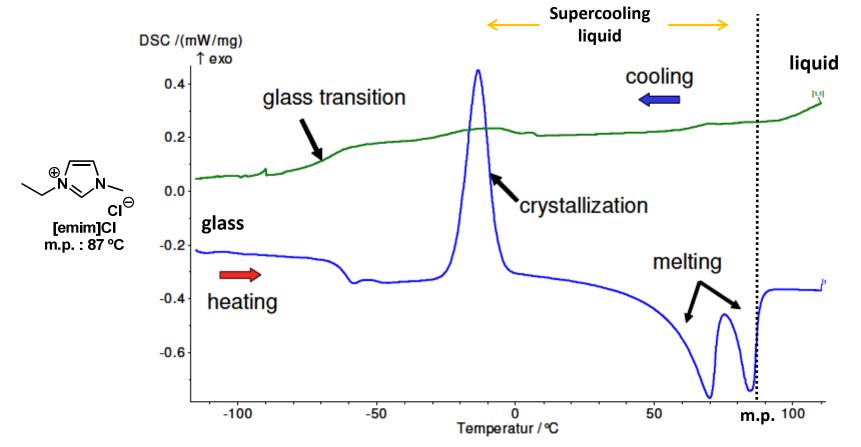
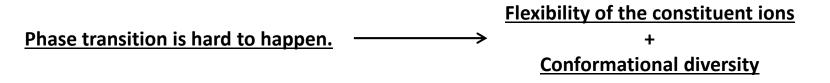
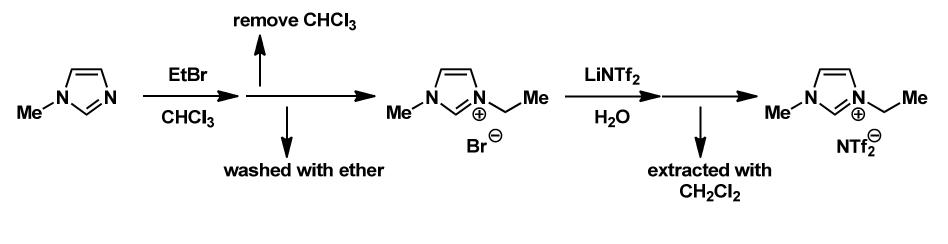




Figure 1: DSC melting and crystallization experiment of EMIM-Chloride, dT/dt = 10K/min

^{1. Basic.} Preparation and Purification

<Purification>

Negligible volatility ------> distillation

^{1. Basic} Catalog (Aldrich)

1-Butyl-3-methylimidazolium c	hloride		Butyltrimethylammo	nium bis(trifluoromethylsulfony	/l)imide
BMIMCI [79917-90-1] C ₈ H ₁₅ CIN ₂ FW: 17	'4.67	C ^{N,CH} s cr	[258273-75-5] CoH18F	56N2O4S2 FW:396.37 сна нас-№-	CH ₀ F ₀ C-S-N-S-CF ₀
mp ~70 °C		СНа	▶ 99%		
			water: ≦0.2%		
≥99.0% (HPLC)			bromide (Br') ∶≦25 m		
water: ≦0.2%			chloride (Cl') ∶≦25 m		2O43) :≦10 mg/kg
04129-5G-F	5 g	¥13,900	fluoride (F') :≦10 m	g/kg sulfate (SO4 ²⁻)) :≦25 mg/kg
04129-25G-F	25 g	¥47,800	713007-5G	5 g	¥8,300
1-Butyl-3-methylimidazolium h	exafluorophosphate		713007-50G	50 g	¥40,000
BMIMPF6			1-Butyl-4-methylpyri	idinium hexafluorophosphate	
[174501-64-5] CaH15F6N2P FW:	284.18	N PF4	4MBPPF6		ÇH ₃
d 1.38 g/mL (20 °C) n ₹ 1.41		CH6	[401788-99-6] C10H16	.F6NP FW: 295.20	PF6
C		0000000	mp~45 °C		~,γ
For catalysis, ≥98.5% (T)					~_сн,
water: ≦0.02%			▶ ≧97.0%		
bromide (Br) :≦10 mg/kg	phosphate (PC	(¹) :≦30 mg/kg	lonic liquid: reaction ki	inetics of redox reactions ¹	
bromide (Br) :≦10 mg/kg chloride (CI) :≦10 mg/kg	phosphate (PC sulfate (SO4 ²)			inetics of redox reactions ¹ al. <i>J. Phys. Chem. A</i> 106 , 3139, (2002	2)
bromide (Br) :≦10 mg/kg chloride (Cl) :≦10 mg/kg nitrate (NO₁) :≦10 mg/kg			Lit.cited: 1. D. Behar et	al. J. Phys. Chem. A 106 , 3139, (2002	
chloride (CI) :≦10 mg/kg nitrate (NO₁) :≦10 mg/kg	sulfate (SO4 ²)	:≦10 mg/kg	Lit.cited: 1. D. Behar et 88458-5G	al. J. Phys. Chem. A 106 , 3139, (2002 5 g	¥17,000
chloride (Cl) :≦10 mg/kg		:≦10 mg/kg ¥11,900	Lit.cited: 1. D. Behar et 88458-5G 88458-50G	al. J. Phys. Chem. A 106 , 3139, (2002 <u>5 g</u> 50 g	
chloride (Cl) : ≦10 mg/kg nitrate (NO₃) : ≦10 mg/kg 18122-5G-F	sulfate (SO4 ²) 5 g 50 g	:≦10 mg/kg ¥11,900	Lit.cited: 1. D. Behar et 88458-5G 88458-50G Tetrabutylphosphon	al. J. Phys. Chem. A 106 , 3139, (2002 5 g 50 g ium methanesulfonate	¥17,000
chloride (CI) :≦10 mg/kg nitrate (NO₃) :≦10 mg/kg 18122-5G-F 18122-50G-F 1-Ethyl-3-methylimidazolium b	sulfate (SO4 ²) 5 g 50 g romide	:≦10 mg/kg ¥11,900	Lit.cited: 1. D. Behar et 88458-5G 88458-50G Tetrabutylphosphon [98342-59-7] C ₁₇ H ₃₉ C	al. J. Phys. Chem. A 106 , 3139, (2002 5 g 50 g ium methanesulfonate	¥17,000 ¥52,000
chloride (CI) :≦10 mg/kg nitrate (NO₁) :≦10 mg/kg 18122-5G-F 18122-50G-F	sulfate (SO4 ²) 5 g 50 g romide	:≦10 mg/kg ¥11,900	Lit.cited: 1. D. Behar et 88458-5G 88458-50G Tetrabutylphosphon	al. J. Phys. Chem. A 106 , 3139, (2002 5 g 50 g ium methanesulfonate	¥17,000 ¥52,000
chloride (CI) : $\leq 10 \text{ mg/kg}$ nitrate (NO ₃) : $\leq 10 \text{ mg/kg}$ 18122-5G-F 18122-50G-F 1-Ethyl-3-methylimidazolium b [65039-08-9] C ₆ H ₁₁ BrN ₂ FW: 19	sulfate (SO4 ²) 5 g 50 g romide	:≦10 mg/kg ¥11,900 ¥72,000	Lit.cited: 1. D. Behar et 88458-5G 88458-50G Tetrabutylphosphon [98342-59-7] C ₁₇ H ₃₉ C mp 59-62 °C	al. J. Phys. Chem. A 106 , 3139, (2002 5 g 50 g ium methanesulfonate	¥17,000
chloride (CI) : ≦10 mg/kg nitrate (NO ₃) : ≦10 mg/kg 18122-5G-F 18122-50G-F 1-Ethyl-3-methylimidazolium b [65039-08-9] C ₆ H ₁₁ BrN ₂ FW: 19 ► dry, ≧98.5% (HPLC/T)	sulfate (SO4 ²) 5 g 50 g romide	:≦10 mg/kg ¥11,900 ¥72,000	Lit.cited: 1. D. Behar et 88458-5G 88458-50G Tetrabutylphosphon [98342-59-7] C17H39C mp 59-62 °C ►≧98.0% (NT)	al. J. Phys. Chem. A 106 , 3139, (2002 5 g 50 g ium methanesulfonate	¥17,000 ¥52,000 HgC CHg HgC CHg O CHg O CHg
chloride (CI) : ≦10 mg/kg nitrate (NO ₃) : ≦10 mg/kg 18122-5G-F 18122-50G-F 1-Ethyl-3-methylimidazolium b [65039-08-9] C ₆ H ₁₁ BrN ₂ FW: 19 ► dry, ≧98.5% (HPLC/T) water: ≦200 ppm	sulfate (SO4 ²) 50 g romide 11.07	:≦10 mg/kg ¥11,900 ¥72,000	Lit.cited: 1. D. Behar et 88458-5G 88458-50G Tetrabutylphosphon [98342-59-7] C17H39C mp 59-62 °C ►≧98.0% (NT) Lit.cited: 1. M. Badri et	al. J. Phys. Chem. A 106 , 3139, (2002 5 g 50 g ium methanesulfonate D ₃ PS FW: 354.53	¥17,000 ¥52,000 HgC CHg HgC CHg O CHg O CHg
chloride (CI) : ≦10 mg/kg nitrate (NO ₃) : ≦10 mg/kg 18122-5G-F 18122-50G-F 1-Ethyl-3-methylimidazolium b [65039-08-9] C ₆ H ₁₁ BrN ₂ FW: 19 ► dry, ≧98.5% (HPLC/T)	sulfate (SO4 ²) 5 g 50 g romide	:≦10 mg/kg ¥11,900 ¥72,000 € ^{CH} h Br CH _b Br ¥24,600	Lit.cited: 1. D. Behar et 88458-5G 88458-50G Tetrabutylphosphon [98342-59-7] C17H39C mp 59-62 °C ►≧98.0% (NT) Lit.cited: 1. M. Badri et	al. J. Phys. Chem. A 106 , 3139, (2002 5 g 50 g ium methanesulfonate D ₃ PS FW: 354.53 al. Tetrahedron Lett. 33 , 4435, (1992)	¥17,000 ¥52,000 HgC CHg HgC CHg O CHg O CHg

http://ilthermo.boulder.nist.gov/ILThermo/pureils.uix.do?event=NewSearch

Ionic Liquids Database- (ILThermo)

Property Data of Pure Ionic Liquids Search by Ionic Liquids

Formula	
Molec.Weight	Search
Ionic Liquid Name	1-butyl-3-methylimidazolium chlc

Enter Criteria for Ionic Liquids

Hints: Search is CASE-INSENSITIVE. Enter a Molecular Formula or Name or Just a fragment of these fields

Examples for Name: pyridinium, Imidazolium, CHLORIDE,...

Examples for Formula: C8H15BrN2, c8h15, ClN2,...

Examples for Molecular Weight: >200, 216.12, ...

http://ilthermo.boulder.nist.gov/ILThermo/pureils.uix.do?event=NewSearch

Ionic pair constituting this ionic liquid = 1-butyl=3-methylimidazolium chloride								
	◎ 前へ 1-2 / 2 次へ ◎							
Formula	Ionic Charge	Ionic Name	Ionic Structure					
C8H15N2	1	1-butyl-3-methylimidazolium						
Cl	-1	chloride	CI					

Available properties for this ionic liquid = 1=butyl=3=methylimidazolium chloride

			◎ 前へ 1-6	5/6次へ ⊘
選択	Property Category	Description	References	Data Points
۲	Heat Capacity and Derived Properties	Heat Capacity at Constant Pressure, J/K/mol	2	14
\bigcirc	Phase Transition Properties	Glass Transition Temperature, K	1	1
\bigcirc	Phase Transition Properties	Normal Melting Temperature, K	7	7
\odot	Refraction, Surface Tension, and Speed of Sound	Surface Tension, N/m	1	20
\odot	Transport Properties	Viscosity, Pa s	1	9
\odot	Volumetric Properties	Specific Density, kg/m**3	1	1

Refe	References and Data Sets						
					◎ 前へ 1-2 / 2 次へ ◎		
		Sample	Data	Year			
選打	Reference Title	No	Set	Pub.	Authors		
۲	Heat Capacities of Ionic Liquids and Their Applications as Thermal	1	1	2003	Holbrey, J. D.; Reichert, W. M.; Reddy, R. G.; Rogers, R. D.		

2. Application

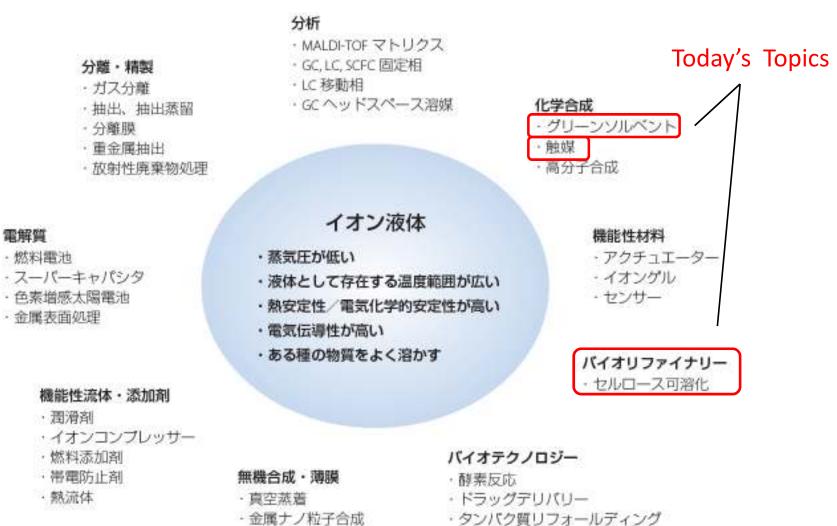
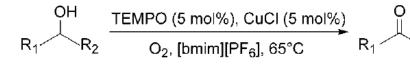
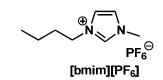
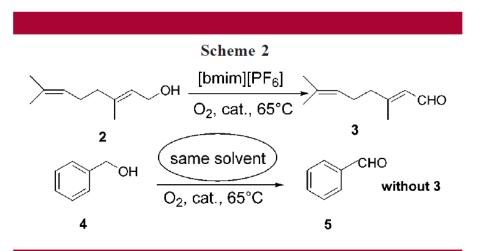




Figure 1. イオン液体の特徴とアプリケーション

Organic Reaction (TEMPO oxidation) (1)

 R_1 = aryls, alkyls ; R_2 = H, alkyls

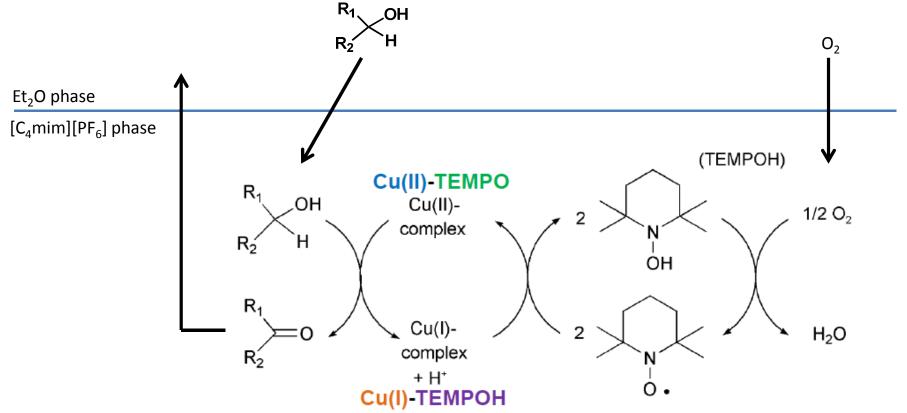


Fable 1. Conversion of Alcohols to Aldehydes and Ketones								
entry	alcohol	product	time/h	conversi	on ^a yield ^b			
1 2	СООН	СССНО	15 9°	98 98	72 73			
з м	eo MeO	СНО	16	97	90			
4	Ф	СНО	15	97	96			
5	NO2 OH	NO2 CHO	36	96	75			
6	П ОН		83	98	73			
7		U .	42 ^d	98	72			
8	OH CH	Ŭ	30	96	91			
9	Отон	C	HO 20	98	75			
10	ОТОН		HO 29	97	78			
11	geraniol	~сно	18	98	85			

entry	alcohol	product	time/h	conversior	n ^a yield ^b
12	CH₂OH ↓↓↓ ⊕H	CHO =	16	98	90
13	С. Н	ů	24	98	75
14	Â	Å	28	90	60
15	n-C7H15-CH2OH	n-C7H15CHO	30	70	
16 17	с Н	Ŏ	60 36 ^d	90 98	50
18	Кон	X.º	48	30	
19	ОН		48	no rea	ction

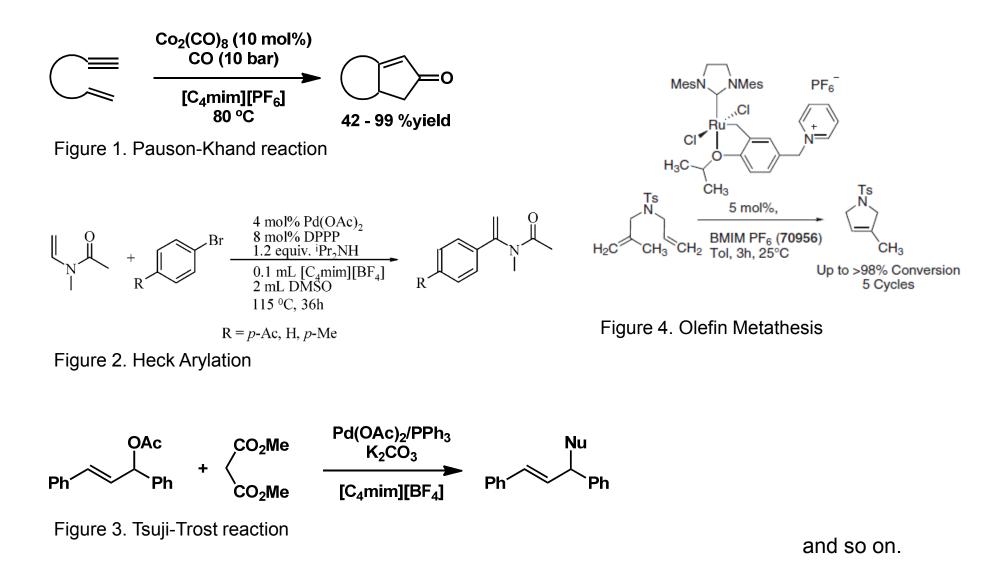
^a GC conversion. ^b Isolated yield. ^c Reaction was carried out at 50 °C with 10% catalyst. ^d 10% catalyst was used.

Organic Reaction (TEMPO oxidation) (2)



Alcohol to					in	uton of	f Benzy	/1
	1	2	3	4	5	6	7	8

yield (%)	72	70	68	70	65	64	62	60


R. Gree, et al. Org. Lett. 2002, 4, 9.

Organic Reaction (TEMPO oxidation) ③

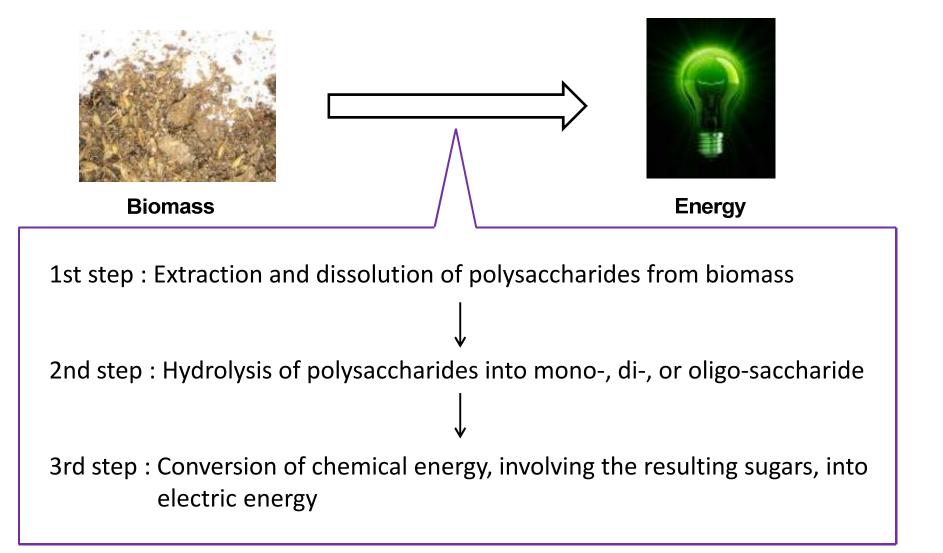


Fig. 3 Copper-centred mechanism for the Cu–TEMPO catalysed aerobic oxidation of alcohols.

^{2-1.} Organic Reaction (other reactions)

^{2-2.} Bioscience (Biorefinery) ①

^{2-2.} Bioscience (Biorefinery) (2)

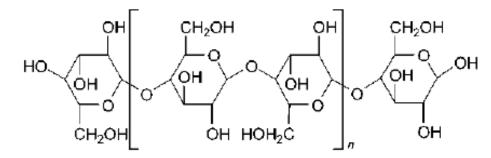


Figure 1. A cellulose polymer chain, n is typically 400-1000.

Problem : Cellulose is insoluble in water and common organic reagents.

2-2. Bioscience (Biorefinery) ③

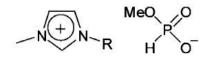
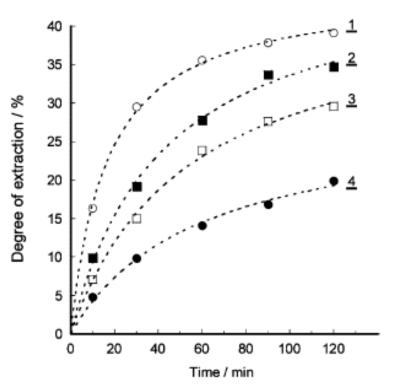

ionic liquid	method	solubility (wt %)	
[C₄mim]Cl	heat (100 °C)	10%	
	(70 °C)	3%	
[C4mim]Cl	heat $(80 ^{\circ}\text{C})$ + sonication	5%	\oplus / \longrightarrow
[C4mim]Cl	microwave heating	25%, clear	
	3–5-s pulses	viscous solution	(¹) _{n-1}
[C4mim]Br	microwave	5-7%	[C _n mim] ⁺
[C ₄ mim]SCN	microwave	5-7%	(C _n -methylimidazolium)
[C ₄ mim][BF ₄]	microwave	insoluble	, , , , , , , , , , , , , , , , , , ,
$[C_4 mim][PF_6]$	microwave	insoluble	
[C ₆ mim]Cl	heat (100 °C)	5%	
[C ₈ mim]Cl	heat (100 °C)	slightly soluble	

Table 1.	Solubility of	Dissolving	Pulp Cellulos	se in Ionic Liquic	ls
----------	---------------	------------	---------------	--------------------	----

The melting point of $[C_4 mim]Cl$ is 70°C. \mathbf{V} Extra energy is needed to operate with IL based on [C₄mim]Cl


R. D. Rogers, et al. J. Am. Chem. Soc. 2002, 124, 4974.

^{2-2.} Bioscience (Biorefinery) ④

R = ethyl: 1, allyl: 2, n-propyl:3, n-butyl: 4

Chart 1 Chemical structure of dialkylimidazolium methylphosphonate.

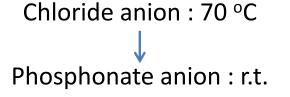
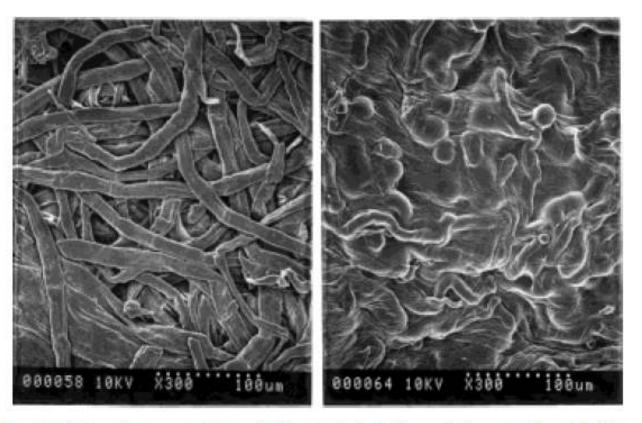



Fig. 3 Degree of extraction for bran with a series of ILs.

@50 °C

H. Ohno, et al. Green Chem. 2010, 12, 1274.

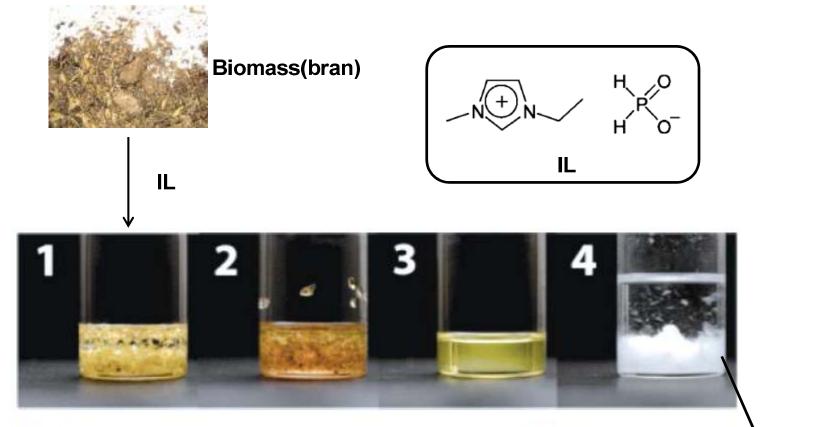
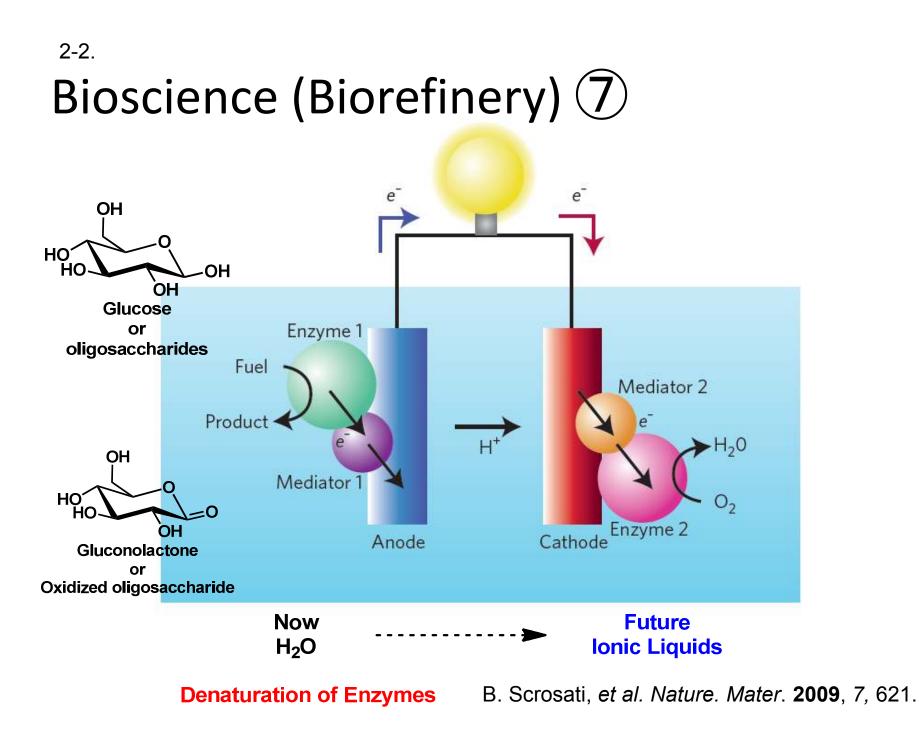

^{2-2.} Bioscience (Biorefinery) (5)

Figure 2. SEM micrographs of the initial dissolving pulp (left) and after dissolution in [C₄mim]Cl and regeneration into water (right).


R. D. Rogers, et al. J. Am. Chem. Soc. 2002, 124, 4974.

^{2-2.} Bioscience (Biorefinery) (6)

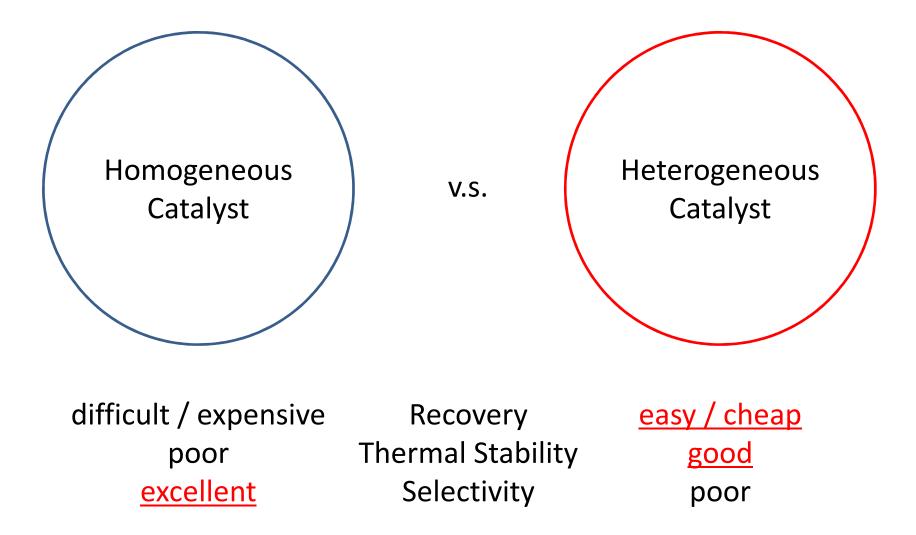
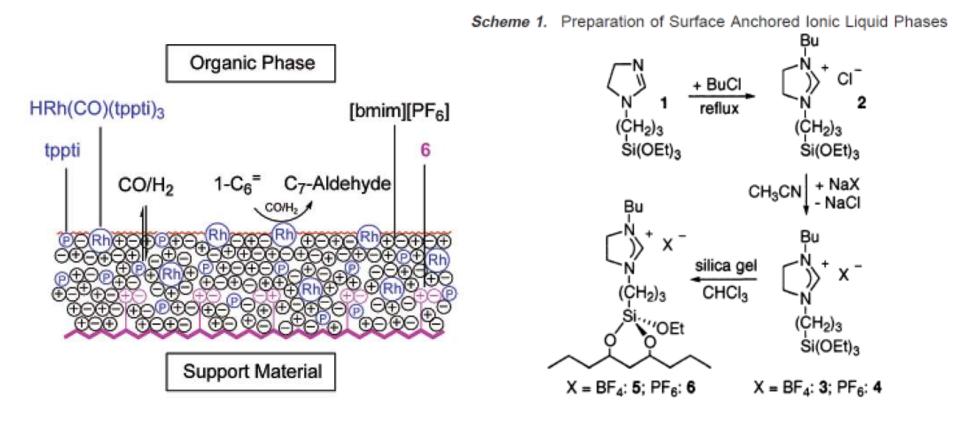
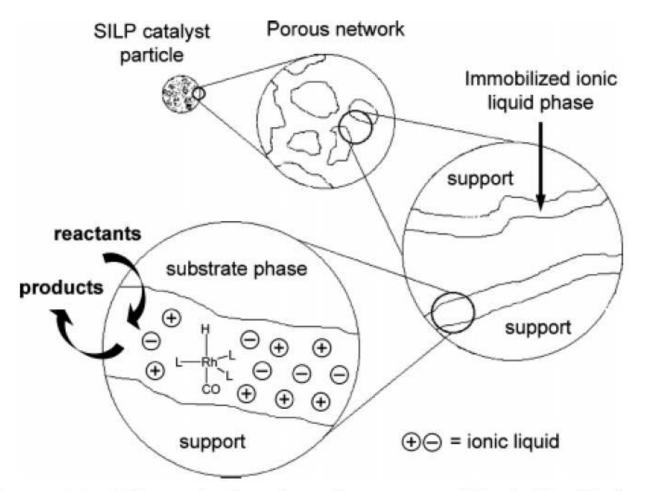


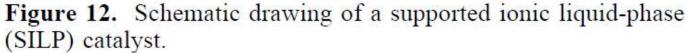
Fig. 2 Extraction of polysaccharides from bran. 1: Before heating, 2: after heating for 10 min, 3: filtrate, 4: after addition of ethanol to the **cellulose** filtrate.

H. Ohno, et al. Green Chem. 2010, 12, 1274.



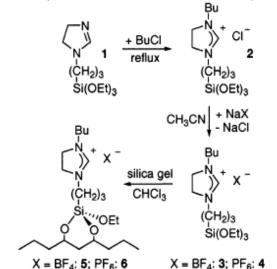
^{2-3.} Supported Ionic Liquid Phase (SILP) (1)

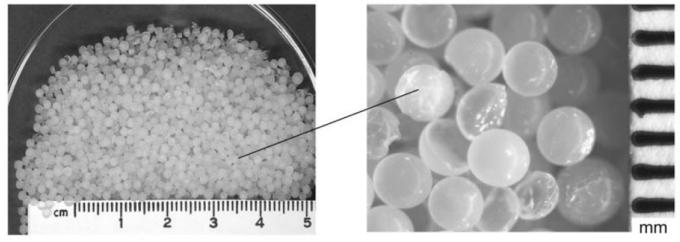

^{2-3.} Supported Ionic Liquid Phase (SILP) (2)


- SILP catalysis is a concept which combines the advantages of ionic liquids with those of heterogeneous support materials.

C. P. Mehnert, et al. J. Am. Chem. Soc. 2002, 124, 12932.

^{2-3.} Supported Ionic Liquid Phase (SILP) ③




M. Haumann, A. Riisager, Chem. Rev. 2008, 108, 1474.

^{2-3.} Supported Ionic Liquid Phase (SILP) ④

Scheme 1. Preparation of Surface Anchored Ionic Liquid Phases

- ✓ SILP materials are prepared by dispersing a solution of the catalyst complex in an ionic liquid as a thin film on porous solid materials.
- This layer serves as the reaction phase in which the homogeneous catalist is dissolved.

C. P. Mehnert, et al. Chem. Eur. J. 2005, 11, 50.

2-3.

Supported Ionic Liquid Phase (SILP) (5) ~ For Hydroformylation ~

[Industrial process] Ruhrchemie-Rhone-Poulenc process

- Aqueous-organic biphasic catalist

 $CH_3 - CH_2 = CH_2 + CO + H_2 \xrightarrow{cat} CH_3 - CH_2 - CH_2 - CHO + CH_3 - CH(CH_3) - CHO$

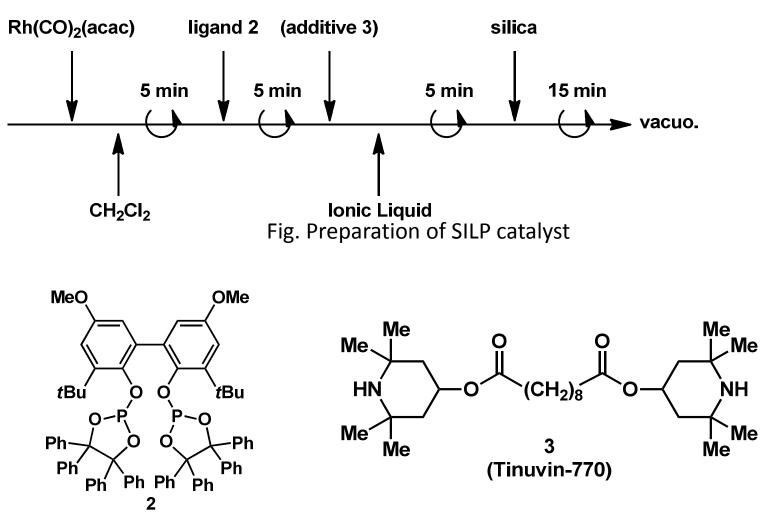
	Unit	Typical value
n-Butyraldehyde	(%)	94.5
iso-Butyraldehyde	(%)	4.5
n-Butyralcohol	(%)	0.5
iso-Butyralcohol	(%)	< 0.1
Butyl formates	(%)	Traces
Heavy ends	(%)	0.4
n/iso ratio		21
Temperature	(°C)	120
Total pressure	(MPa)	50
CO/H ₂ ratio	<u>2</u> *	1.01
Aqueous/organic phase ratio	÷	6
Conversion	(%)	95
Propylene quality	(% propene)	95

n – *butyraldehyde iso* – *butyraldehyde*

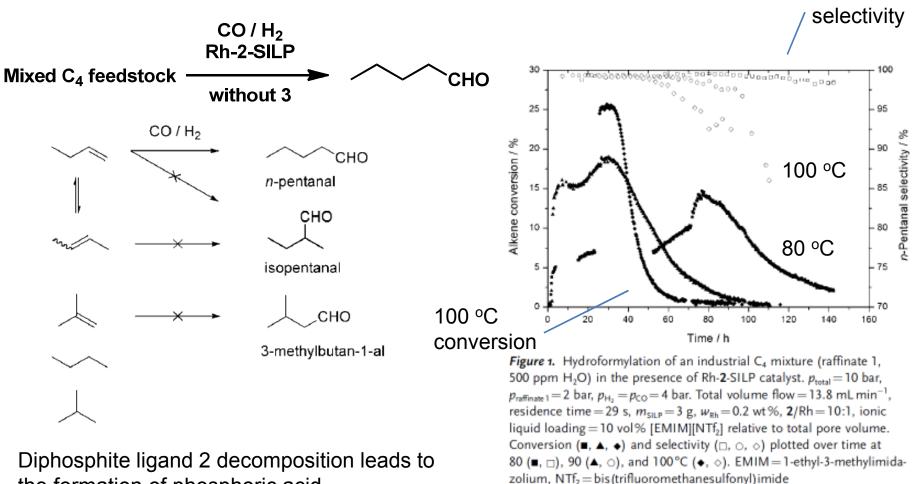
Problem : Phosphite ligands decompose by hydrolysis in water.

C. W. Kohlpaintner, et al. Appl. Catal. A. 2001, 221, 219.

^{2-3.} Supported Ionic Liquid Phase (SILP) (6)


<Selectivity>

Mixed C₄ Feedstocks


M. Haumann, P. Wassersheid, et al. Angew. Chem. Int. Ed. 2011, 50, 4492.

^{2-3.} Supported Ionic Liquid Phase (SILP) 7

M. Haumann, P. Wassersheid, et al. Angew. Chem. Int. Ed. 2011, 50, 4492.

^{2-3.} Supported Ionic Liquid Phase (SILP) (8)

the formation of phosphoric acid.

M. Haumann, P. Wassersheid, et al. Angew. Chem. Int. Ed. 2011, 50, 4492.

80 °C

^{2-3.} Supported Ionic Liquid Phase (SILP) 9 selectivity

100 30 CO/H₂ Rh-2-SILP 95 25 Mixed C₄ feedstock СНО with 3 8 3/2 = 4:1Alkene conversion / % n-Pentanal selectivity / 90 20 85 15 conversion 10 80 Additive 3 works as acid scavenger that 75 5 does not interact or react with the active catalytic species. 70 Ö Ö 100 200 300 400 500 600 700 800 900

Time / h

TON : 350000 !!

Figure 2. Hydroformylation of an industrial C₄ mixture (raffinate 1, less than 16 ppm H₂O) in the presence of Rh-**2**-SILP catalyst. T = 100 °C, $p_{total} = 10$ bar, $p_{raffinate 1} = 2$ bar, $p_{H_2} = p_{CO} = 4$ bar. Total volume flow = 29.2 mL min⁻¹, residence time = 15 s, $m_{SILP} = 3$ g, $w_{Rh} = 0.2$ wt%, **2**/ Rh = 10:1, **3**/**2** = 4:1, ionic liquid loading = 10 vol% [EMIM][NTf₂] relative to total pore volume. Conversion (**■**) and selectivity (**□**) plotted over time.

M. Haumann, P. Wassersheid, et al. Angew. Chem. Int. Ed. 2011, 50, 4492.

3. Summary

- Ionic liquids are not simple fruids.
 - the tunability of the cation and anion independently offers almost unlimited access to targeted combinations of physical and chemical properties.
- The scientific and technological importance of ionic liquids today spans a wide range of applications.

References

T. Welton, *Chem. Rev.* 1999, 99, 2071.
V. I. Parvulescu, C. Hardacre, *Chem. Rev.* 2007, 107, 2615.
M. Haumann, A. Riisager, *Chem. Rev.* 2008, 108, 1474.
J. P. Hallett, T. Welton, *Chem. Rev.* 2011, 111, 3508.
現代化学. 2007, 3.
現代化学. 2010, 10
Sigma-Aldrich, *Aldrich ChemFiles.* 2005, Vol.5, No.6.
B. Scrosati, *et al. Nature. Mater.* 2009, 7, 621.