
Diazo-mediated Metal Carbenoid Chemistry ~Recent Developments of Variety Bond Formation Methods~

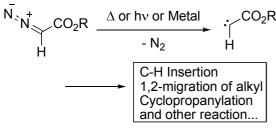
Recently, many metal catalyzed C-H activation reactions have been reported, but many reactions have not become reaction using wide range (selectivity, functional group tolerance). The metal-carbenoid intermediates are capable of undergoing a range of unconventional reactions, and due to their high energy, they are ideal for initiating cascade sequences leading to the rapid generation of structural complexity. These species are using for many type C-H activated reactions, C-C or C-heteroatom bond formations, and skeletal constructions. In this seminar, I talk about many type metal-carbenoid reactions from various metal.

Con	ntents
1. 0	Carbenoid (P.1-2)
2. F	Rhodium Carbenoid Induced Reaction (P.3-10)
3. 0	Copper Carbenoid Induced Reaction (P.11-12)
4. F	Palladium Carbenoid Induced Reaction (P.13-14)
5. C	Other Metal Carbenoid Induced Reaction (P.15-16)
6. 5	Summary & Perspective (P.17)

1. Carbenoid 1-1. Carbene

Carbene is a molecule containing a neutral carbon with a 2 valences and 2 unshared electrons.

Carbenes are classified as either singlets or triprets depending upon their electronic structure.


Most carbenes are very short lived, although persistent carbenes are known (example of stable carbene: N-Heterocyclic carbene; NHC).

<u>Singlet</u>

- unshared electron pair (σ orbital) and empty p orbital
- resembles carbocation and carboanion united on same carbon, so have nucleophilicity and electrophilicity (reactivity depends on substituted groups).
- many R and R' groups can stabilize singlet carbene (more than triplet carbene).
- Typical angle θ (calculated) : 100~110°

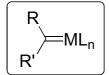
One of the typical carbene formation : diazo decomposition

Diazo compounds readily decompose thermally or photochemically driving force : formation of N_2 bond and generation of N_2 gas Generated carbene is high reactivity.

Typical angle θ (calculated) : 130~150°

• 2 electron was shared with p orbital and σ orbital

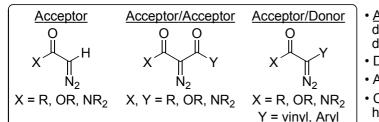
In the case of using transition metal to generated carbene $\Rightarrow \underline{\text{Metal-Carbenoid species is generated}}$


Triplet

resembles biradical

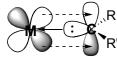
1-2. Metal-Carbenoid

Carbenoid is a vague term used for a molecule in which all carbons are tetravalent but still has properties resembling those of a carbene, typically <u>the carbene-like carbon has multiple bonds</u> with a metal. Carbene is stabilized by Metal.


Carbenoid has unique reactivity that carbene has not, keeping the reactivity of free carbene. Carbenoid is structurally related to **singlet carbenes** and posses similarly reactivity.

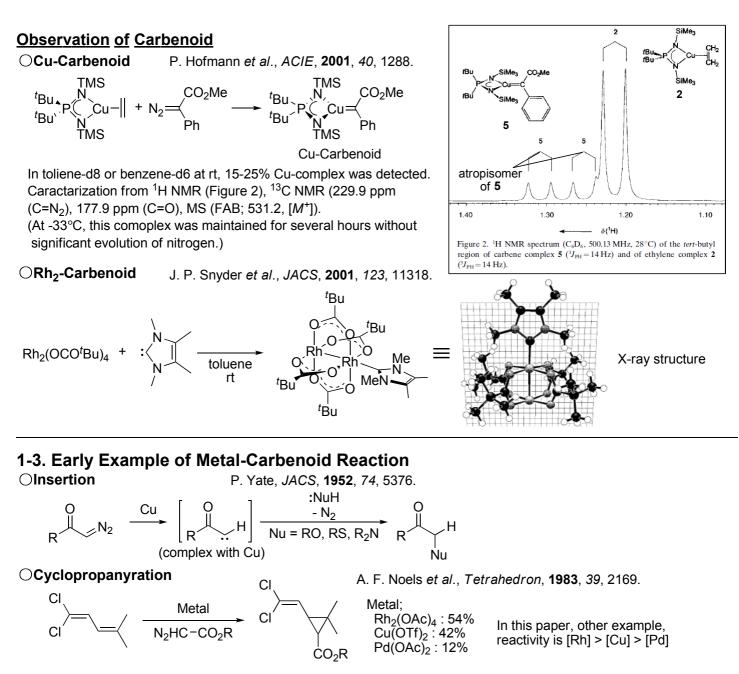
Carbenoids can be formed by reacting salts of <u>transition metals</u>. e.g. Cu, Rh, Pd, etc... many metals can be formed. These are formed by metal with carbenoid precursor, typically <u>diazo compound</u>.

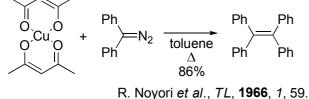
Kind of Diazo Compound (Carbenoid Precursor)


Carbenoid can be controled carbene reactivity through substituent (acceptors and donors). Not enough electrophilicity causes less reactivity, and too much electrophilicity causes side-reaction, so control of electrophilicity is important. Metal-carbenoid reaction requires appropriate level of electrophilic ability at the carbenoid carbon center.

- <u>Acceptor/Acceptor</u> and <u>Acceptor/Donor</u> types stabilize diazo compound (so more active catalyst needed for decomposition).
- Donor substituent stabilized carbenoid through resonance.
- Almost metal-carbenoids have electrophilicity.
- Carbenoids formed from Acceptor/Acceptor compounds has high electrophilicity.

too much electrophilicity causes side-reaction, so control of electrophilicity is important.


Electron Feature of This Type Metal-Carbenoid


lone pair on carbon to M : strong C-M σ bond

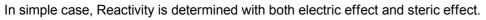
d electrons to p orbital on carbon : weak~moderate π bond, stabilize carbene a little but still maintain its enough electrophilicity

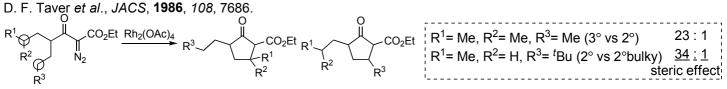
desired metal : bind to the carbene through strong σ -acceptor interactions and weak (appropriate) back donation interaction.

ODimerization (Homometathesis)

general metal of metal-carbenoid reaction : Rh, Cu, Pd ; most useful metal is Rhodium.

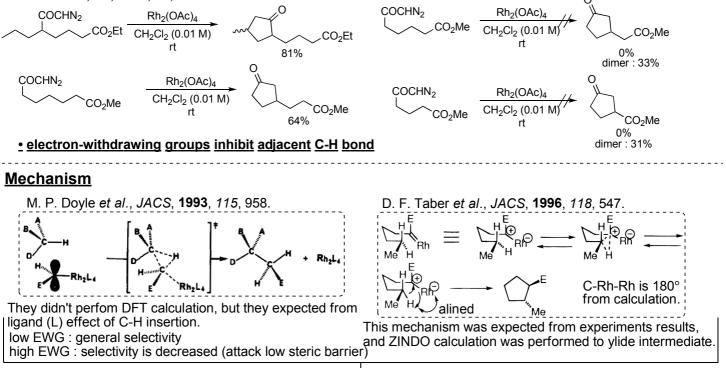
Dirhodium carboxylate (Rh₂L₄) H. Reimlinger et al., TL, 1973, 24, 2233.


First example of Rhodium carbenoid generation from diazo decomposition.

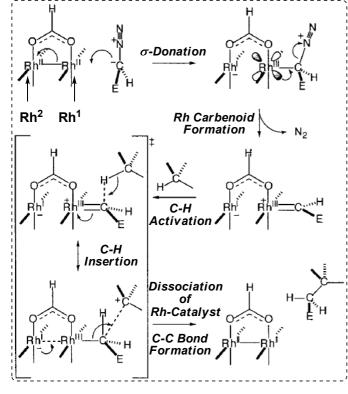

R-OH +
$$N_2$$
 CO₂Et $\xrightarrow{\text{catalyst}}$ RO CO₂Et

Reactivity using Rh₂(OAc)₄ (Rh(II)) was higher than Rh(I), Rh(III).

Catalyst	diazo/Catalyst	R	Yield
Rh ₂ (OAc) ₄	600	Et	88
Rh ₂ (OAc) ₄	600	ⁱ Pr	83
Rh ₂ (OAc) ₄	600	^t Bu	82
Rh ₂ (OAc) ₄	600	Н	80
Rh ₂ (OAc) ₄	600	Ac	93
RhCl ₃ •3H ₂ O	125	Et	64
RhCl ₃ •3H ₂ O	125	^t Bu	58
RhCl(PPh ₃) ₃	125	Et	49


2. Rhodium Carbenoid Induced Reaction 2-1. C-H Insertion <u>Trend in Selectivity</u>

tertially > secondary > primary (electric effect; electron density in the C-H bond)



These mechanisms were plausible and widely accepted, but additional analysis of mechanism was performed for further development of the C-H activation chemistry.

OProposed mechanism from DFT calculation E. Nakamura et al., JACS, 2002, 124, 7181.

DFT using B3LYP on $Rh_2(O_2CR)_4$ C-H activation/C-C bond formation reaction.

calclated for $[Rh_2(O_2CH)_4 - CH_2N_2 - metane or propane]$ and $[Rh_2(O_2CH)_4 - N_2CHCO_2Et - metane or propane]$

- carboxylate groups serves as anchors of the Rh² atom
- electron-withdrawing group (E) enhances the electrophilicity of the carbene carbon center
- Rh¹ has positive charge which increases the electrophilicity of carbon center
- electron donation from Rh² to Rh¹ assist the C-C bond formation and catalyst regeneration.
- If chiral ligand was used, it also serves as the site to harness chirarity.

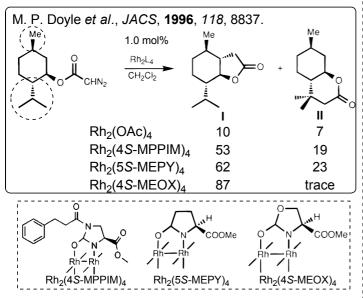
 \downarrow

Activated energy is decreased, so C-H Insertion is enhanced.

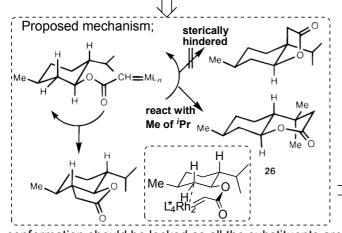
compared to Cu-carbenoid and Ru-carbenoid, energy of C-H insertion to carbenoid is lower (diazomethane-methane).

 $(HCO_2)_4Rh_2 \equiv CH_2$

>


27.6 kcal/mol

> 15.6 kcal/mol

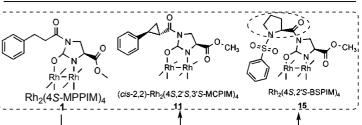

5.7 kcal/mol 3/17

Stereo-/Chemo-Selective Reaction

OIntramolecular reaction

In this type reaction, it was thought that Rh-carbenoid reacts with <u>equatrial</u> <u>C-H</u>, because access to axial C-H is prevented by crowding of the cyclohexane ring.

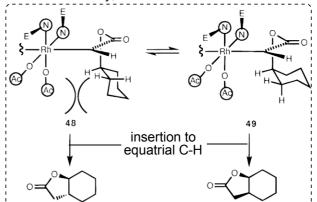
conformation should be locked as all the substituents are placed at equatrial position

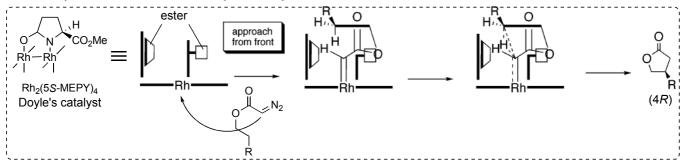

- Equilibrium depends on the ligand (catalyst) (whether the substituent is at axial or equatrial).
- Small ligand leads to low diastereoselectivity. (L=OAc, 40:60 ; JACS, **1994**, *116*, 4507.)
- Rh-carbenoid reacts with <u>equatrial</u> <u>C-H</u>, so in appropriate ligand, reaction is *cis* selectivity.

- Review; H. M. L. Davies *et al.*, *Chem. Rev.*, **2003**, *103*, 2861. H. M. L. Davies, *ACIE*, **2006**, *45*, 6422.
 - H. M. L. Davies, ACIE, **2000**, 43, 0422. H. M. L. Davies *et al.*, *Nature*, **2008**, 451, 417.
 - H. M. L. Davies et al., Chem. Soc. Rev., 2009, 38, 3061.
 - M. P. Doyle et al., JOC, 2005, 70, 5291.

 TABLE 3.
 Carbon-Hydrogen Insertion Reaction of Cyclohexyl Diazoacetate^a

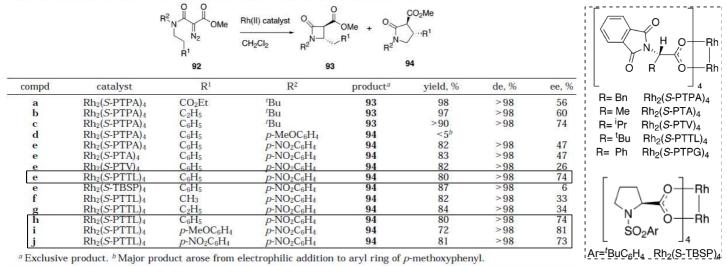

$\bigcup_{O} \bigcup_{O} \bigcup_{O} CHN_2 = \frac{1.0 \mod \% \operatorname{Rh}_2}{\operatorname{CH}_2 \operatorname{CH}_2}$	$\overset{H}{\rightarrow} \underbrace{\overset{H}{\underset{H}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset$	+ + H O = 0 H trans
catalyst	yield $cis/$ $(\%)^b$ $trans^c$	
Rh ₂ (4S-MPPIM) ₄ , 1 Rh ₂ (4S,2'S,3'S-MCPIM) ₄ , 11 Rh ₂ (4S,2'R,3'R-MCPIM) ₄ , 12	71 100/0 78 99/1 63 80/20	92 na 97 nd 72 13
$\frac{Rh_{2}(4S,2'S\text{-}BSPIM)_{4},15}{Rh_{2}(4S,2'R\text{-}BSPIM)_{4},16}$	88 97/3 89 98/2	>99>99 74 33


^a Reactions performed in refluxing CH₂Cl₂ using 1.0 mol % catalyst. ^b Reported as isolated yields after column chromatography. ^c cis/trans ratios and enantiomeric excesses were determined by gas chromatography.


additional chiral attachment, so ee was increased.

• 12, 16 : direction of additional chiral attachment is mismatched.

· Model for aymmetric induction with Doyle's catalysts;

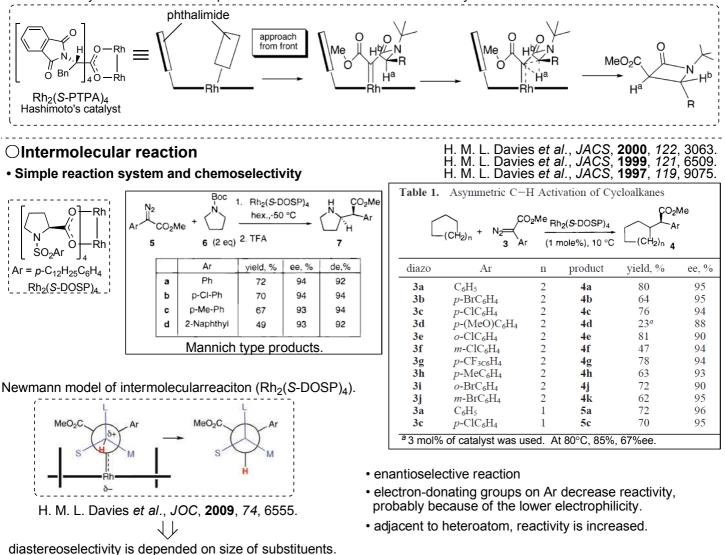

In the cases of other type ligands, they are expected by similarly catalysit model.

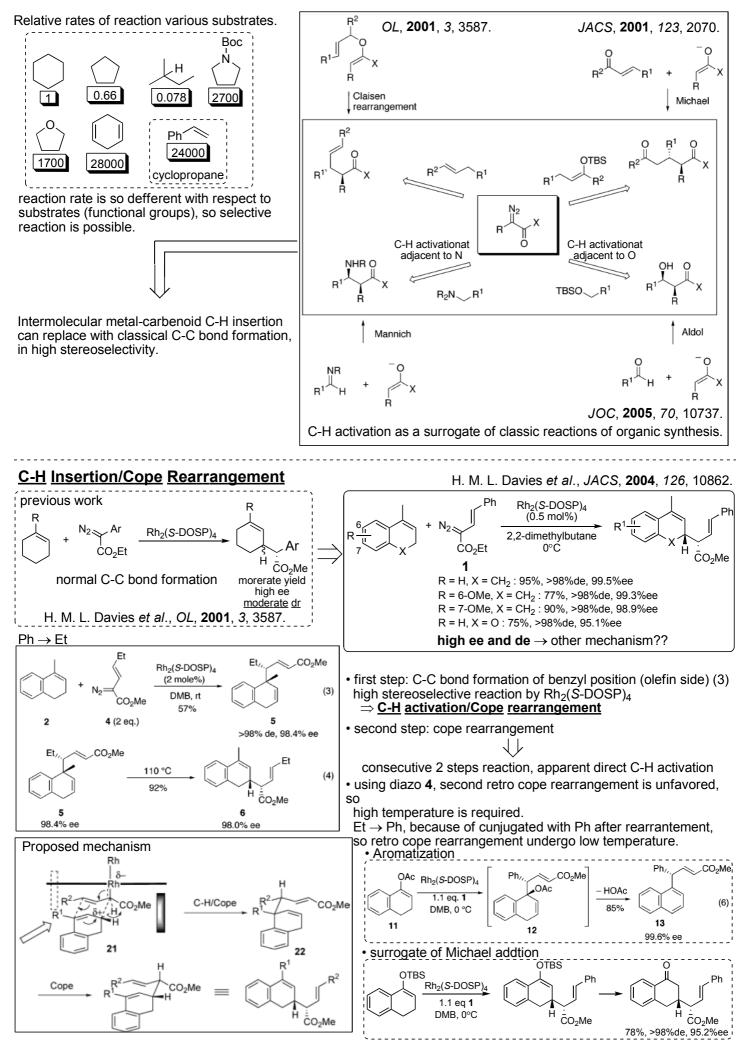
lactam formation

S. Hashimoto *et al.*, *Synlett*, **1994**, *12*, 1031.

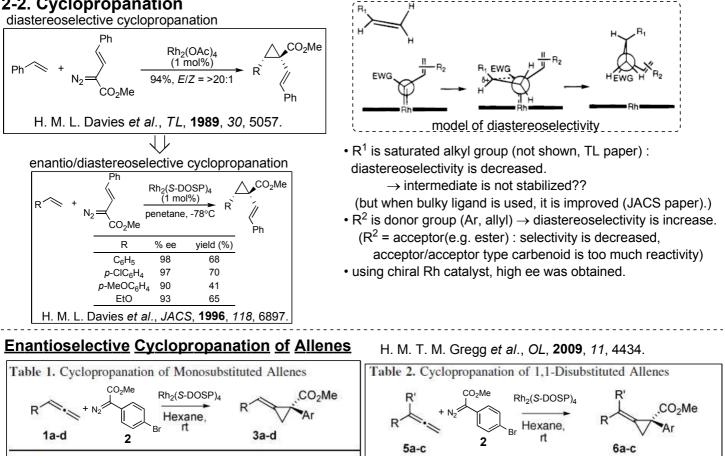
H. M. L. Davies et al., Chem. Rev., 2003, 103, 2861.

Table 17. Intramolecular C-H Activation of α-Methoxycarbonyl-α-diazoacetamides


• In the case of R₂ is alkyl group, β -lactam is obtained, but in R² is Aryl groups, γ -lactam is obtained.


 \Rightarrow Electron density of nitrogen atom is important.

When N has electron-enough, C-H insertion at adjacent to N is enhanced (in insertion mechanism, C-H insertion process is activated by push of unshared-electron pair).


When N has electron-withdraing group (Ar, carbonyl), β -lactam cyclization is inactivated, and γ -lactam is obtained.

- This is acceptor/acceptor type, reactivity is so high. So enantioselectiviry is low, but R¹ = Ar, selectivity is increased.
 ⇒ Benzyl position is slightly lower reactivity than saturated aliphatic C-H because of electron-withdrawing nature of Ph group, so reactivity is controlled, and enantioselectivity is increased.
- Model for aymmetric induction in β -lactam formation with Hashimoto's catalyst.

2-2. Cyclopropanation

% yield

76

61

60

54

product

3a

3b

3c

3d

% ee

90

84

88

>80^a

• In toluene solvent, trace product is obtained. Maybe cyclopropanation of aromatic rings and α methyl C-H insertion is proceeded, so it is suggested that cyclopropanation of allene is slowly. • Reaction is proceeded at only indicated no substituted olefin. Aryl allene and aliphatic allene are succeeded moderate~good yield and ee.

R

(CH₃)₃Si

Ph

CH₃

Disubstituted allenes are decreased reactivity because of sterically barrier (see TS).

allene

5a

5b

5c

 In TS, there is positive carbon on the central carbon of the allene, so stabilized substituents give high reactivity (e.g. silyl).

Buchner ring expansion

TS from DFT calc

allene

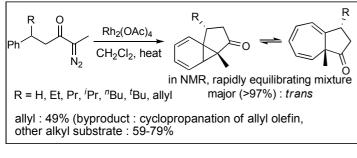
1a

1b

1c

1d

R


p-ClC₆H₄

positive charge

C5H11

CH₂Ph

Ph

- Benzen ring is reacted with metal-carbenoid species.
- · In this case, R groups stericallyblock, diastereoselectivity is appearred.

A. R. Maguire et al., Chem. Comm., 1996, 2595.

R'

CH

CH₃

CH₃

product

6a

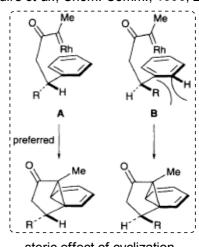
6b

6c

% yield

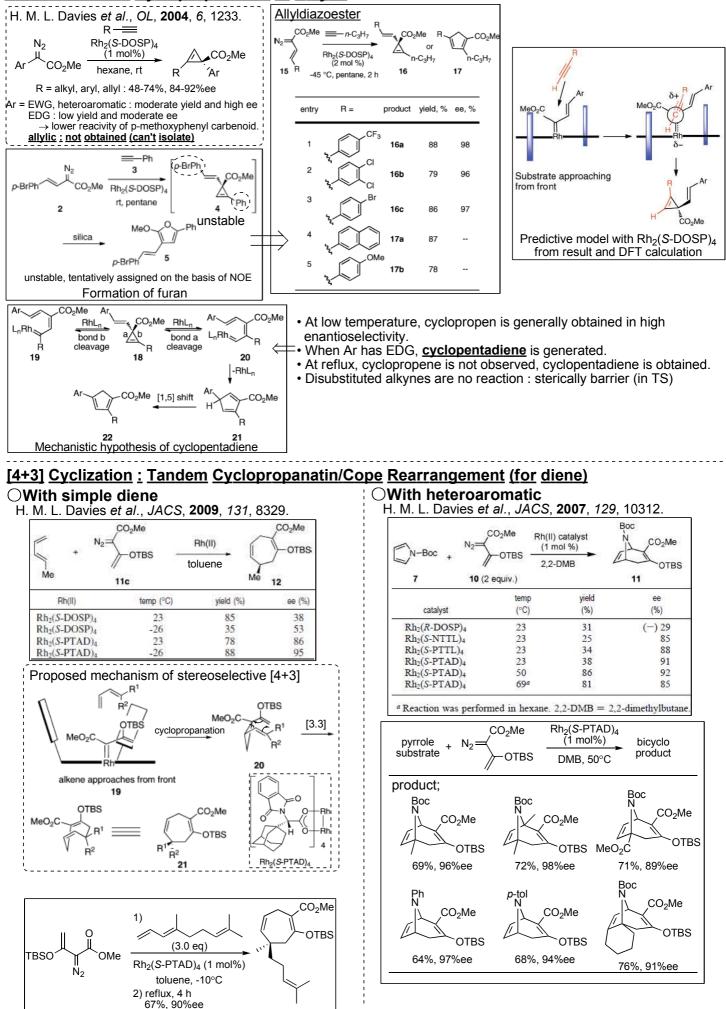
33

30

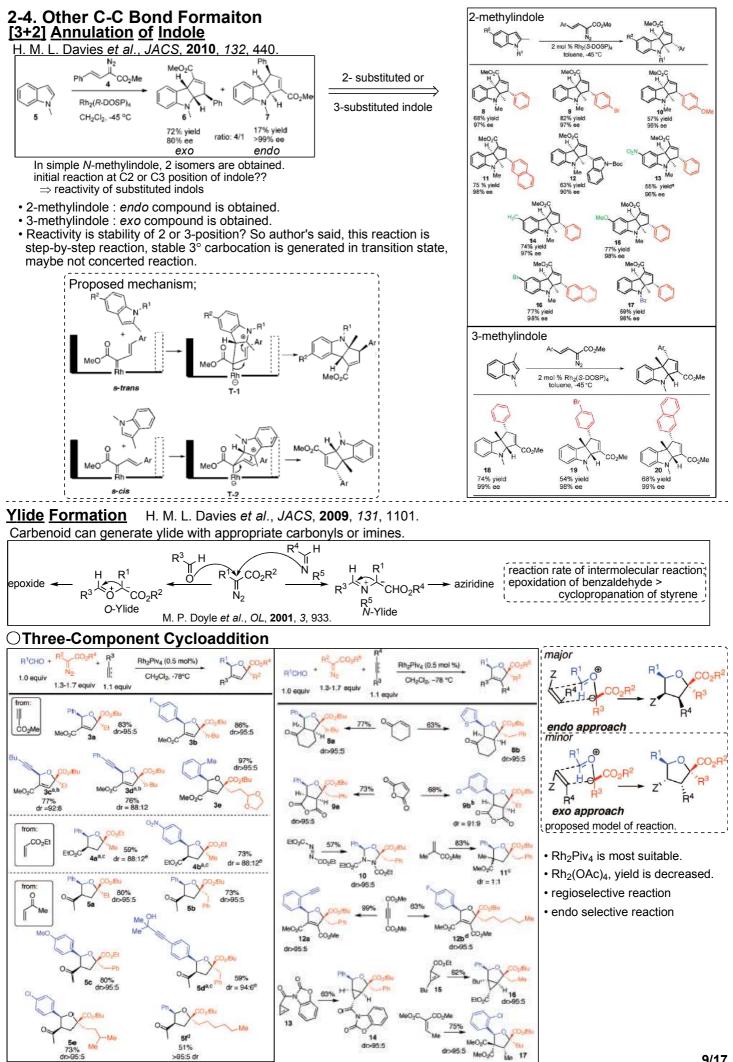

79

% ee

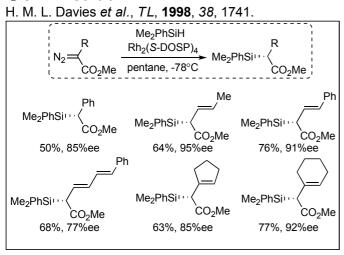
86


90

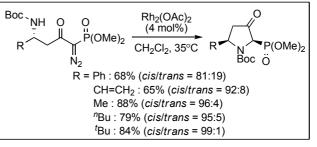
85



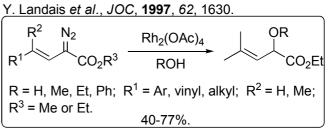
steric effect of cyclization


Enantioselective Cyclopropenation of Alkyne

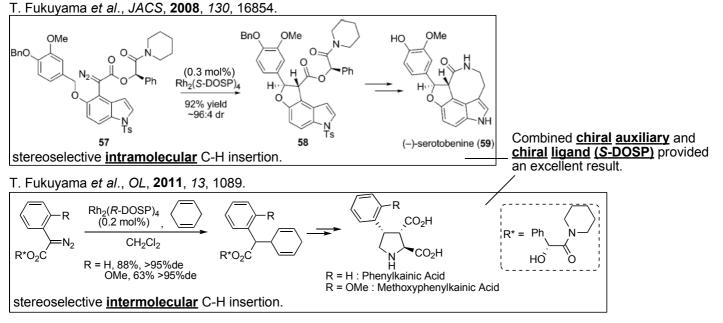
less substituted olefin is preferentially proceeded first cyclopropanation

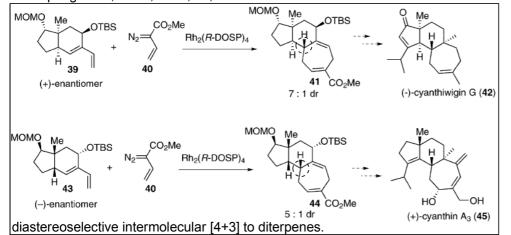


2-5. Heteroatom-H Insertion OSi-H Insertion



ON-H Insertion


F. A. Davis et al., OL, 2004, 6, 4523.

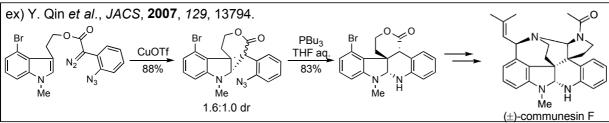

O-H Insertion

2-6. Total Synthesis using Rhodium Carbenoid

R. Sarpong et al., ACIS, 2009, 48, 2398.

When racemic SM was employed, **41** and **44** (diastereomer) was mainly obtained (depend of chiral ligand).

Although they have inverse absolute configuration at reactive site, using $Rh_2(R-DOSP)_4$, [4+3] cyclization was

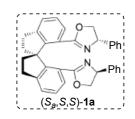

proceeded in 'same' stereochemistry so <u>diastereomers</u> are <u>obtained</u>.

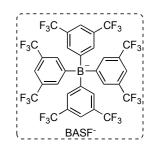
'pallarel kinetic resolution'

3. Copper Carbenoid Induced Reaction

Copper carbenoid is shown the similar reaction for Rhodium carbeoid reaction. But to manipulate reagents and conditions, higher reactivity and selectivity can be afforded.

Copper carbenoid can be proceeded main metal-carbenoid reaction, C-H insertion and cyclopropanation, and total synthesis was performed by copper carbenoid induced reaction.

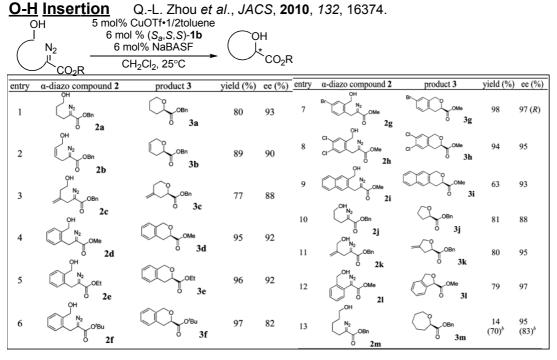


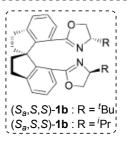

Reactivity of many C-H insertion or cyclopropanation using Copper carbenoid is lower or same for Rhodium carbenoid. But heteroatom(N, O, Si, S)-H insertion reaction is significantly improvement of ee compared for Rhodium carbenoid.

<u>N-H Insertion</u>

Q.-L. Zhou et al., JACS, 2007, 129, 5834.

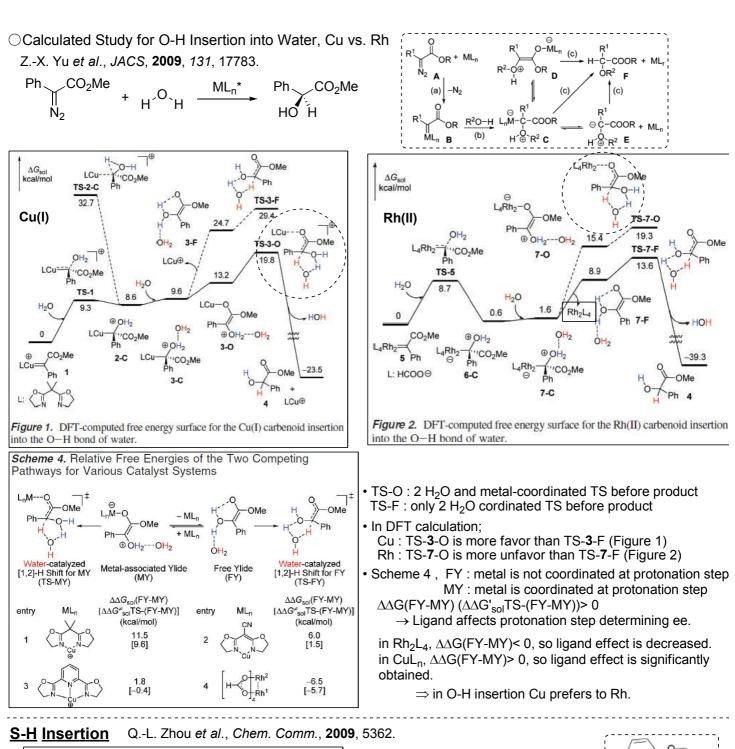
Table	1. Cu-Catalyz	derivative (N- ed Asymmetric Instant to the N-H Bond		_0. ₂	+ D ³	6 mol%	nol% Cu(% (<i>S_a,S,S</i>	S)-1a	R ⁴ O 3-N *	R ²				
$ \begin{array}{c} \begin{array}{c} N_2 \\ \swarrow \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $								2	·	3 CH	₂ Cl ₂ , 25°	C	R ¹ 4	0
	Ö 2a	3a		4	a		entry	R ¹	R ²	R ³	R4	product	yield (%)	ee (%)
				time	vield	ee	1	Me	Et	Ph	Н	4a	94	98
entry	ligand	[Cu]	solvent	(h)	(%) ^b	(%) ^c	2	Me	Et	p-MePh	Н	4b	94	91
							3	Me	Et	p-MeOPh	н	4c	96	85
1	(S_a, S, S) -la	CuPF ₆ (MeCN) ₄	CH ₂ Cl ₂	2	78	43	4	Me	Et	p-C1Ph	н	4d	92	98
2	$(R_{a},S,S)-1a$	CuPF ₆ (MeCN) ₄	CH ₂ Cl ₂	2	95	5	5	Me	Et	p-BrPh	Н	4e	95	98
3	(S_a, S, S) -la	CuOTf(Tol)1/2	CH_2Cl_2	2	83	5	6	Me	Et	m-MePh	Н	4f	92	96
4	(S_a, S, S) -la	CuCl	CH ₂ Cl ₂	24	15	rac	7	Me	Et	m-C1Ph	Н	4g	95	97
5	(S_a, S, S) -la	CuC1/NaBARF	CH_2Cl_2	2	94	98	8	Me	Et	m-BrPh	H	4h	96	98
6^d	(S_a, S, S) -1a	CuC1/NaBARF	CH_2Cl_2	2	90	95	9	Me	Et	o-MePh	H	4i	95	98
7	(S_a, S, S) -1a	CuCl ₂ /NaBARF	CH_2Cl_2	2	80	85	10	Me	Et	o-MeOPh	H	4j	86	98
8	$(S_a,S,S)-1a$	CuCl/NaBARF	CHC1 ₃	2	89	98	11 12	Me Me	Et Et	o-ClPh	H H	4k 41	95 89	88 98
9	(S_a, S, S) -la	CuC1/NaBARF	C_6H_6	6	80	85	12	Me	Et	1-naphthyl	н Н	41 4m	89 91	98 98
10	(S_a, S, S) -la	CuC1/NaBARF	MeCN	72	45	rac	13	Me	Me	2-naphthyl Ph	Н	4m 4n	78	98 96
11	(S_a, S, S) -1b	CuCl/NaBARF	CH_2Cl_2	2	83	61	14	Me	Bu	Ph	Н	4n 40	/8 93	96 96
12	(S_a, S, S) -1c	CuCl/NaBARF	CH_2Cl_2	2	90	79	15 16 ^b	Et	Et	Ph	Н	40 4p	51	90 94
13	$(S_{a},S,S)-1d$	CuC1/NaBARF	CH_2Cl_2	2	75	85	10	Ph	Et	Ph	Н	4p 4a	85	8
14	(S,S)-Ph-Box	CuC1/NaBARF	CH_2Cl_2	2	66	5	18	Me	Et	Ph	Me	4r	93	rac
							10°	Me	Et	Bz	H	4r 4s	55	rac
		ns: [Cu] (0.01 mm l) (entries 5-14) we					20	Me	Et	c-C ₆ H ₁₁	H	-0	NR ^d	Iac
		iline (0.2 mmol) an					_							

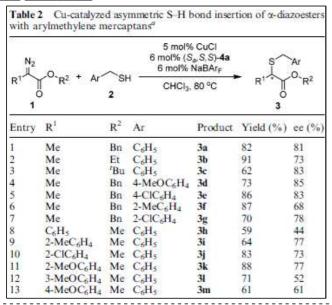


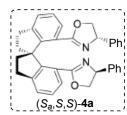


2 h at 25 °C, then aniline (0.2 mmol) and ethyl 2-diazopropionate (0.2 mmol) were introduced and stirred at 25 °C. ^b Isolated yield. ^c Determined by chiral HPLC using a Chiralpak AS column. ^d With 1 mol % of catalyst, refluxing

^a Reaction conditions were the same as those in Table 1, entry 5. For the characterization and analysis of ev values of insertion products, see Supporting Information. ^b Reaction time: 48 h. ^c Reaction time: 16 h. ^d No reaction

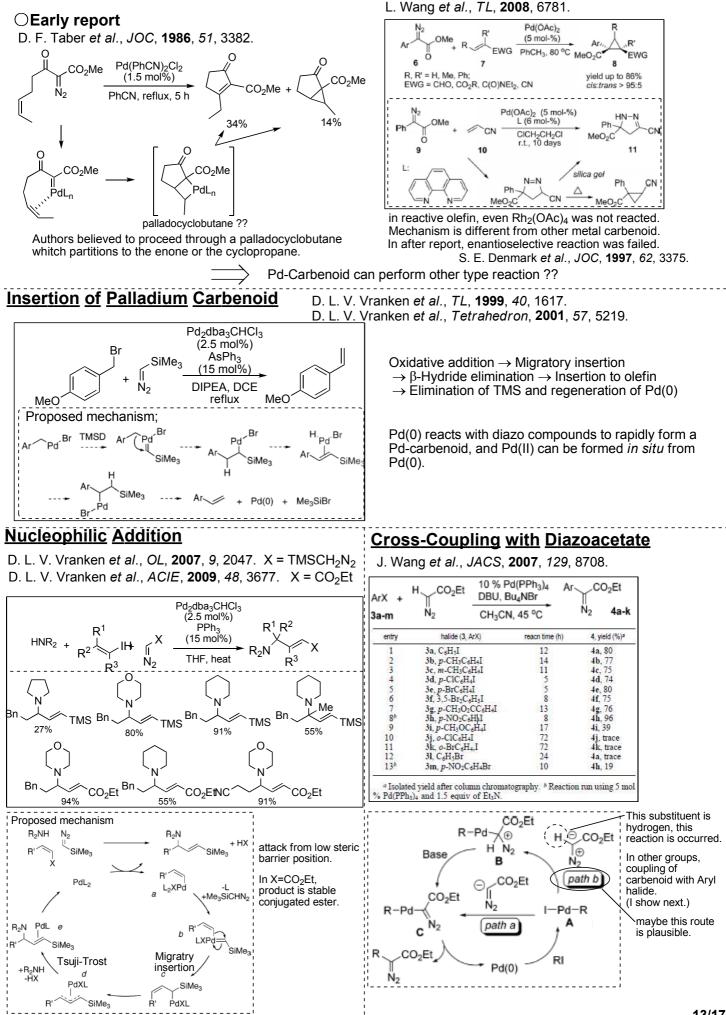

- Counter anion effect is so high, the smaller and slightly coordinating OTf is inferior to the PF₆ in the enantiocontrol.
- with the larger and non-coordination ion BARF⁻, reactivity and enantioselectivity is significantly increased.
- steric-hindrance diazoacetate (Entry 17), secondary amine (Entry 18), amide (Entry 19) \rightarrow enantioselectivity is so low.



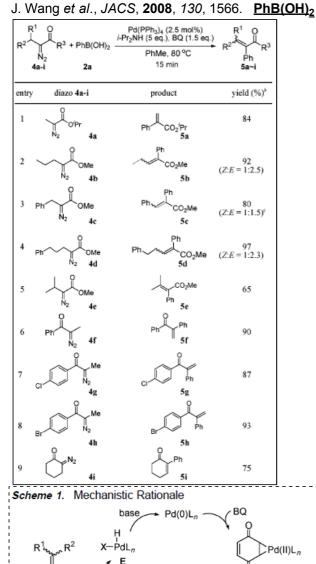


high yield and high selective reaction for pyran rings and furan rings.

In seven-menbered ring, reactivity is so decreased, but using ligand 1c, good yield and selectivity is obtained.


moderate~good yield was obtained, but enantioselectivity was moderate.

other heteroatom-H insertion;


Si-H : high yield and high enantioselectivity for the similar ligand ; Q.-L. Zhou et al., ACIE, 2008, 47, 8496.

4. Palladium Carbenoid Induced Reaction

Palladium carbenoid shows different behavior for other metal carbenoid.

Cross Coupling with Aryl Group

Ar-X

COR³

OB(OH)2

ΡdΙ

(From tosylhydrazone; shown below.)

Coupling of tosylhydrazone

х D

R²

Ar Pdl

С ×

Using CuCl (10 mol%) & O2, reaction was proceeded.

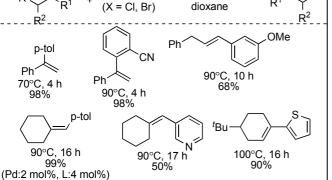
COR

J. Wang et al., Chem. Comm., 2010, 46, 1724.

Pd₂dba (1 mol%)

Xphos (2 mol%)

LiO^tBu (2.2 eq)


COR

X = §-0

NNTs

 R^1

R

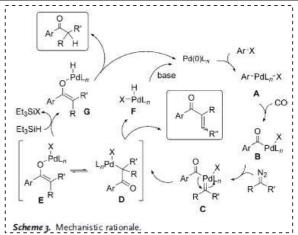
in situ, diazo intermediate is generated from tosylhydrazone with base, and next carbenoid generation, migratory $\rightarrow \beta$ -elimination.

ArB(OH)₂

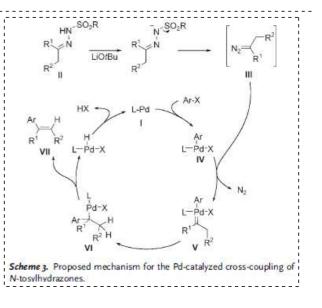
Pd(II)Ln

COR³

R


×. в

R


J. Wang et al., JACS, 2010, 49, 1139. CO Insertion

	N ₂	zed reactions of CO w [Pd(PPh ₃) ₄] (5 mol%		–i and 2 a –j. [™] O └── CO₂Me
	u ^{rl +} R [→] CO ₂ R' ^{* Et} 3 ⁵ a-i 2a-j 3	CO balloon	0°C	H R 4a-q
Entry	1: Ar	2: R, R'	t [h]	Yield of 4 , [%] ^[5]
1	1a: C ₆ H ₅	2a: Me, Me	10	4 a: 88
23	1b: o-MeC ₆ H ₄	2a: Me, Me	11	4b: 43 ^[4]
3	1c: p-MeC _s H ₄	2a: Me, Me	9	4c: 80
4		2a: Me, Me	9	4d: 85
5		2a: Me, Me	17	4e: 61
4 5 6	1 f: p-MeO2CC6H4	2a: Me, Me	14	4 f: 74
7	1g: p-CIC ₅ H ₄	Za: Me, Me	10	4g: 80
8	1a: C ₆ H ₅	2b: Me, iPr	7	4h: 87
9	la: C ₆ H ₅	2c: Ph(CH2)3, Me	12	4i: 77
10	1a: C ₆ H ₅	2d: Ph, Me	9	4j: 57
11	1a: C ₆ H ₅	2e: p-MeOC _e H ₄ , Me	8	4 k: 75
12	1h: m-CH ₁ C ₅ H ₄	2a: Me, Me	10	41: 64
13	1i: p-BrC ₆ H ₄	Za: Me, Me	10	4 m: 75
14	1a: C ₆ H ₅	2 f: Me, tBu	12	4 n: 82
15	1a: C ₆ H ₅	2g: Me, Bn	12	4o: 79
16	1a: C6H5	2h: nPr, Me	10	4p: 66
18	1a: C ₆ H ₃	2i: Bn, Me	20	4 q: 62
19	1a: C ₆ H ₅	2j: p-O2NC6H4, Me	12	_[d]

[a] Reaction conditions: 1a-i (1.0 equiv), 2a-j (2.0 equiv), and 3 (1.1 equiv). [b] Yield of the isolated products. [c] The product was a mixture of keto and enol. [d] No reaction.

Et₃SiH is hydrogen source, halogen-hydrogen exchange process promotes reaction.

5. Recent Other Metal Carbenoid Induced Reaction

Recently, Iridium-salen complexes are employed for metal-carbenoid reactions, by Katsuki's group.

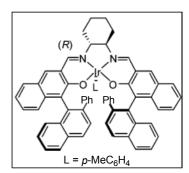
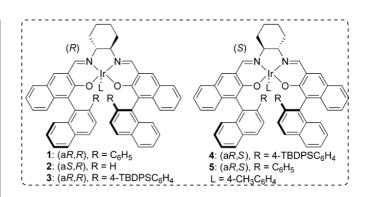

ACIE, 2007, 46, 3889 ; Cyclopropanation

Table 1: tert-but	Asymmetric cy tyl α-diazoacetat cat. (5 mol% N2CHCO2fB	e.[4] 5)		styrene and it	s derivativ	es with
0	THF,	N ₂	1	CO ₂ tBu	ĉo	2tBu
Entry	Ar	т [°С]	Yield [%] ^[⊎]	cis/trans ^[c]	ee _{ch} [%] ^[d]	ее, [%] ^[d]
114	Ph	RT	40	40:60	76 ^[f]	96 ¹
2	Ph	RT	87	55:45	8411	961
3(4)	Ph	RT	43	58:42	-37[1]	70 ^{f1}
4P1	Ph	RT	36	66:34	64 ^[1]	18 ^{f1}
5	Ph	-20	87	87:13	93 ^[f]	96 ^{f1}
6	Ph	-40	85	96:4	96 ^[f]	931
7	Ph	-78	>99	>99:1	99[1]	92 ^{f1}
811	Ph	-78	>99	> 99:1	99 ⁽¹⁾	
900	Ph	-78	> 99	> 99:1	98 ^(f)	-
1051	o-MeOC ₆ H ₄	-78	90	97:3	99 ^[k]	-
1111	m-MeOC ₆ H ₄	-78	88	>99:1	97 ^[k]	-
1260	p-MeOC ₆ H ₄	-50	> 99	> 99:1	97 ^[k]	-
138-1	o-CIC ₆ H ₄	-78	90	99:1	98 ^[k]	-
14印	m-CIC _s H ₄	-78	91	> 99:1	98 ^[e]	-
150	p-CIC ₆ H ₄	-78	>99	> 99:1	98 ^[k]	-
16 ^[i,m]	Ph	-78	90 ^[n]	> 99:1	99 ^[k]	-
17[1,0]	Ph	78	> 99	> 99:1	970	-


JACS, 2010, 132, 4510 ; Si-H Insertion

R ¹ S	і—Н +	R ² CO	₂ Me Ir	(salen) (2	.0 mol%)	R ²	CO ₂ Me
(1.2 ec			0 equiv.)	CH ₂ Cl ₂ , -30°C, 2		R ¹ Si H	6i-o
entry	cat.	prod.	R ¹	F	1 ²	% yield ^{b,c}	% ee ^d
1	1	6i	PhMe ₂	Ph		93	>99
2	5	6 i	PhMe ₂	Ph		91	50^e
3	1	6j	Et ₃	2-Me	OC_6H_4	92	99
4	1	6k	Et ₃	2-CIC	₆ H ₄	95	>99
5	1	61	Et ₃	3-Met	DC ₆ H ₄	95	>99
6	1	6m	Et ₃	3-CIC	6H4	97	>99
75	1	6n	Et ₃	4-Me	DC ₆ H ₄	94	>99
8		6.	TT4	1 010	11	07	- 00
	1 7. Asyn				h α-Alkyl	97 -α-Diazoa	>99 cetate ^a
Table 1	. Asyn	nmetric (Si <mark>-H</mark> Inse	rtion wit Ir(salen)	h α-Alkyl (2.0 mol%)	-α-Diazoa	cetate ^a
	. Asyn −H +	nmetric \$ R ¹ ↓C	Si <mark>-H</mark> Inse	rtion wit Ir(salen)	h α-Alkyl (2.0 mol%) ₂ , MS 4A,	-α-Diazoa	cetate ^a
Table 1 ArMe ₂ Si	. Asyn −H +	nmetric \$ R ¹ ↓C	Si-H Inse O ₂ R ²	rtion wit Ir(salen) CH ₂ CI	h α-Alkyl (2.0 mol%) ₂ , MS 4A,	-α-Diazoa	CO2F
Table 1 ArMe ₂ Si (3.0 eq	/. Asyn ─H + uiv.)	nmetric \$ R ¹ ↓ C N ₂ (Si—H Inse O ₂ R ² 1.0 equiv.)	rtion wit Ir(salen) CH ₂ Cl -78°C,	h α-Alkyl (2.0 mol%) ₂ , MS 4A, 24 h	-α-Diazoa R ¹ ArMe ₂ Si	cetate ^a
Table 1 ArMe ₂ Si (3.0 eq entry 1^d 2^f	. Asyn −H + uiv.) cat.	$\begin{array}{c} R^{1} \\ R^{2} \\ N_{2} \\ N_{2} \end{array} $	Si—H Inse O ₂ R ² 1.0 equiv.) Ar	rtion wit Ir(salen) CH ₂ CI -78°C, R ¹	h α-Alkyl (2.0 mol%) ₂ , MS 4A, 24 h R ²	-α-Diazoa R ¹ ArMe ₂ Si % yield ^b	Cetate ^a CO ₂ F H 6a
Table 1 ArMe ₂ Si (3.0 eq entry 1 ^d	 Asyn H + uiv.) cat. 1 	$\begin{array}{c} R^1 \\ R^1 \\ N_2 \end{array} (\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Si-H Inse O ₂ R ² 1.0 equiv.) <u>Ar</u> Ph	rtion wit Ir(salen) CH ₂ Cl -78°C, R ¹ Me	h α-Alkyl (2.0 mol%) 2, MS 4A, 24 h R ² Et	-α-Diazoa R ¹ ArMe ₂ Si % yield ^b 71(86)	Cetate ^a CO ₂ F H 6a % ee ^c 41 ^e
Table 1 ArMe ₂ Si (3.0 eq entry 1^d 2^f 3 4	7. Asyn —H + uiv.) 	$ \begin{array}{c} R^{1} \\ N_{2} \\ \hline prod. \\ \hline 6a \\ 6a \end{array} $	Si-H Inse O ₂ R ² 1.0 equiv.) Ar Ph Ph Ph	rtion wit Ir(salen) CH ₂ CI -78°C, R ¹ Me Me	h α-Alkyl (2.0 mol%) 2, MS 4A, 24 h R ² Et Et Et	-α-Diazoad R ¹ ArMe ₂ Si % yield ^b 71(86) 83(96)	CO ₂ F H 6a % ee ^c 41 ^e 37 ^e
Table 1 ArMe ₂ Si (3.0 eq entry 1^d 2^f 3	 /. Asyn H + uiv.) cat. 1 1 	$ \begin{array}{c} \text{R}^{1} \\ N_{2} \\ N_{2} \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ $	Si-H Inse O ₂ R ² 1.0 equiv.) Ar Ph Ph Ph Ph	rtion wit Ir(salen) CH ₂ Cl -78°C, R ¹ Me Me Me	h α-Alkyl (2.0 mol%) 2, MS 4A, 24 h R ² Et Et Et Et Et	-α-Diazoad R ¹ ArMe ₂ Si % yield ^b 71(86) 83(96) 89(98)	CO ₂ F H 6a % ee ^c 41 ^e 37 ^e 51 ^e
Table 1 ArMe ₂ Si (3.0 eq entry 1^d 2^f 3 4	/. Asyn H + uiv.) cat. 1 1 1 3	$\begin{array}{c} \text{R}^{1} \\ R^{1} \\ N_{2} \end{array} \begin{pmatrix} C \\ N_{2} \end{array} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	Si-H Inse O ₂ R ² 1.0 equiv.) Ar Ph Ph Ph Ph Ph Ph	rtion wit Ir(salen) CH ₂ Cl -78°C, R ¹ Me Me Me Me Me Me	h α -Alkyl (2.0 mol%) $_{2}$, MS 4A, 24 h R ² Et Et Et Et Et Et	-α-Diazoa R ¹ ArMe ₂ Si % yield ^b 71(86) 83(96) 89(98) 85	CO ₂ F H 6a % ee ^c 41 ^e 37 ^e 51 ^e 73 ^e
Table 1 ArMe ₂ Si (3.0 eq entry 1^d 2^f 3 4 5	7. Asym —H + uiv.) cat. 1 1 3 4	$\begin{array}{c} R^{1} C \\ N_{2} (\\ \\ \hline prod. \\ \hline \\ 6a $	Si-H Inse O ₂ R ² 1.0 equiv.) Ar Ph Ph Ph Ph Ph Ph Ph Ph	rtion wit Ir(salen) CH ₂ Cl -78°C, R ¹ Me Me Me Me Me Me	h α-Alkyl (2.0 mol%) $_2$, MS 4A, 24 h R ² Et Et Et Et Et Et Et	-α-Diazoau ArMe ₂ Si % yield ^b 71(86) 83(96) 89(98) 85 85	CCO ₂ F H 6a % ee ^c 41 ^e 37 ^e 51 ^e 73 ^e 97

Cyclopropanation ; *ACIE*, **2007**, *46*, 3889. *JACS*, **2008**, *130*, 10327. *ACIE*, **2009**, *48*, 3121. C-H Insertion ; *JACS*, **2009**, *131*, 14218. Si-H Insertion ; *JACS*, **2010**, *132*, 4510. Cyclopropenation ; *JACS*, **2011**, *133*, 170.

at -78°C, in THF, high yields and high stereoselectivity. cis selective reaction.

- in aryldiazozcetate, nomal salen complex (R=C $_6H_5$) gives high yiled and enantioselectivity
- in alkyldiazozcetate, salen complex **4** (R=p-TBDPSC₆H₄) gives high yiled and enantioselectivity.

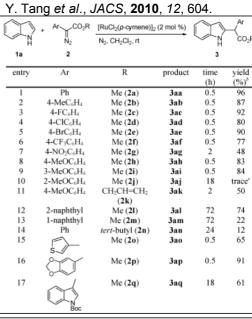
(the complexes having a higher molecular recognition ability would serve as an efficient catalyst for this reaction.)

Table 2	χ'∽ + N₂≠	astered	h - and e		t, 24 h		-	NO ₂ R					
Entry	Cyclopropane	R	Yield [%] ^[b]	Z/E ^[4]	ee [%] ^[d]	[α] ^[e]	Entry	Cyclopropane	R	Yield [%] ^[b]	Z/E ^[c]	ee [%] ^[d]	$\left[\alpha \right]^{[e]}$
1	4	Et	87	92:08	89	(-)	16		Et	90	91:09	94	(-) ^[f]
2 ^[g,h]	CO2R	Et	93	92:08	92		17 ^[g,h]	NO2	Et	81	93:07	95	(-) ^[1]
3	NO ₂	tBu	91	>99:1	91	(-)		F					
4ighi	4	tBu	97 97	>99:1	94	(-)		F CO2R					
5 ^[g,h]	CO2R	Et	86 ^{iki}	93:07	90		18 ^[h,l]	E NO2	Et	51	90:10	82	(-)
6.4	Me NO2	tBu	90	>99:1	92	(-)		F Υ F ***4 F					
7 ^[g,h]	Me CO ₂ R NO ₂	Et	91	96:04	91	()	19	Me CO ₂ R	Et	70 ^[k]	94:06	83	(–)
8 ^[g,h]		Et	82	92:08	91	(-)	20 ^[h,m]	Et CO ₂ R	tBu	45	92:08	≥ 80 ^[n]	(—)
9ishi	CO2R	Et	83	92:08	90	(-)							
10 ^[h]	/Bu NO2	tBu	87	>99:1	92	(-)	21 ^[h,m]	Ph CO ₂ R NO ₂	tBu	43	92:08	\geq 86 ^[n]	(+)
ןן ^(g,b)	Br NO ₂	Et	84	91:09	90	(-)	22 ^[h,j]		Et	42	53: <mark>4</mark> 7	88	(-)
12 ^[g,h]		Et	82	91:09	90	(-)	23 ^[h,j]		Et	62	56:44	88	(-)
13 ^[g,h]	F NO2	Et	87	<mark>91:09</mark>	90	<mark>(</mark> -)			1000			0.000	
14 ^[g,h]	CO;R	Et	88	92:08	90	(-)	24 ^[h,j]	Me II	Et	92	63:37	75	(-)
15 ^[h]	NO2	tBu	98	96:04	88	(-)		O NO ₂					

N Co [Co(P1)] (P1 = 3.5-DitBu-ChenPhyrin)

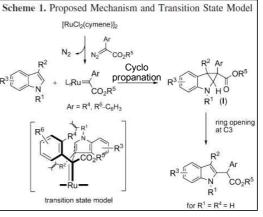
5 mol% catalyst.

antioselective cyclopropanation cceptor/acceptor type rogen bond of N-H of amide vs and ester of diazosubstrate, ctive face is determined.)


Iron Carbenoid

Iron is so cheap metal, but reaction example is not enough... Y. Tang et al., JACS, 2009, 131, 4192.

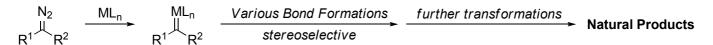
Table 1.	One-Pot Synthe d Insertion of A	esis of 1,3-Bu			
Br [⊕] ⊕ Bu ₃ P	CO ₂ Me -	1) LiHMDS, PhM 2) MDA, Fe(TCF 3) RCHO	P)CI	6 H CO ₂ Me	
entry	R	Time (h)	6 (%) ^b	3E,5E/3E,5Z ^c	
1	4-ClC ₆ H ₄	6	62 (6a)	92/8	
2	$4-BrC_6H_4$	7	61 (6b)	94/6	
3	$4-NO_2C_6H_4$	7	54 (6c)	97/3	
4	4-CNC ₆ H ₄	6	53 (6d)	92/8	
5	C ₆ H ₅	7	61 (6e)	95/5	
6	4-MeC ₆ H ₄	20	67 (6 f)	94/6	
7	E-PhCH=CH	23	45 (6g)	90/10	
8	Су	25	72 (6h)	92/8	
9	Ph(Me)CH	24	66 (6i)	94/6	
10^d		4	65 (6j)	75/25	
11	C_5H_{11}	24	69 (6 k)	87/13	
cı—	CI N, CI, N, N, Fe, N, N, Y, Y,	Ç → Cı		Z selectivity	action/ Wittig


Fe(TCP)C

Ruthenium Carbenoid

sterically barrier is critically affected.

Entry 10, 13, 14.

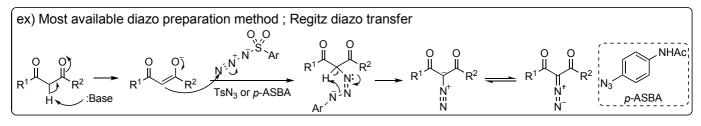

Ruthenium is the similar reactivity for Rhodium, many high efficient examples of Ruthenium are reported, but enantioselective reaction is a few report. (See Review ; Enantioselective Rutheniumporphyrin-carbenoid ; C.-M. Che et al., Synlett, 2010, 2681.)

CO₂Me Ph₃F CO₂Me Bu₃P CO₂Me (PCT)Fe CO₂Me Í PPh₃ CO₂Me ℃O₂Me Aldehvde CO₂Me

CO₂Me -----Other example of iron carbenoid, asymmetric cyclopropanation using porphyrin complex, moderate yield (up to 67%), good diastereoselectivity (up to 96:4) and moderate enantioselectivity (up to 80%ee), further improvements are required. G. Simonneaux et al., TL, 2009, 50, 5149.

6. Sammury & Perspective

Metal-carbenoid-mediated-reactions are so useful reactions for several type bond formation and skeletal construction. C-H Insertion, cyclopropanation, ylide formation, and others.... These reaction was used for several total syntheses.


Futher Improvement

• Main metal of carbenoid reaction is Rhodium, that is so expensive.

> We would like to use other cheap and available metal ; Cu, Fe, Co, Ni, Mn,

Recently, several cheap metals is used for metal-carbenoid reaction (further improvements were required).

• Usually, many type diazo compounds are thermally and photochemically unstable, and diazo precursor is unstable, explosive, and toxic.

Carbenoid generation method not using diazo precursor ??

available substrate and useful addtitive, easy conditons...

e.g.) substrate (dihalogen, monohalogen, active methylene (benzylic, allylic, α -position of carbonyl), directing group, alkene, or alkane), additive (base, oxidant), ligand effect of metal (steric, other several character), and the other additive and conditions...

 $\sqrt{1}$

If these reactions will be achieved, metal-carbenoid reactions is sure to become more general and conventional reaction.