
Recognition of Hydrophilic Molecules by Designed Small Molecular Receptor in Water

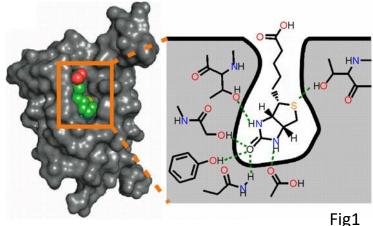
LITERATURE SEMINAR#2 19/07/19

Y. KAMIMURA

2. Analysis on molecular recognition in water

3. Case examples

Recognition of lysine in water Recognition of glucose in water


4. Appendix

Molecular recognition

Specific interaction between two or more molecules by non-covalent bonding.

It is one of the most basic phenomenon in organisms.

Understanding of it is of great importance for every fields.

11967 : Crown ether (C. J. Pdersen)

Since then, molecular recognition has been intensively studied.

ICyclic host molecules can be divided into 2 groups; molecules with hydrophobic cavity and molecules with polar binding site.

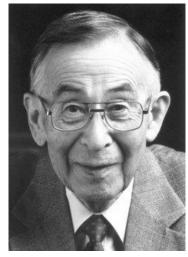
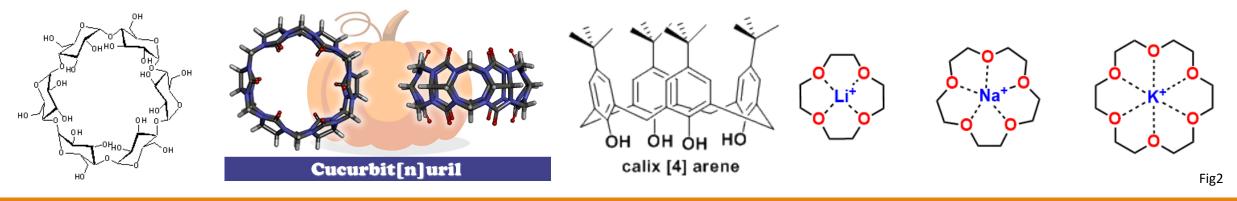
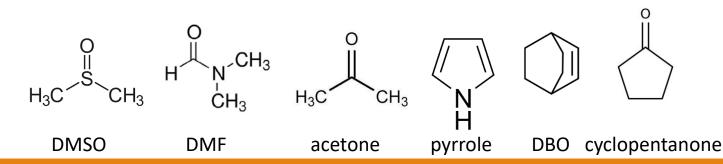
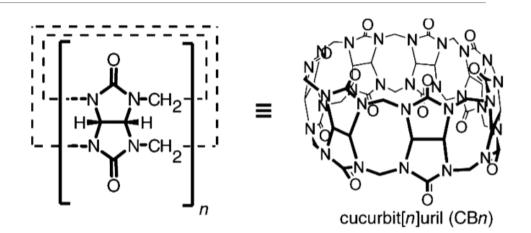


Fig1

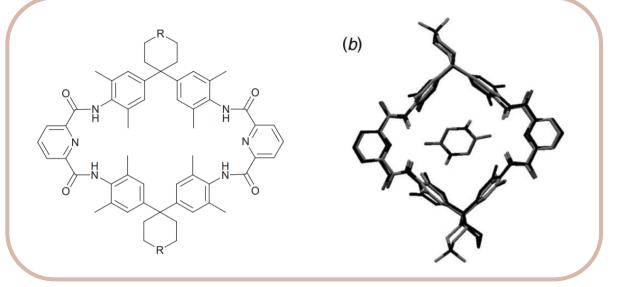



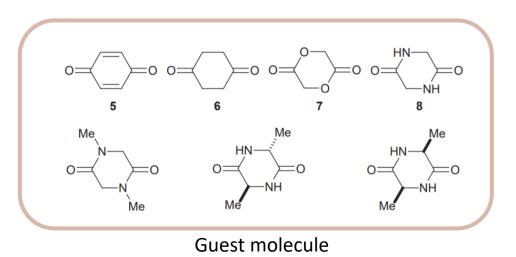

Fig1 : https://www.nobelprize.org/prizes/chemistry/1987/pedersen/biographical/ Fig2 : https://www.chem-station.com/

IThere are some reports of molecular recognition by hydrophobic host.

ISize and shape have more effect than functional group.

IComparing hydrophilic hosts and hydrophobic hosts, the latter are preferred.




	$K_a (10^3 \text{ M}^{-1})$	ΔH^a (kJ/mol)	$-T\Delta S^a$ (kJ/mol)
CB6·DMSO	1.2 ± 0.3	-5 ± 1	-24 ± 3
CB7·DMSO	0.13 ± 0.02	-14 ± 1	2 ± 2
CB6·DMF	1.8 ± 0.3	-6 ± 1	-24 ± 3
CB7·DMF	0.61 ± 0.02	-22 ± 1	6 ± 2
CB6·acetone	7.2 ± 0.3	-11 ± 2	-11 ± 4
CB7·acetone	0.64 ± 0.02	-13 ± 1	-1 ± 2
CB6·pyrrole	36 ± 3	-23 ± 2	-3 ± 4
CB7·pyrrole	1.7 ± 0.2	-30 ± 1	11 ± 2
CB7·DBO ^f	13400 ± 200^{g}	-75 ± 1	34 ± 2
CB8·DBO ^f	16 ± 3	-37 ± 1	13 ± 3
CB7·cyclopentanone	330 ± 0.2	-41 ± 1	9 ± 2
CB8·cyclopentanone	1.1 ± 0.2	-35 ± 1	18 ± 2

Molecular recognition by a molecule with polar binding site is also reported.

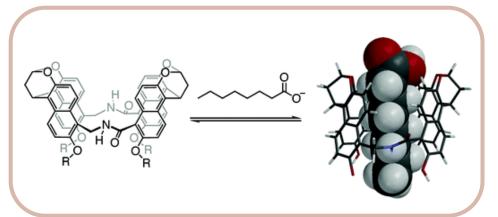
IHowever, affinity is significantly attenuated in water.

8 : $K_a = 1.0 \times 10^6 \text{ M}^{-1} (\text{CHCl}_3) \rightarrow 71 \pm 8 \text{ M}^{-1} (\text{H}_2\text{O})$

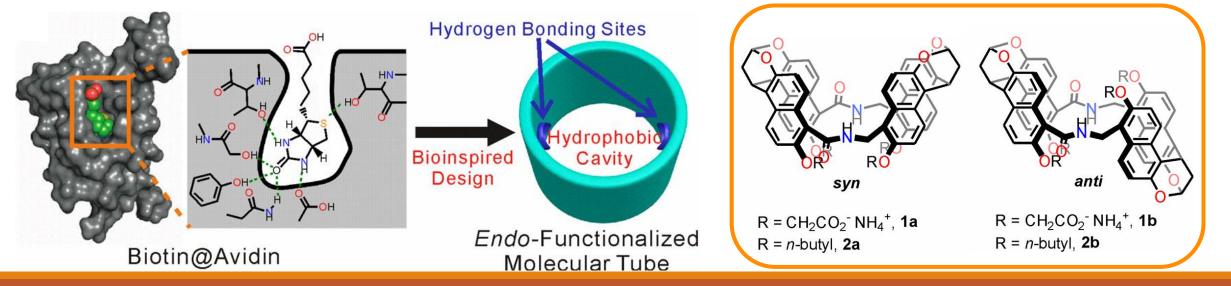
2. Analysis on molecular recognition in water

3. Case examples

Recognition of lysine in water Recognition of glucose in water


4. Appendix

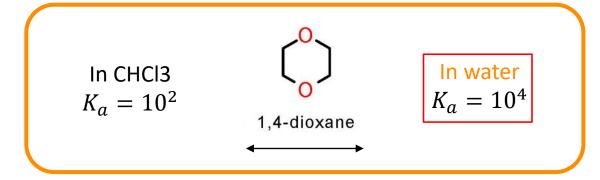
Molecular recognition in water

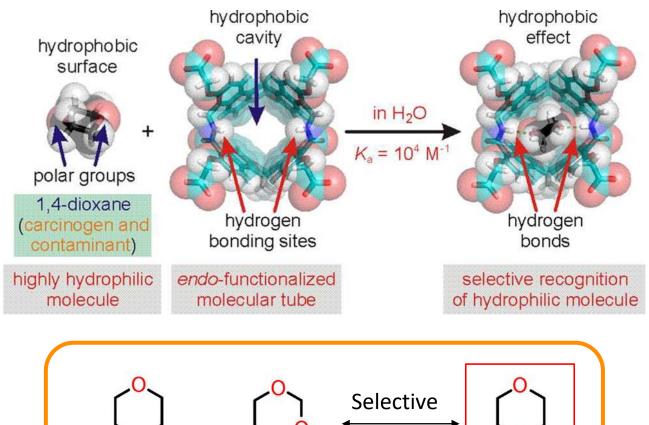

Biomolecules can recognize hydrophilic molecules in water.

IThey have hydrophilic recognition site in its hydrophobic cavity.

Artificial mimic of it was conceived.

B. J. Shorthill et al., J. Am. Chem. Soc., 2004, 126, 12732



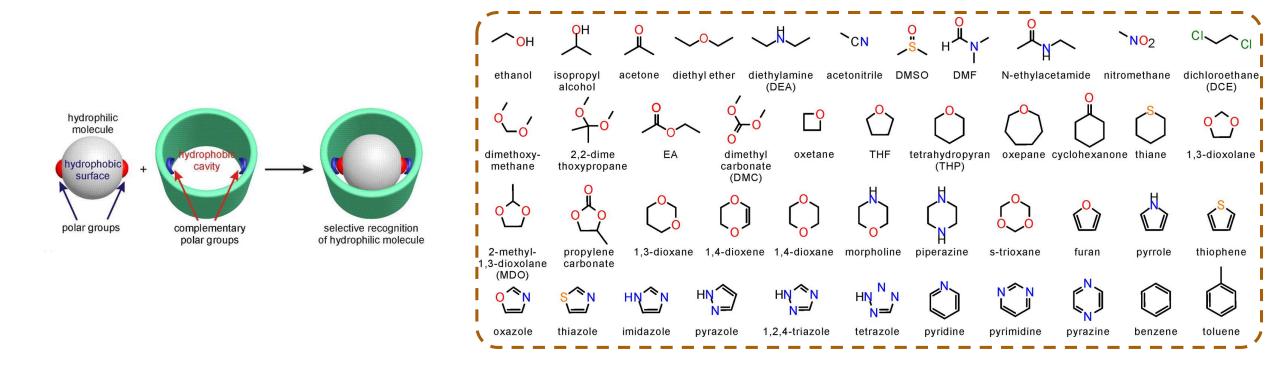

Molecular recognition in water

IHow hydrophobic effect works in the recognition of hydrophilic molecules?

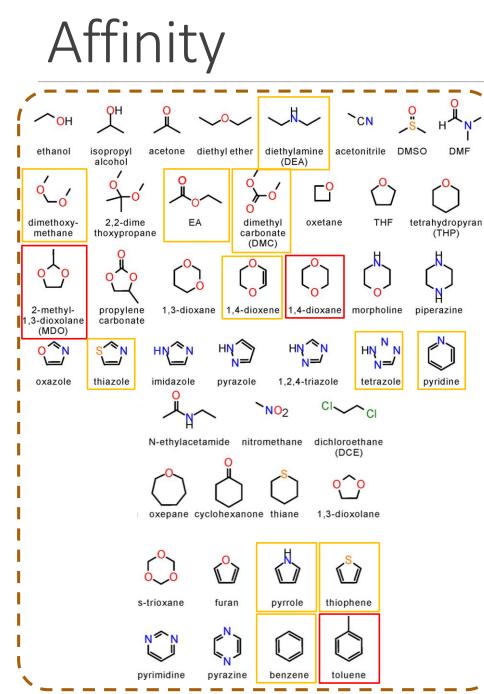
IIs CH-π interaction involved?

IHow can the host distinguish between these similar molecules?

1,3-dioxane


tetrahydropyran

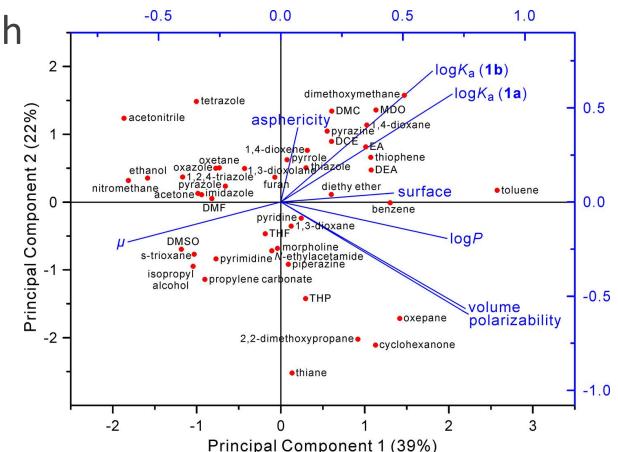
(THP)

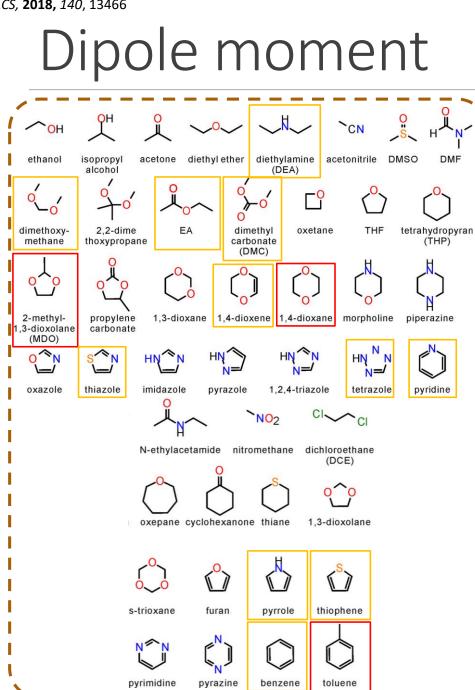

.4-dioxane

Molecular recognition in water

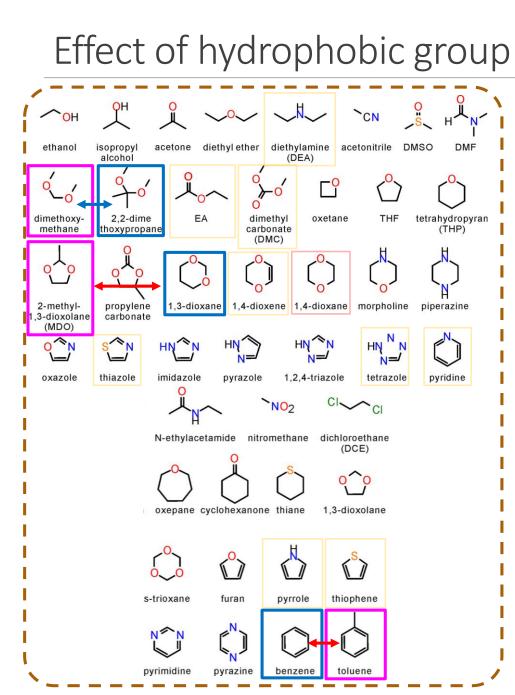
IAuthors analyzed the complexation process, using 44 hydrophilic small molecules as hosts.

JACS, 2018, 140, 13466

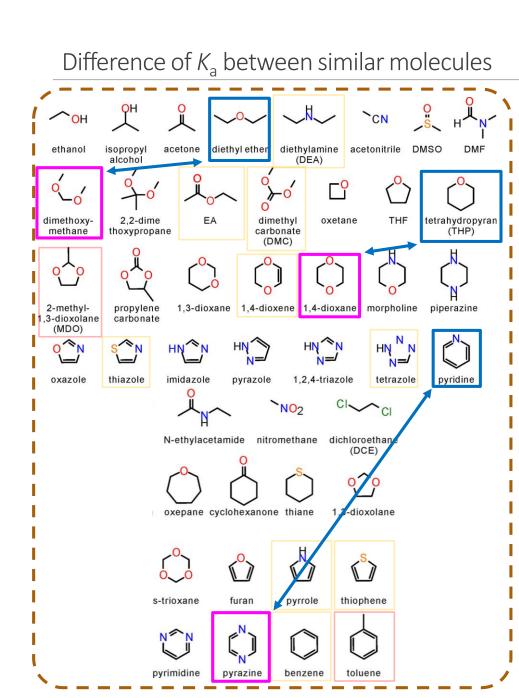

guest	$V(Å^3)^a$	$\Omega_{\Lambda}^{\ a}$	S (Å ²) ^a	$S_{MAX} (M)^{b}$	log P ^b	μ (D) ^ε	α (Bohr ³) ^e	K _a (1a, M ⁻¹)	K_{a} (1b, M ⁻¹)
ethanol	76.54	0.11373	93.94	misc ^d	-0.30	1.88	25.95	9 ± 2^{h}	43 ± 13^{h}
isopropyl alcohol	100.13	0.03907	113.95	misc	0.05	1.89	36.36	9 ± 4^{h}	20 ± 5^{h}
acetone ^e	91.26	0.05329	107.99	misc	-0.24	3.09	33.22	100 ± 10	110 ± 10
diethy ether	123.58	0.17298	139.41	8.15×10^{-1}	0.89	1.38	48.28	290 ± 39 ^h	330 ± 88^{h}
DEA	129.91	0.17562	142.89	misc	0.58	0.48	50.89	1500 ± 120^{i}	$460 \pm 11^{'}$
acetonitrile	68.73	0.20998	85.62	misc	-0.34	3.88	22.47	8 ± 3^{h}	160 ± 43^{h}
DMSO ^e	102.16	0.03143	116.48	misc	-1.35	4.92	44.68	31 ± 4	130 ± 10
DMF ^e	105.78	0.08156	121.33	misc	-1.01	4.44	40.52	310 ± 31	120 ± 12
N-ethylacetamide	130.92	0.13133	144.55	1.32^{g}	-0.19^{g}	4.10	50.95	65 ± 10^{h}	150 ± 25^{h}
nitromethane	74.53	0.05675	91.54	1.82	-0.33	3.85	24.39	17 ± 8^{h}	110 ± 2^{h}
DCE	107.87	0.21466	121.44	8.61×10^{-2}	1.48	0.00	40.64	270 ± 23^{j}	400 ± 21^{j}
dim ethoxy methan e	113.25	0.08744	445.61	3.02×10^{-1}	0.00	2.38	40.67	6700 ± 140^{i}	5200 ± 590^{i}
2,2-dimethoxypropane	152.34	0.02584	157.50	7.22×10^{-2}	1.38	2.30	60.81	49 ± 13^{h}	140 ± 3^{h}
EA	125.99	0.12646	140.88	9.08×10^{-1}	0.73	1.94	47.95	3400 ± 24^{i}	2300 ± 140^{i}
DMC	114.94	0.13347	128.20	9.44×10^{-1g}	0.07^{g}	0.11	40.37	2300 ± 110^{i}	1400 ± 52^{i}
oxetane	88.20	0.04207	102.57	misc	-0.14	2.50	32.72	300 ± 30	240 ± 25
THF ^e	107.45	0.04022	119.52	misc	0.46	2.26	43.16	230 ± 25	90 ± 10
THP ^e	127.01	0.04092	135.38	9.31×10^{-1}	0.82	1.83	53.97	68 ± 7	60 ± 6
oxepane	148.63	0.03939	151.49	2.68×10^{-2}	1.92	1.70	64.13	380 ± 40	150 ± 20
cyclohexanone	140.93	0.06941	147.72	2.34×10^{-1}	0.81	3.42	61.31	35 ± 5^{h}	6 ± 1^{h}
thiane	140.33	0.04774	146.85	1.27×10^{-2}	2.28	2.37	65.96	65 ± 6^{h}	120 ± 9^{h}
1,3-dioxolane	96.85	0.04306	109.98	3.74	-0.37	1.48	36.21	430 ± 39 ⁱ	260 ± 5 ⁱ
MDO	117.76	0.06975	131.51	7.94×10^{-1g}	0.08^{g}	1.35	46.61	2000 ± 730 ⁴	8100 ± 79'
propylene carbonate	119.00	0.06329	133.46	1.71	-0.41	6.16	47.59	51 ± 5^{i}	62 ± 5^{i}
1,3-dioxane ^e	115.90	0.04233	126.15	9.94×10^{-1}	0.18	1.44	46.19	210 ± 21	210 ± 21
1,4-dioxene	106.94	0.04980	120.68	misc ^g	-0.39^{g}	0.95	43.75	$1800 \pm 73'$	$1000 \pm 76'$
1,4-dioxane ^e	116.07	0.042.53	126.70	misc	-0.27	0.00	47.23	4000 ± 1500	3200 ± 300
m orpholine f	124.32	0.04235	130.78	misc	-0.86	2.01	50.72	190 ± 8^{i}	130 ± 6^{i}
piperazine	130.42	0.04224	134.82	misc	-1.50	0.00	54.09	210 ± 17^{i}	40 ± 3^{i}
s-trioxan e	104.50	0.04396	116.30	1.94	-0.43	2.65	38.87	47 ± 3^{h}	17 ± 8^{h}
furan	93.86	0.06254	105.94	1.47×10^{-1}	1.34	1.08	36.05	490 ± 23^{i}	150 ± 20^{i}
pyrrole	97.36	0.06252	110.46	7.01×10^{-1}	0.75	1.90	39.68	1500 ± 59^{i}	390 ± 2^{i}
thiophene	107.02	0.06994	117.95	3.59×10^{-2}	1.81	1.02	49.12	4000 ± 230'	$2100 \pm 200^{\circ}$
oxazole	85.54	0.06260	100.66	1.55	0.12	1.53	32.51	130 ± 22^{i}	130 ± 10^{i}
thiazole	101.76	0.07153	113.00	6.32×10^{-1}	0.44	1.32	45.91	1400 ± 220^{i}	420 ± 14^{i}
imidazole	91.92	0.06258	105.26	2.34	-0.08	3.97	36.16	330 ± 33^{h}	69 ± 13^{h}
pyrazole	91.76	0.062.52	105.34	1.20	0.26	2.47	36.10	180 ± 9^{i}	130 ± 14^{i}
1,2,4-triazole	85.74	0.062.59	100.03	6.14	-0.58	2.99	32.49	210 ± 21^{i}	61 ± 14^{i}
tetrazole	83.11	0.062.55	95.43	3.08×10^{-1}	-0.60	5.77	29.72	1800 ± 650 ⁱ	2100 ± 350^{j}
pyridine	111.97	0.062.57	122.09	misc	0.65	2.48	49.41	590 ± 48 ⁱ	220 ± 29^{i}
pyrimidine	105.06	0.06255	117.14	3.58	-0.40	2.61	45.33	62 ± 5^{i}	18 ± 4^{i}
pyrazine	104.15	0.06280	117.32	2.72	-0.26	0.00	45.97	2200 ± 38^{i}	1900 ± 100^{i}
benzene	116.30	0.06250	126.89	2.29×10^{-2}	2.13	0.00	53.33	1300 ± 190 ⁴	750 ± 69 ⁴
toluene	141.22	0.08711	147.37	5.71×10^{-3}	2.73	0.36	65.49	9500 ± 1700^{i}	9900 ± 1400


PCA

IDipole moment has medium degree of negative correlation with the binding affinity.


LogP, surface area, polarizability, volume have weak positive correlation.

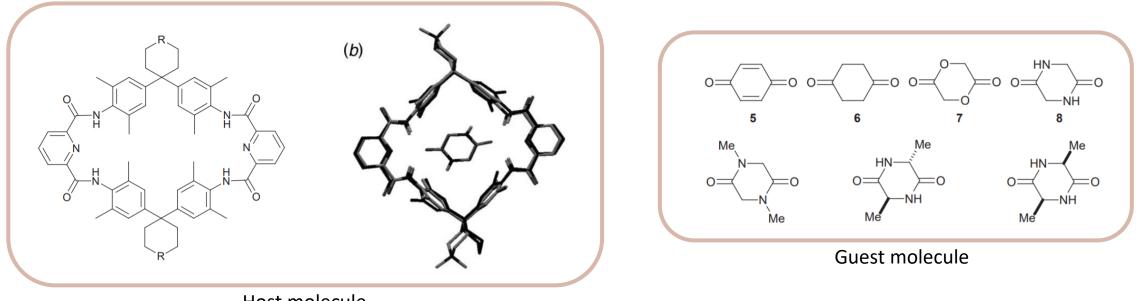
However none of the parameters is sufficient for the explanation of the affinity.



guest	$V(Å^3)^a$	$\Omega_{\Lambda}^{\ a}$	S (Å ²) ^a	$S_{MAX} (M)^{b}$	log P ^b	μ (D) ^c	α (Bohr ³) ^c	K_{a} (1a, M ⁻¹)	K_{a} (1b, M ⁻¹)
ethanol	76.54	0.11373	93.94	misc ^d	-0.30	1.88	25.95	9 ± 2^{h}	43 ± 13^{h}
isopropyl alcohol	100.13	0.03907	113.95	misc	0.05	1.89	36.36	9 ± 4^{h}	20 ± 5^{h}
acetone ^e	91.26	0.05329	107.99	misc	-0.24	3.09	33.22	100 ± 10	110 ± 10
diethy ether	123.58	0.17298	139.41	8.15×10^{-1}	0.89	1.38	48.28	290 ± 39^{h}	330 ± 88^{h}
DEA	129.91	0.17562	142.89	misc	0.58	0.48	50.89	1500 ± 120^{i}	460 ± 11^{i}
acetonitrile	68.73	0.20998	85.62	misc	-0.34	3.88	22.47	8 ± 3^{h}	160 ± 43^{h}
DMSO ^e	102.16	0.03143	116.48	misc	-1.35	4.92	44.68	31 ± 4	130 ± 10
DMF ^e	105.78	0.08156	121.33	misc	-1.01	4.44	40.52	310 ± 31	120 ± 12
N-ethylacetamide	130.92	0.13133	144.55	1.32 ^g	-0.19^{g}	4.10	50.95	65 ± 10^{h}	150 ± 25^{h}
nitromethane	74.53	0.05675	91.54	1.82	-0.33	3.85	24.39	17 ± 8^{h}	110 ± 2^{h}
DCE	107.87	0.21466	121.44	8.61×10^{-2}	1.48	0.00	40.64	270 ± 23^{j}	400 ± 21^{j}
dimethoxymethane	113.25	0.08744	445.61	3.02×10^{-1}	0.00	2.38	40.67	6700 ± 140^{i}	5200 ± 590^{i}
2,2-dimethoxypropane	152.34	0.02584	157.50	7.22×10^{-2}	1.38	2.30	60.81	49 ± 13^{h}	140 ± 3^{h}
EA	125.99	0.12646	140.88	9.08×10^{-1}	0.73	1.94	47.95	3400 ± 24^{i}	2300 ± 140^{i}
DMC	114.94	0.13347	128.20	9.44×10^{-1g}	0.07^{g}	0.11	40.37	2300 ± 110^{i}	1400 ± 52^{i}
oxetane ^e	88.20	0.04207	102.57	misc	-0.14	2.50	32.72	300 ± 30	240 ± 25
THF	107.45	0.04022	119.52	misc	0.46	2.26	43.16	230 ± 25	90 ± 10
THP ^e	127.01	0.04092	135.38	9.31×10^{-1}	0.82	1.83	53.97	68 ± 7	60 ± 6
oxepane "	148.63	0.03939	151.49	2.68×10^{-2}	1.92	1.70	64.13	380 ± 40	150 ± 20
cyclohexan one	140.93	0.06941	147.72	2.34×10^{-1}	0.81	3.42	61.31	35 ± 5^{h}	6 ± 1^{h}
thiane	140.33	0.04774	146.85	1.27×10^{-2}	2.28	2.37	65.96	65 ± 6^{h}	120 ± 9^{h}
1,3-dioxolane	96.85	0.04306	109.98	3.74	-0.37	1.48	36.21	430 ± 39 ⁱ	260 ± 5^{i}
MDO	117.76	0.06975	131.51	7.94×10^{-1g}	0.08^{g}	1.35	46.61	22000 ± 730 ⁴	8100 ± 79 ⁴
propylene carbonate	119.00	0.06329	133.46	1.71	-0.41	6.16	47.59	51 ± 5^{i}	62 ± 5^{i}
1,3-dioxane ^e	115.90	0.04233	126.15	9.94×10^{-1}	0.18	1.44	46.19	210 ± 21	210 ± 21
1,4-dioxene	106.94	0.04980	120.68	misc ^g	-0.39^{g}	0.95	43.75	$1800 \pm 73'$	$1000 \pm 76^{\circ}$
1,4-dioxane ^e	116.07	0.04253	126.70	misc	-0.27	0.00	47.23	14000 ± 1500	3200 ± 300
morpholine	124.32	0.04235	130.78	misc	-0.86	2.01	50.72	190 ± 8^{i}	130 ± 6^{i}
piperazine	130.42	0.04224	134.82	misc	-1.50	0.00	54.09	210 ± 17^{i}	40 ± 3^{i}
s-trioxane	104.50	0.04396	116.30	1.94	-0.43	2.65	38.87	47 ± 3^{h}	17 ± 8^{h}
furan	93.86	0.06254	105.94	1.47×10^{-1}	1.34	1.08	36.05	490 ± 23^{i}	150 ± 20^{i}
pyrrole	97.36	0.06252	110.46	7.01×10^{-1}	0.75	1.90	39.68	1500 ± 59^{i}	390 ± 2^{i}
thiophene	107.02	0.06994	117.95	3.59×10^{-2}	1.81	1.02	49.12	$4000 \pm 230'$	$2100 \pm 200^{\circ}$
oxazole	85.54	0.06260	100.66	1.55	0.12	1.53	32.51	130 ± 22^{i}	130 ± 10^{i}
thiazole	101.76	0.07153	113.00	6.32×10^{-1}	0.44	1.32	45.91	1400 ± 220^{i}	420 ± 14^{i}
imidazole	91.92	0.06258	105.26	2.34	-0.08	3.97	36.16	330 ± 33^{h}	69 ± 13^{h}
pyrazole	91.76	0.06252	105.34	1.20	0.26	2.47	36.10	$180 \pm 9'$	$130 \pm 14^{\circ}$
1,2,4-triazole	85.74	0.06259	100.03	6.14	-0.58	2.99	32.49	210 ± 21^{i}	61 ± 14^{i}
tetrazole	83.11	0.06255	95.43	3.08×10^{-1}	-0.60	5.77	29.72	1800 ± 650^{i}	2100 ± 350^{i}
pyridine	111.97	0.06257	122.09	misc	0.65	2.48	49.41	590 ± 48'	220 ± 29^{i}
pyrimidine	105.06	0.06255	117.14	3.58	-0.40	2.61	45.33	62 ± 5^{i}	18 ± 4^{i}
pyrazine	104.15	0.06280	117.32	2.72	-0.26	0.00	45.97	2200 ± 38^{i}	1900 ± 100^{i}
benzene	116.30	0.06250	126.89	2.29×10^{-2}	2.13	0.00	53.33	1300 ± 190 ⁴	750 ± 69'
toluene	141.22	0.08711	147.37	5.71×10^{-3}	2.73	0.36	65.49	9500 ± 1700 ⁱ	9900 ± 1400

guest	V (Å ³) ^a	$\Omega_{\Lambda}^{\ a}$	S (Å ²) ^a	$S_{MAX} (M)^{b}$	$\log P^b$	μ (D) ^e	α (Bohr ³) ^e	K_{a} (1a, M ⁻¹)	K_{a} (1b, M ⁻¹)
ethanol	76.54	0.11373	93.94	misc ^d	-0.30	1.88	25.95	9 ± 2^{h}	43 ± 13^{h}
isopropyl alcohol	100.13	0.03907	113.95	misc	0.05	1.89	36.36	9 ± 4^{h}	20 ± 5^{h}
acetone ^e	91.26	0.05329	107.99	misc	-0.24	3.09	33.22	100 ± 10	110 ± 10
diethy ether	123.58	0.17298	139.41	8.15×10^{-1}	0.89	1.38	48.28	290 ± 39 ^h	330 ± 88^{h}
DEA	129.91	0.17562	142.89	misc	0.58	0.48	50.89	1500 ± 120^{i}	460 ± 11^{i}
acetonitrile	68.73	0.20998	85.62	misc	-0.34	3.88	22.47	8 ± 3^{h}	160 ± 43^{h}
DMSO ^e	102.16	0.03143	116.48	misc	-1.35	4.92	44.68	31 ± 4	130 ± 10
DMF ^e	105.78	0.08156	121.33	misc	-1.01	4.44	40.52	310 ± 31	120 ± 12
N-ethylacetamide	130.92	0.13133	144.55	1.32^{g}	-0.19^{g}	4.10	50.95	65 ± 10^{h}	150 ± 25^{h}
nitromethane	74.53	0.05675	91.54	1.82	-0.33	3.85	24.39	17 ± 8^{h}	110 ± 2^{h}
DCE	107.87	0.21466	121.44	8.61×10^{-2}	1.48	0.00	40.64	270 ± 23^{j}	400 ± 21^{j}
dimethoxymethane	113.25	0.08744	445.61	3.02×10^{-1}	0.00	2.38	40.67	6700 ± 140 ⁴	5200 ± 590 ⁴
2,2-dimethoxypropane	152.34	0.02584	157.50	7.22×10^{-2}	1.38	2.30	60.81	49 ± 13^{h}	140 ± 3^{h}
EA	125.99	0.12646	140.88	9.08×10^{-1}	0.73	1.94	47.95	3400 ± 24^{i}	2300 ± 140^{i}
DMC	114.94	0.13347	128.20	9.44×10^{-1g}	0.07^{g}	0.11	40.37	2300 ± 110^{i}	1400 ± 52^{i}
oxetane	88.20	0.04207	102.57	misc	-0.14	2.50	32.72	300 ± 30	240 ± 25
THF	107.45	0.04022	119.52	misc	0.46	2.26	43.16	230 ± 25	90 ± 10
THP ^e	127.01	0.04092	135.38	9.31×10^{-1}	0.82	1.83	53.97	68 ± 7	60 ± 6
oxepane"	148.63	0.03939	151.49	2.68×10^{-2}	1.92	1.70	64.13	380 ± 40	150 ± 20
cyclohexan one	140.93	0.06941	147.72	2.34×10^{-1}	0.81	3.42	61.31	35 ± 5^{h}	6 ± 1^h
thiane	140.33	0.04774	146.85	1.27×10^{-2}	2.28	2.37	65.96	65 ± 6^{h}	120 ± 9^{h}
1,3-dioxolane	96.85	0.04306	109.98	3.74	-0.37	1.48	36.21	430 ± 39 ⁴	260 ± 5^{i}
MDO	117.76	0.06975	131.51	7.94×10^{-1g}	0.08^{g}	1.35	46.61	22000 ± 730"	8100 ± 79'
propylene carbonate	119.00	0.06329	133.46	1.71	-0.41	6.16	47.59	51 ± 5^{i}	62 ± 5^{i}
1,3-dioxane ^e	115.90	0.04233	126.15	9.94×10^{-1}	0.18	1.44	46.19	210 ± 21	210 ± 21
1,4-dioxene	106.94	0.04980	120.68	misc ^g	-0.39^{g}	0.95	43.75	$1800 \pm 73'$	1000 ± 76^{i}
1,4-dioxane"	116.07	0.042.53	126.70	misc	-0.27	0.00	47.23	14000 ± 1500	3200 ± 300
morpholine	124.32	0.04235	130.78	misc	-0.86	2.01	50.72	190 ± 8^{i}	130 ± 6^{i}
piperazine	130.42	0.04224	134.82	misc	-1.50	0.00	54.09	210 ± 17^{i}	40 ± 3^{i}
s-trioxane	104.50	0.04396	116.30	1.94	-0.43	2.65	38.87	47 ± 3^{h}	17 ± 8^{h}
furan	93.86	0.062.54	105.94	1.47×10^{-1}	1.34	1.08	36.05	490 ± 23^{i}	150 ± 20^{i}
pyrrole	97.36	0.06252	110.46	7.01×10^{-1}	0.75	1.90	39.68	1500 ± 59^{i}	390 ± 2^{i}
thiophene	107.02	0.06994	117.95	3.59×10^{-2}	1.81	1.02	49.12	4000 ± 230'	2100 ± 200^{i}
oxazole	85.54	0.06260	100.66	1.55	0.12	1.53	32.51	130 ± 22^{i}	$130 \pm 10^{\circ}$
thiazole	101.76	0.07153	113.00	6.32×10^{-1}	0.44	1.32	45.91	1400 ± 220^{i}	420 ± 14^{i}
imidazole	91.92	0.06258	105.26	2.34	-0.08	3.97	36.16	330 ± 33^{h}	69 ± 13^{h}
pyrazole	91.76	0.06252	105.34	1.20	0.26	2.47	36.10	$180 \pm 9'$	$130 \pm 14'$
1,2,4-triazole	85.74	0.06259	100.03	6.14	-0.58	2.99	32.49	210 ± 21^{i}	61 ± 14^{i}
tetrazole	83.11	0.06255	95.43	3.08×10^{-1}	-0.60	5.77	29.72	1800 ± 650^{i}	$2100 \pm 350^{\prime}$
pyridine	111.97	0.06257	122.09	misc	0.65	2.48	49.41	590 ± 48'	$220 \pm 29'$
pyrimidine	105.06	0.06255	117.14	3.58	-0.40	2.61	45.33	62 ± 5^{i}	18 ± 4^{i}
pyrazine	104.15	0.06280	117.32	2.72	-0.26	0.00	45.97	2200 ± 38 ⁱ	1900 ± 100^{i}
benzene	116.30	0.06250	126.89	2.29×10^{-2}	2.13	0.00	53.33	1300 ± 190 ⁴	750 ± 69 ⁴
toluene	141.22	0.08711	147.37	5.71×10^{-3}	2.73	0.36	65.49	9500 ± 1700 ^t	9900 ± 1400

guest	$V(Å^3)^a$	$\Omega_{\Lambda}^{\ a}$	S (Å ²) ^a	$S_{MAX} (M)^b$	log P ^b	μ (D) ^c	α (Bohr ³) ^e	K_{a} (1a, M ⁻¹)	K_{a} (1b, M ⁻¹)
ethanol	76.54	0.11373	93.94	misc ^d	-0.30	1.88	25.95	9 ± 2^{h}	43 ± 13^{h}
isopropyl alcohol	100.13	0.03907	113.95	misc	0.05	1.89	36.36	9 ± 4^{h}	20 ± 5^{h}
acetone ^e	91.26	0.05329	107.99	misc	-0.24	3.09	33.22	100 ± 10	110 ± 10
diethy ether	123.58	0.17298	139.41	8.15×10^{-1}	0.89	1.38	48.28	290 ± 39 ^h	330 ± 88^{h}
DEA	129.91	0.17562	142.89	misc	0.58	0.48	50.89	1500 ± 120^{i}	460 ± 11^{i}
acetonitrile	68.73	0.20998	85.62	misc	-0.34	3.88	22.47	8 ± 3^{h}	160 ± 43^{h}
DMSO ^e	102.16	0.03143	116.48	misc	-1.35	4.92	44.68	31 ± 4	130 ± 10
DMF ^e	105.78	0.08156	121.33	misc	-1.01	4.44	40.52	310 ± 31	120 ± 12
N-ethylacetamide	130.92	0.13133	144.55	1.32^{g}	-0.19^{g}	4.10	50.95	65 ± 10^{h}	150 ± 25^{h}
nitromethane	74.53	0.05675	91.54	1.82	-0.33	3.85	24.39	17 ± 8^{h}	110 ± 2^{h}
DCE	107.87	0.21466	121.44	8.61×10^{-2}	1.48	0.00	40.64	270 ± 23^{j}	400 ± 21^{j}
dimethoxymethane	113.25	0.08744	445.61	3.02×10^{-1}	0.00	2.38	40.67	6700 ± 140 ¹	5200 ± 590 ⁴
2,2-dimethoxypropane	152.34	0.02584	157.50	7.22×10^{-2}	1.38	2.30	60.81	49 ± 13^{h}	140 ± 3^{h}
EA	125.99	0.12646	140.88	9.08×10^{-1}	0.73	1.94	47.95	3400 ± 24^{i}	2300 ± 140^{i}
DMC	114.94	0.13347	128.20	9.44×10^{-1g}	0.07^{g}	0.11	40.37	2300 ± 110^{i}	1400 ± 52^{i}
oxetane	88.20	0.04207	102.57	misc	-0.14	2.50	32.72	300 ± 30	240 ± 25
THF ^e	107.45	0.04022	119.52	misc	0.46	2.26	43.16	230 ± 25	90 ± 10
THP ^e	127.01	0.04092	135.38	9.31×10^{-1}	0.82	1.83	53.97	68 ± 7	60 ± 6
oxepane ^e	148.63	0.03939	151.49	2.68×10^{-2}	1.92	1.70	64.13	380 ± 40	150 ± 20
cyclohexan one	140.93	0.06941	147.72	2.34×10^{-1}	0.81	3.42	61.31	35 ± 5^{h}	6 ± 1^{h}
thiane	140.33	0.04774	146.85	1.27×10^{-2}	2.28	2.37	65.96	65 ± 6^{h}	120 ± 9^{h}
1,3-dioxolane	96.85	0.04306	109.98	3.74	-0.37	1.48	36.21	430 ± 39 ⁱ	260 ± 5^{i}
MDO	117.76	0.06975	131.51	7.94×10^{-1g}	0.08^{g}	1.35	46.61	22000 ± 730^{i}	8100 ± 79^{i}
propylene carbonate	119.00	0.06329	133.46	1.71	-0.41	6.16	47.59	51 ± 5^{i}	62 ± 5^{i}
1,3-dioxane ^e	115.90	0.042.33	126.15	9.94×10^{-1}	0.18	1.44	46.19	210 ± 21	210 ± 21
1,4-dioxene	106.94	0.04980	120.68	misc ^g	-0.39^{g}	0.95	43.75	1800 ± 73^{i}	1000 ± 76^{i}
↑ 1,4-dioxane ^e	116.07	0.04253	126.70	misc	-0.27	0.00	47.23	14000 ± 1500	3200 ± 300
morpholine	124.32	0.04235	130.78	misc	-0.86	2.01	50.72	190 ± 8^{i}	130 ± 6^{i}
piperazine	130.42	0.04224	134.82	misc	-1.50	0.00	54.09	210 ± 17^{i}	40 ± 3^{i}
s-trioxan e	104.50	0.04396	116.30	1.94	-0.43	2.65	38.87	47 ± 3^{h}	17 ± 8^{h}
furan	93.86	0.062.54	105.94	1.47×10^{-1}	1.34	1.08	36.05	490 ± 23^{i}	150 ± 20^{i}
pyrrole	97.36	0.06252	110.46	7.01×10^{-1}	0.75	1.90	39.68	1500 ± 59^{i}	390 ± 2^{i}
thiophene	107.02	0.06994	117.95	3.59×10^{-2}	1.81	1.02	49.12	$4000 \pm 230^{\circ}$	2100 ± 200^{i}
oxazole	85.54	0.06260	100.66	1.55	0.12	1.53	32.51	130 ± 22^{i}	$130 \pm 10^{\circ}$
thiazole	101.76	0.07153	113.00	6.32×10^{-1}	0.44	1.32	45.91	1400 ± 220^{i}	420 ± 14^{i}
imidazole	91.92	0.062.58	105.26	2.34	-0.08	3.97	36.16	330 ± 33^{h}	69 ± 13^{h}
pyrazole	91.76	0.062.52	105.34	1.20	0.26	2.47	36.10	$180 \pm 9'$	$130 \pm 14^{\circ}$
1,2,4-triazole	85.74	0.062.59	100.03	6.14	-0.58	2.99	32.49	210 ± 21^{i}	61 ± 14^{i}
tetrazole	83.11	0.06255	95.43	3.08×10^{-1}	-0.60	5.77	29.72	1800 ± 650^{j}	2100 ± 350^{i}
pyridine	111.97	0.062.57	122.09	misc	0.65	2.48	49.41	590 ± 48'	$220 \pm 29'$
pyrimidine	105.06	0.062.55	117.14	3.58	-0.40	2.61	45.33	62 ± 5^{i}	18 ± 4^{i}
pyrazine	104.15	0.062.80	117.32	2.72	-0.26	0.00	45.97	2200 ± 38^{i}	1900 ± 100^{i}
benzene	116.30	0.062.50	126.89	2.29×10^{-2}	2.13	0.00	53.33	1300 ± 190^{i}	750 ± 69 ⁱ
toluene	141.22	0.08711	147.37	5.71×10^{-3}	2.73	0.36	65.49	9500 ± 1700 ⁴	9900 ± 1400 ⁴


Effect of solvent

	H ₂ O		CHCl ₃
MDO	$22000 \pm 730 \text{ M}^{-1}$	\rightarrow	$41 \pm 1 M^{-1}$
1,4-dioxane	$14000 \pm 1500 \text{ M}^{-1}$	\rightarrow	$62 \pm 1 \mathrm{M}^{-1}$
Pyrazine	2200±38 M ⁻¹	\rightarrow	$11 \pm 1 \text{ M}^{-1}$
IEA	$3400 \pm 24 \text{ M}^{-1}$	\rightarrow	ND
IDMC	$2300 \pm 110 \text{ M}^{-1}$	\rightarrow	ND
Benzene	$1300 \pm 190 \text{ M}^{-1}$	\rightarrow	ND

Effect of solvent

INormally, great decrease in affinity is observed when the solvent is changed from chloroform to water.

IWell-definedness of the cavity seems to be important.

Hydrophobic effect

IAverage number of H-Bonding of cavity water is less then bulk water(3.6).

IExclusion of cavity water (High energy water) is favorable in terms of enthalpy gain.

 N^{b}

1.5

3.0

4.5

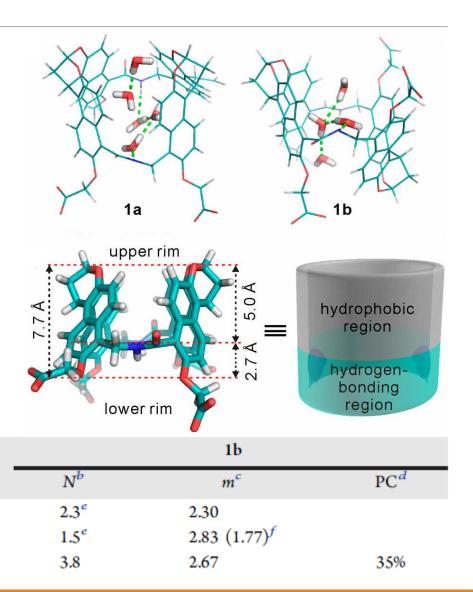
hydrophobic region

whole cavity

hydrogen-bonding region

1a

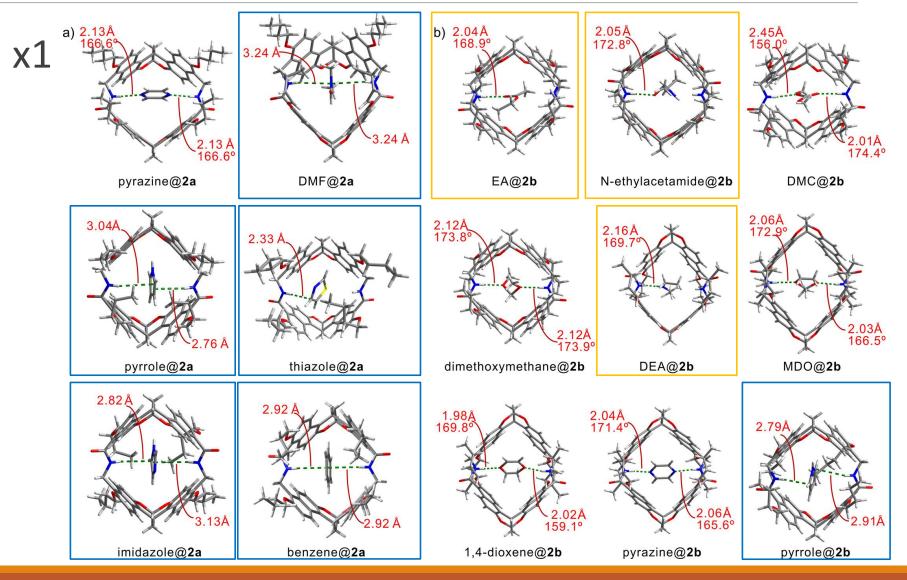
 m^{c}


 $3.20(2.80)^{f}$

1.67

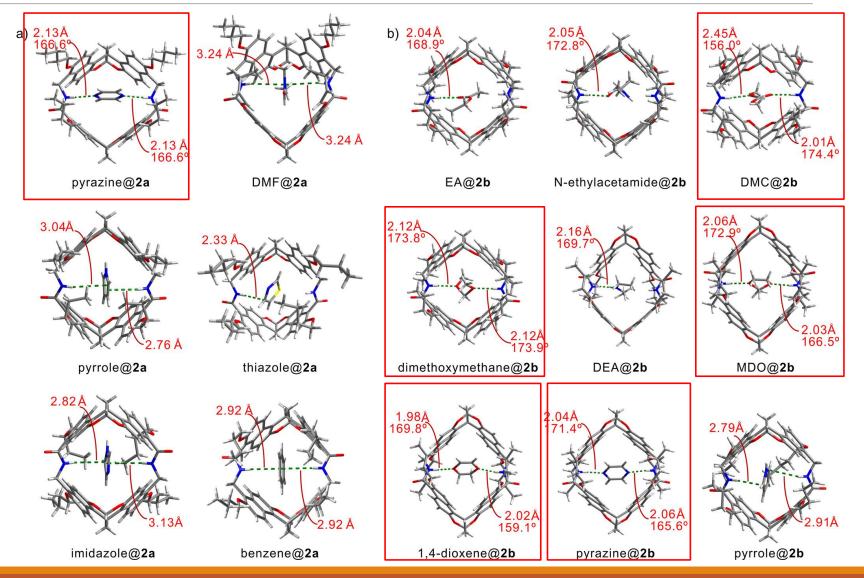
2.76

 PC^d


48%

G Huang et al, J. Am. Chem. Soc., **2016**, 138, 14550. H. Yao, et al., J. Am. Chem. Soc., **2018**, 140, 13466

Hydrogen bonding

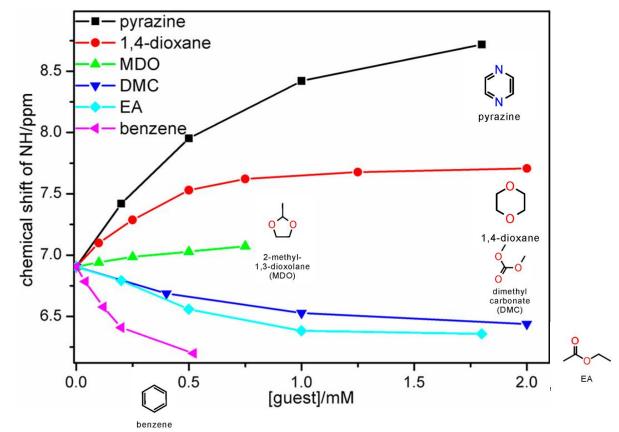

IBlue: H-bonding IYellow: NH-π

G Huang et al, J. Am. Chem. Soc., **2016**, 138, 14550. H. Yao, et al., J. Am. Chem. Soc., **2018**, 140, 13466

Hydrogen bonding

IRed: H-bonding x2

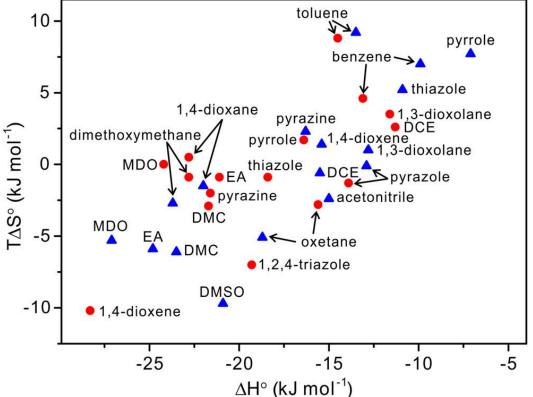
G Huang et al, J. Am. Chem. Soc., **2016**, 138, 14550. H. Yao, et al., J. Am. Chem. Soc., **2018**, 140, 13466 Hydrogen bonding


IMeasured if host-gest hydrogen bond compensate for desolvation energy of the host.

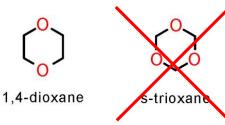
IComplexation with Pyrazine, 1,4diozane, MDO is favorable.

IComplexation with DMC, EA, benzene is disfavorable.

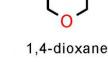
IComplexation with the later molecules is mainly driven by the exclusion of the cavity water.


NMR titration

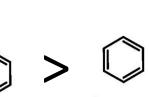
Entropy and enthalpy


IWeak entropy-enthalpy compensation was observed.

Roughly speaking, enthalpy but not entropy is the major driving force for the complexation.



The criteria for good guest molecules

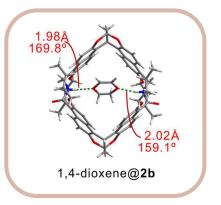
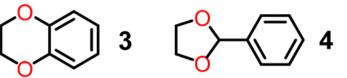

- 1.Good guest should be able to form hydrogen bond with the host.
- 2.Good guest should not have additional hydrogen bond acceptor.
- 3. Good guest should have large enough hydrophobic group in order to expel the cavity waters.

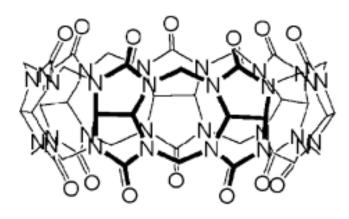
pyrazine

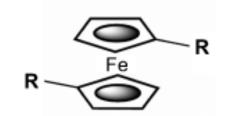
More strong affinity?

It is expected that if the guest could expel more water, the affinity will be stronger.

Combining complexation driven by hydrophobic effect and specific binding by Hbonding, interaction will be stronger and more selective.

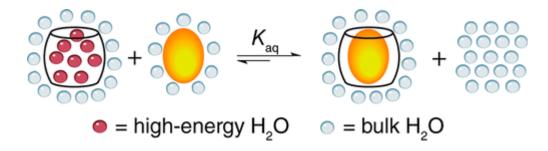




Table 4. Association Constants K_a (M⁻¹) and Thermodynamic Parameters (ΔG° , ΔH° , and $-T\Delta S^\circ$; kJ mol⁻¹) of Molecular Tubes 1a and 1b with 3 and 4 in H₂O at 25 °C as Determined by Fluorescence (FL) and ITC Titrations



		FL	ITC			
		<i>K</i> _a × 10 ⁴	<i>K</i> _a × 10 ⁴	ΔG°	ΔH°	$-T\Delta S^{\circ}$
3	1a	1.6 ± 0.3	1.1 ± 0.1	-23.1	-38.8	15.7
	1b	2.9 ± 0.1	1.3 ± 0.1	-23.5	-38.7	15.2
4	1a	220 ± 18	140 ± 0.1	-35.2	-45.1	9.9
	1b	51 ± 0.1	46 ± 2.7	-32.4	-52.7	20.3

General tendency


IComplexation of a hydrophobic cavity and the guest molecule tends to be driven by a gain of enthalpy.

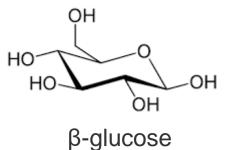
Cucurbit[7]uril $\Delta G = 90 \text{ kJ mol}^{-1}, T \Delta S = -2 \text{ kJ mol}^{-1}$

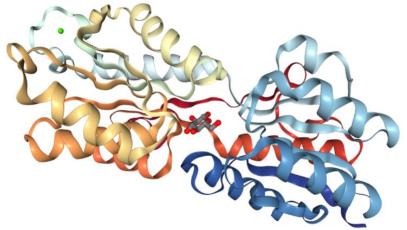
Ferrocene, R = $CH_2^+NMe_3$ cf. Biotin-Avidin: ΔG = 90 kJ mol⁻¹

2. Analysis on molecular recognition in water

3. Case examples
 Recognition of glucose in water
 Recognition of lysine in water

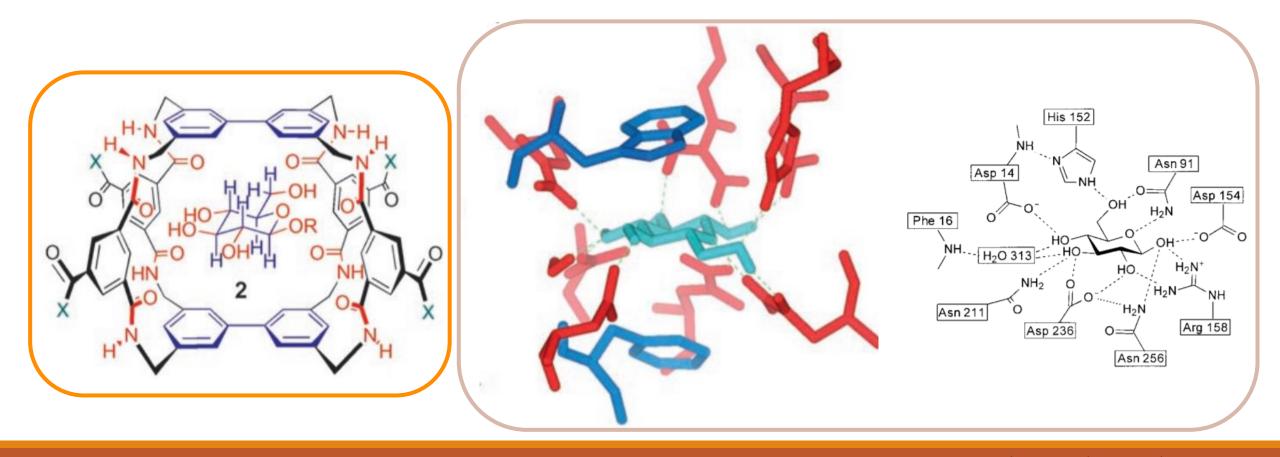
4. Appendix

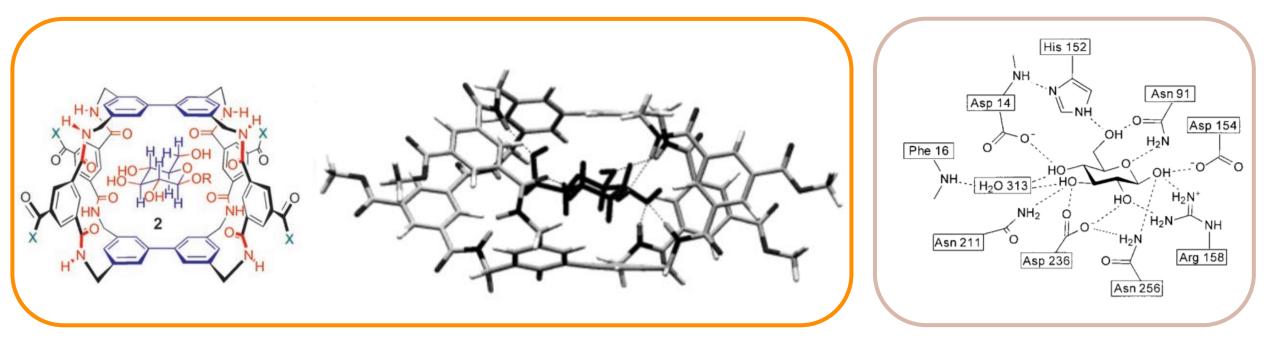

ISugar is a typical hydrophilic molecule.


ISugar is crucial element for organisms.

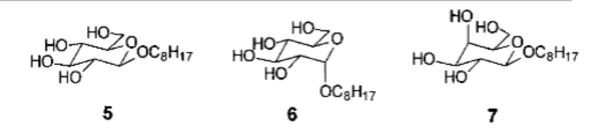
IRecognition of sugar is challenging not only for synthetic hosts, but also for biomolecules.

Periplasmic GBP, which has the highest affinity, bind to glucose in 5×10^{6} M⁻¹ affinity.

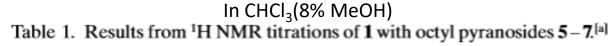

Other typical lectins have weaker affinity.



glucose/galactose binding protein (E.coli)


In 1998, A.P.Davis and coworkers synthesized synthetic glucose receptor, mimicking the binding site of E.coli periplasmic GBP.

IH-bond between the N-H proton and the O atom of the glucose is responsible for the recognition.

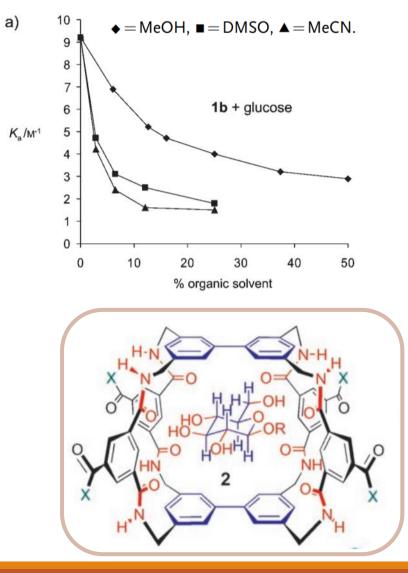


IThe affinity was maintained even in the presence of 8% of MeOH.

In $CHCl_3$ Table 2. Results from fluorescence titrations of 1 with octyl pyranosides 5-7.^[a]

Pyranoside	$K_{ m a}[{ m M}^{-1}]^{[b]}$	$-\Delta G^{\circ}$ [kJ mol ⁻¹]	-ΔI [%] ^[c]
5	300000 (±6%)	30.7	36.4
6	$13000(\pm 8\%)$	23.1	18.8
7	110000 (±12%)	28.3	22.8

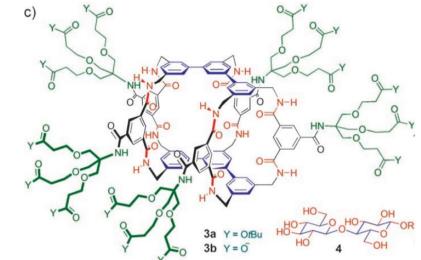
Pyranoside	$K_{ m a} \left[{ m M}^{-1} ight]$	$-\Delta G^{\circ} [\mathrm{kJmol^{-1}}]$	Δδ [ppm] ^[b]
5	980 (±2%)	17.4	0.32
6	$20(\pm 23\%)$	7.8	0.30
7	220 (±5%)	13.6	0.27

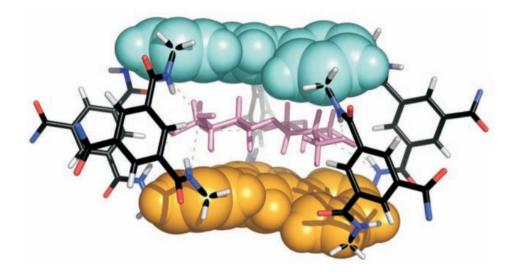


IIn H₂O, glucose, binding constant was 9 M⁻¹

- IThe affinity was depleted by the addition of organic solvents.
- The effect was in order of

MeOH < DMSO < MeCN


Involvement of hydrophobic effect is suggested.

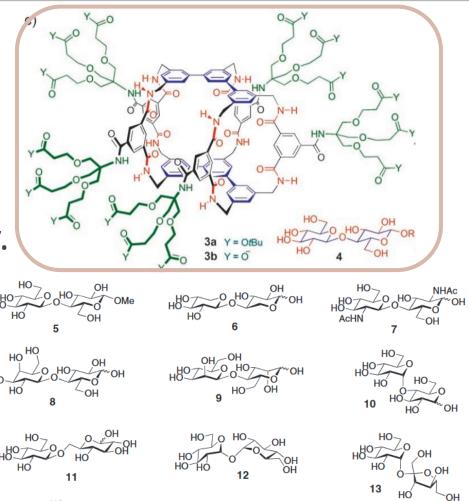


New host molecule for cellobiose was synthesized by Davis's group in 2007.

IThe new molecule maintained the binding affinity even in the pure water.

IIn D₂O: 600 M⁻¹

Y.Ferrand et al., *Science*, **2007**, *318*, 619 E. Klein et al, *Angew. Chem. Int. Ed.*, **2008**, 47, 2693


Methyl β-D-cellobioside had the strongest affinity.

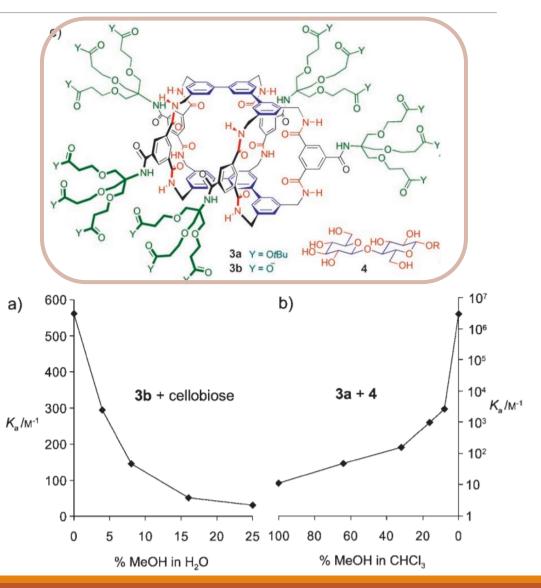
D-Xylobiose which has very similar structure had the affinity of 250.

The other substrate had very weak affinity.

	<i>K</i> _a (M ⁻¹)				
Carbohydrate	¹ H NMR	ICD	Fluorescence		
p-Cellobiose (4, 1 β -OH:1 α -OH = 3:2)	600*§	580	560		
Methyl β-D-cellobioside (5)	‡	910	850		
D-Xylobiose (6)	‡	250	270		
D-N,N'-diacetylchitobiose (7)	120*	ND	120		
D-Lactose (8)	‡	11	14		
D-Mannobiose (9)	‡	13	9		
D-Maltose (10)	‡	15	11		
D-Gentiobiose (11)	ND	12	5		
D-Trehalose (12)	II	11	ND		
D-Sucrose (13)	ND	I	11		
D-Glucose (14)	11†§	12	П		
D-Ribose (15)	ND	I	П		
D-N-acetylglucosamine (16)	24†	ND	19		

*Slow exchange on the NMR time scale. +Fast exchange on the NMR time scale. \pm Intermediate exchange (leading to broad peaks and preventing the determination of K_a). \$T = 278 K. ||No change in spectrum upon addition of carbohydrate.

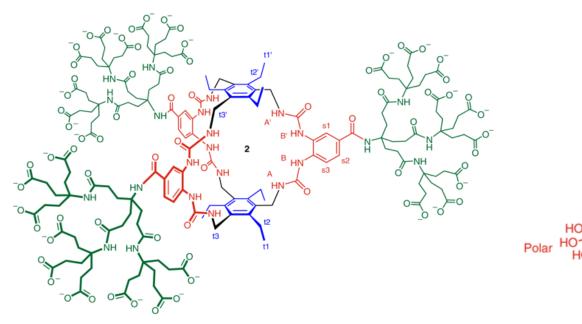
Y.Ferrand et al., *Science*, **2007**, *318*, 619 E. Klein et al, *Angew. Chem. Int. Ed.*, **2008**, 47, 2693

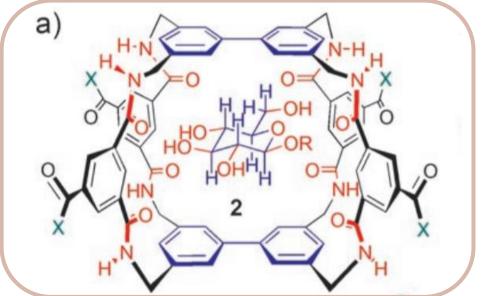

IThe affinity was depleted by the addition of organic solvents.

The effect was in order of

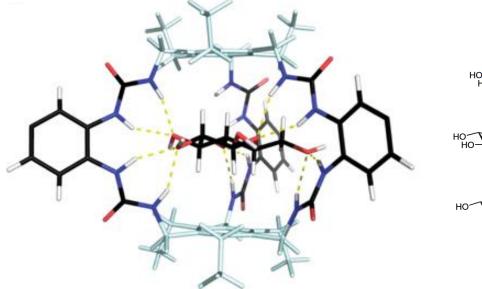
MeOH < DMSO < MeCN

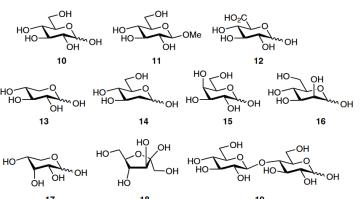
IThe sensitivity for organic solvent was stronger than the previous host molecule.


Involvement of hydrophobic effect is suggested.



Y.Ferrand et al., *Science*, **2007**, *318*, 619 E. Klein et al, *Angew. Chem. Int. Ed.*, **2008**, 47, 2693


ILatest host molecule could bind glucose in a biomolecule compatible affinity and selectivity. (In H_2O : 1.8 × 10⁴ M⁻¹)


Comparing with the first molecule, the well-definedness of the cavity seems to be improved.

IMost other saccharides bound approximately 100 times weaker. c.f. : lectin ConcanacalinA : 500 M^{-1} , also bind to mannose.

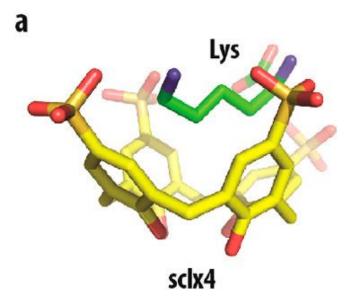
Substrate	<i>K</i> _a (M ⁻¹)				
	NMR	ITC			
D-Glucose 10	18,600	18,200			
Methyl β-D-glucoside 11 D-Glucuronic acid 12	7,500 ND	7,900 5,300			
D-Xylose 13	ND	5,800			
2-Deoxy-D-glucose 14 D-Galactose 15	ND 130	725 180			
D-Mannose 16	140	140			
D-Ribose 17	270	220			
D-Fructose 18	51	60			
D-Cellobiose 19	31	30			

2. Analysis on molecular recognition in water

3. Case examples

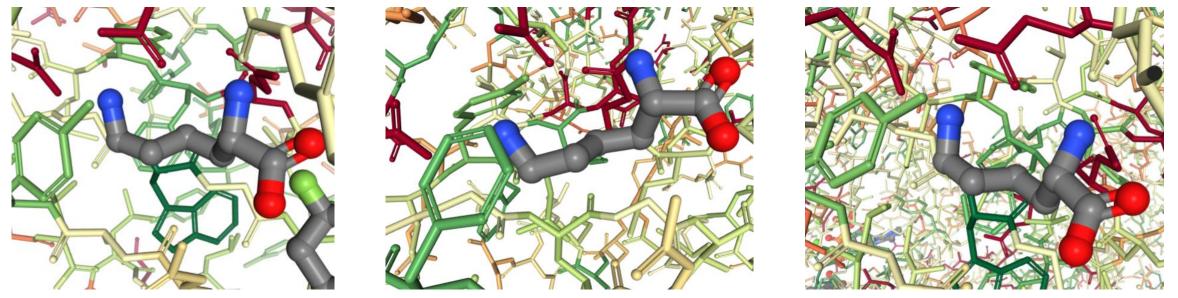
Recognition of glucose in water Recognition of lysine in water

4. Appendix


Recognition of Lysine in water

4-Sulfocalix[4]arene is used for the recognition of Lysine.

They form 1:1 complex in water.


*K*_D=600

IMethylated lysine binds stronger.

Recognition of Lysine in water

IAromatic AA and Acidic AA around the Lys binding site is conserved in Lysyl-tRNA synthetase.

Cryptosporidium parvam

E.coli

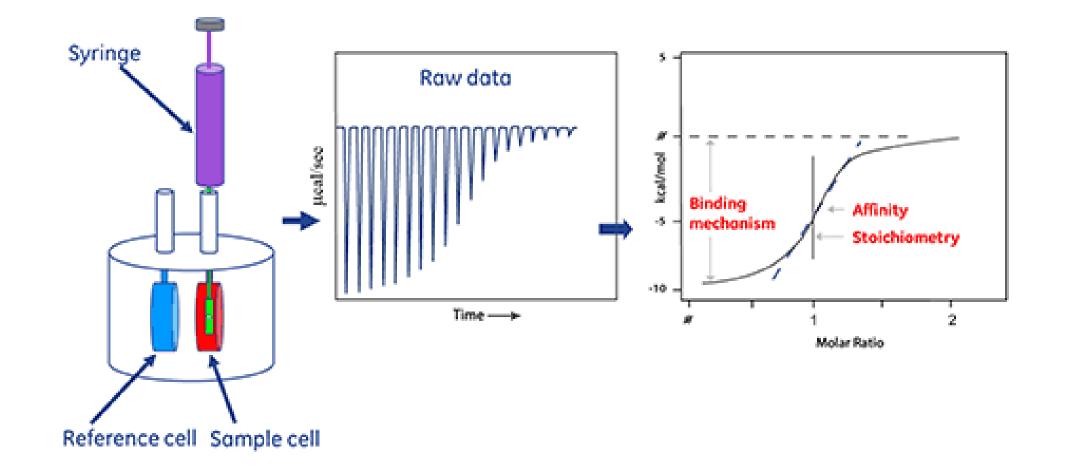
Human

Summery

IUnderstanding the molecular recognition of hydrophilic molecules in water is important for many fields.

I Combining the complexation by the hydrophobic effect and the recognition by H-bonding is the basic strategy for the molecular recognition in water.

This is also seen in biomolecules.


2. Analysis on molecular recognition in water

3. Case examples

Recognition of glucose in water Recognition of lysine in water

4. Appendix

Appendix : ITC

https://www.malvernpanalytical.com/jp/products/technology/microcalorimetry/isothermal-titration-calorimetry