Reaction of Cobaloxime with Hydrogen Evolution

Literature Seminar B4 Yuki Nishioka 2019/01/31(Thu)

Table of Contents

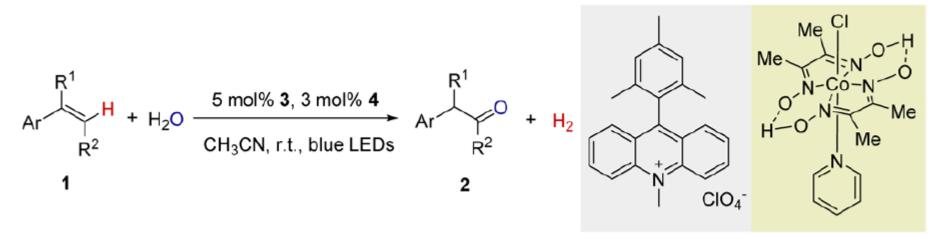
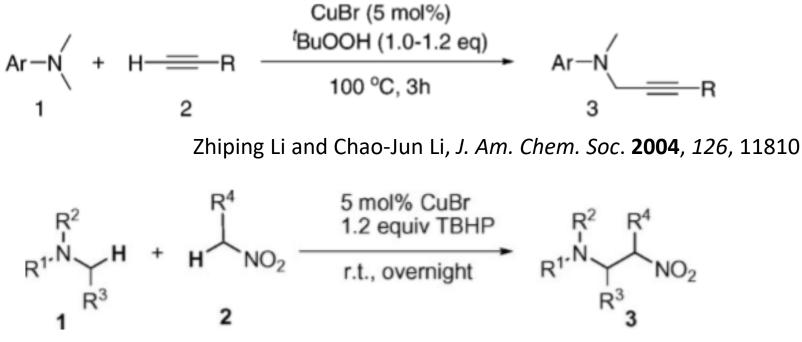

- Introduction
- Electrochemical System
- Thermodynamic Analysis
- Synthesis using cobaloxime
- Summary

Table of Contents

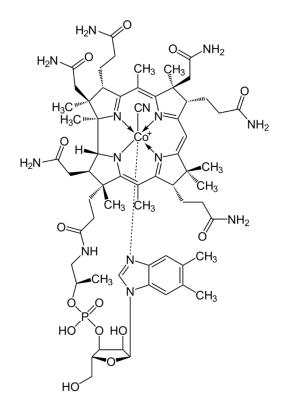
Introduction

- Electrochemical System
- Thermodynamic Analysis
- Synthesis using cobaloxime
- Summary


Introduction

3: Acr⁺-Mes ClO₄⁻ **4**: Co(dmgH)₂pyCl

- Anti-Markovnikov regioselectivity oxygenation of alkenes
- Reaction without hydrogen acceptor


Introduction

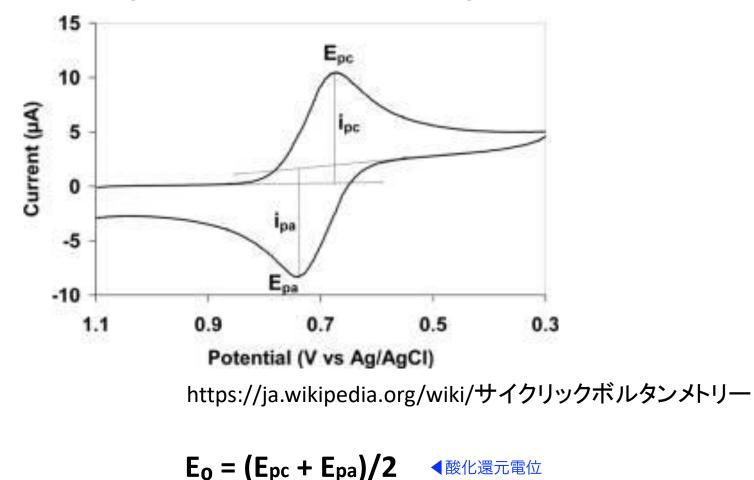
Chao-Jun Li et al. Proc. Natl. Acad. Sci. USA, 2006, 103, 8928.

In the conventional dehydrogenative cross coupling reaction, hydrogen acceptor is required. →Not clean reaction

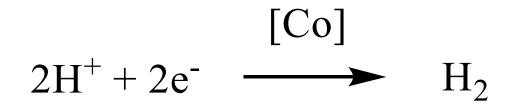
Introduction

Tab. 1. Durch Grignard-Reaktion aus CoX(D₂H₂)B dargestellte Organyle des Cobaloxims

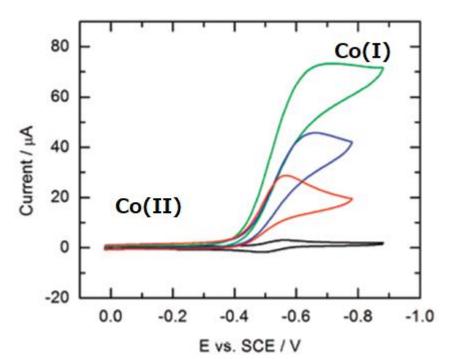
	R (Organylrest)	B (Base)	Schmp.
	C ₆ H ₅ -	Pyridin	276° (Zers.)
R		$N(CH_3)_3$	206° (Zers.)
		$P(C_6H_5)_3$	211°
<u>р-н</u> р		P(n-C4H9)3	235° (Zers.)
	(<i>p</i>)CH ₃ O-C ₆ H ₄ -	Pyridin	238° (Zers.)
L. Co	C ₆ H ₅ CH ₂	Pyridin	200° (Zers.)
		$P(C_6H_5)_3$	149°
о <u>н</u> -о	$C_6H_5C=C-$	Pyridin	206° (Zers.)
	CH ₃ -	$P(C_6H_5)_3$	190°
	C_2H_5-	P(C ₆ H ₅) ₃	1 74 °

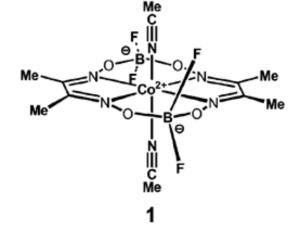

G.N. Schrauzer, K. Kohle, Chem. Ber., 1964, 97, 3056

Cyanocobalamin, https://ja.wikipedia.org/wiki/シアノコバラミン


Table of Contents

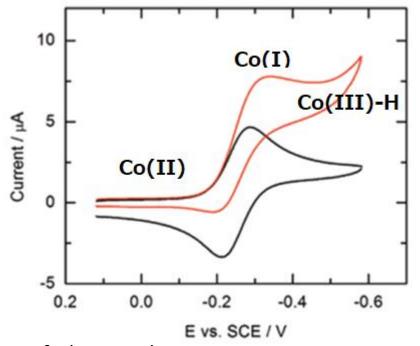
- Introduction
- Electrochemical System
- Thermodynamic Analysis
- Synthesis using cobaloxime
- Summary

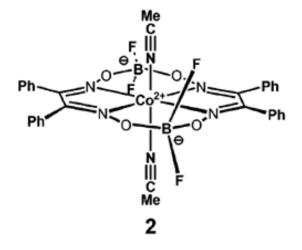

Cyclic Voltammetry



Hydrogen Evolution by Cobaloxime

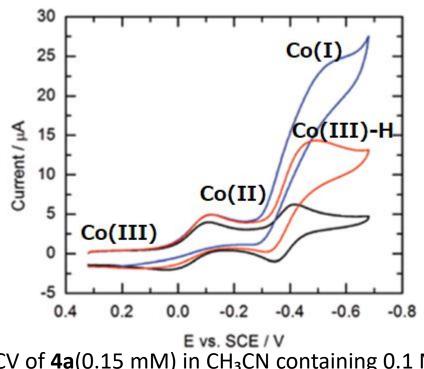
Cyclic Voltammogram of 1



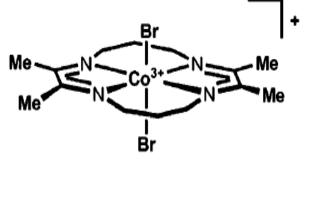

CV of **1**(0.3 mM) in CH₃CN containing 0.1 M [nBu₄N][ClO₄] in the presence of tosic acid: Black; no acid Red; 1.5 mM TsOH•H₂O Blue; 4.5 mM TsOH•H₂O Green; 9 mM TsOH•H₂O -0.55 V vs SCE in the absence of acid was assigned to the Co^{II/I}.
The potential (Co^{II/I}) did not change as the acid concentration was varied.

Jonas C. Peters *et al. J. Am. Chem. Soc.* **2007**, *129*, 8988

Cyclic Voltammogram of 2

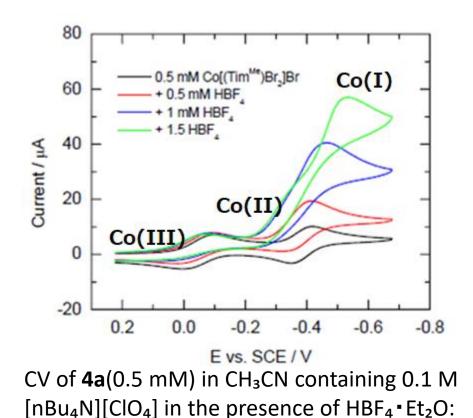

CV of **2**(0.6 mM) in CH₃CN containing 0.1 M [nBu₄N][ClO₄] in the presence of tosic acid: Black; no acid Red; 9 mM TsOH•H₂O

- CV of 2 was similar to that of 1.
 The current at -0.6 V vs SCE is due to the existence of Co(III)-H intermediate.
- The direct reduction of acid containing tosic acid took place at
 -1.0 V vs SCE.


Jonas C. Peters et al. J. Am. Chem. Soc. 2007, 129, 8988

Cyclic Voltammogram of 4a (TsOH)

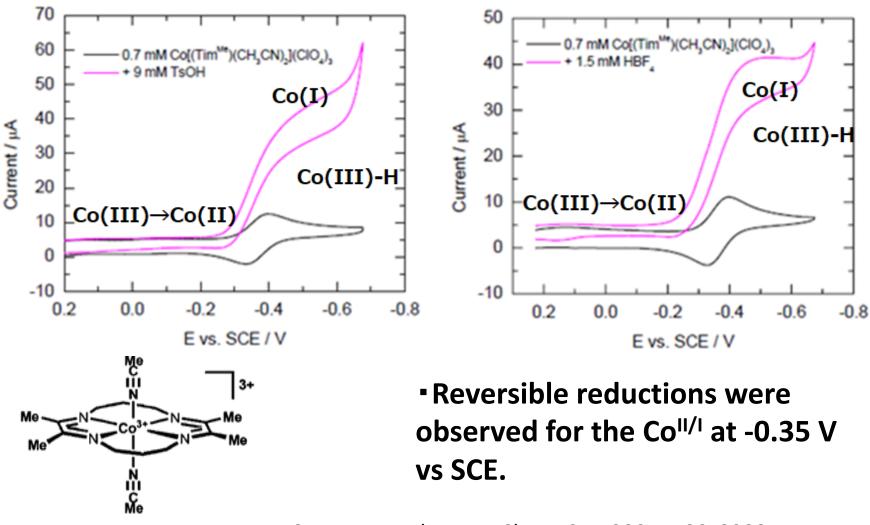
CV of **4a**(0.15 mM) in CH₃CN containing 0.1 M [nBu₄N][ClO₄] in the presence of tosic acid: Black; no acid Red; 1.5 mM TsOH•H₂O


Blue; 9 mM TsOH • H₂O

4a

- Reversible reductions were observed for the Co^{III/II} at -0.06 V vs SCE and for the Co^{II/I} at -0.38 V vs SCE.
- No catalytic waves were observed at potentials near the *E*(Co^{III/II}).

Cyclic Voltammogram of 4a (HBF₄)

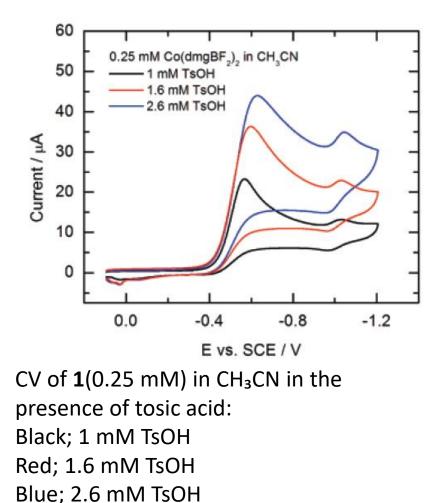

 $Me \xrightarrow{N}_{N} \xrightarrow{Co^{3+}}_{N} \xrightarrow{Me}_{Me}$

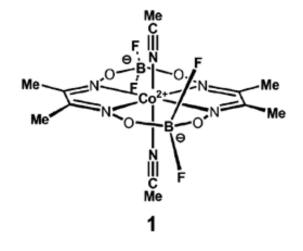
4a

CV of 4a in the presence of
 HBF₄ • Et₂O was similar to that of
 4a in the presence of tosic asid.

Jonas C. Peters et al. J. Am. Chem. Soc. 2007, 129, 8988

Cyclic Voltammogram of 4b




4b

s C. Peters *et al. J. Am. Chem. Soc.* **2007**, *129*, 8988

14

Quasi-reversible Redox Wave for 1

- In the absence of acid, no this wave was observed.
- Authors tentatively assign this wave to the "Co(III)-H"/"Co(II)-H" redox couple.

Jonas C. Peters *et al. J. Am. Chem. Soc.* **2007**, *129*, 8988

Reaction Mechanism of H₂ Evolution

$$\operatorname{Co}(\mathrm{II}) + e^{-} \rightarrow \operatorname{Co}(\mathrm{I}) \quad E^{0'}(\operatorname{Co}^{\mathrm{II}/\mathrm{I}})$$
 (3)

Hydride Formation:
$$Co(I) + HA \rightarrow Co(III) - H + A^{-} K_{4}, k_{4}$$
 (4)

Pathway
$$Co(III)-H + HA \rightarrow Co(III) + H_2 + A^- K_5, k_5$$
 (5)

$$\operatorname{Co(III)} + \operatorname{Co(I)} \to 2 \operatorname{Co(II)} \quad K_6, k_6$$
 (6)

Bimetallic Pathway	$Co(III)-H + Co(III)-H \rightarrow 2 Co(II) + H_2 K_7, k_7$	(7)
	Jonas C. Peters et al. J. Am. Chem. Soc. 2007,	<i>129,</i> 8988

Is hydrogen evolution due to monometallic pathway or bimetallic pathway?

Monometallic

)

Equilibrium Constant of Monometallic Pathway

$$\begin{aligned} HA + e^{-} &\rightarrow {}^{1}/{}_{2}H_{2} + A^{-} & E^{\circ'}(HA) & (9) \\ Co(I) + 2 HA &\rightarrow Co(III) + H_{2} + 2A^{-} & K_{mono} \\ eq(10) &= 2 \times eq(9) - eq(2) - eq(3) & (11) \\ K_{mono} &= exp \bigg\{ \frac{e(2E^{\circ'}(HA) - E^{\circ'}(Co^{III/II}) - E^{\circ'}(Co^{III/I}))}{k_{B}T} \bigg\} \\ &= exp \bigg\{ \frac{e[(E^{\circ'}(HA) - E^{\circ'}(Co^{III/II})) + (E^{\circ'}(HA) - E^{\circ'}(Co^{III/I}))]}{k_{B}T} \bigg\} \\ (12) \\ \Delta G &= -RTlnK \\ \Delta G &= -nFE \bigg) \\ Jonas C. Peters et al. J. Am. Chem. Soc. 2007, 129, 8988 \\ 17 \end{aligned}$$

Equilibrium Constant of Bimetallic Pathway

- $2\text{Co(I)} + 2\text{ HA} \rightarrow 2\text{Co(II)} + \text{H}_2 + 2\text{A}^- \qquad K_{\text{bi}} (13)$
 - $eq(13) = 2 \times eq(9) 2 \times eq(3) \tag{14}$

$$K_{\rm bi} = \exp\{2e(E^{\circ'}({\rm HA}) - E^{\circ'}({\rm Co}^{\rm II/I}))/k_{\rm B}T\}$$
 (15)

Jonas C. Peters *et al. J. Am. Chem. Soc.* **2007**, *129*, 8988 18

Calculation Result of pKmono and pKbi

acid		р <i>К</i> _{топо}	р <i>К</i> ы
CF ₃ COOH	1	-11.3	1.4
TsOH•H ₂ O	1	-1.9	10.8
HBF ₄ •Et ₂ O	1	13.7	26.4
CF ₃ COOH	2	-17.6	-7.8
TsOH•H ₂ O	2	-8.1	1.7
HBF ₄ •Et ₂ O	2	7.4	17.2
CF ₃ COOH	4 a	-9.9	-4.4
TsOH•H ₂ O	4 a	-0.34	5.1
HBF ₄ •Et ₂ O	4 a	15.2	20.6

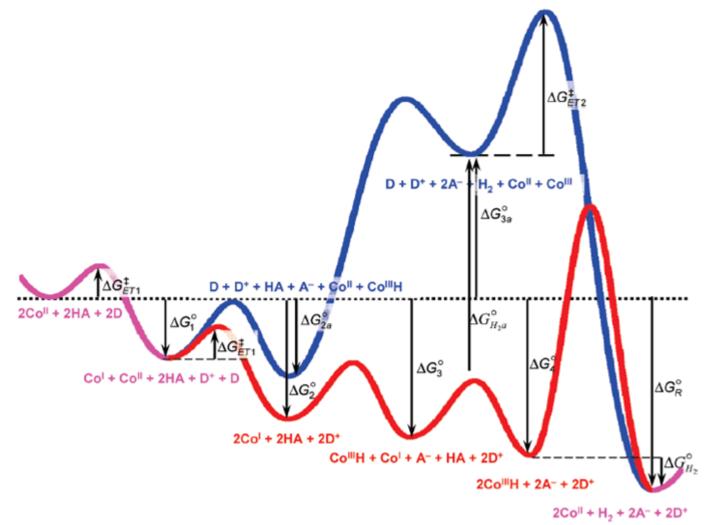
Table 3. Equilibrium Constants for the Reduction of an Acid by the Co(I) Complexes

Jonas C. Peters et al. J. Am. Chem. Soc. 2007, 129, 8988

For complex 1 and 2 the monometallic reduction of acid, *K*mono is very unfavorable, except in the presence of the strongest acid HBF₄• Et₂O.

Short Summary

•By using cobaloxime, hydrogen can be evoluated with energy saving.


 Reagents with high reducing power become unnecessary.

• For complex 1 and 2 the monometallic reduction of acid, *K*mono is very unfavorable, except in the presence of the strongest acid HBF₄• Et₂O.

Table of Contents

- Introduction
- Electrochemical System
- Thermodynamic Analysis
- Synthesis using cobaloxime
- Summary

Thermodynamic Analysis of Reaction Mechanism

Harry B. Gray et al. J. Am. Chem. Soc. 2010, 132, 1060

Thermodynamic Analysis of Reaction Mechanism

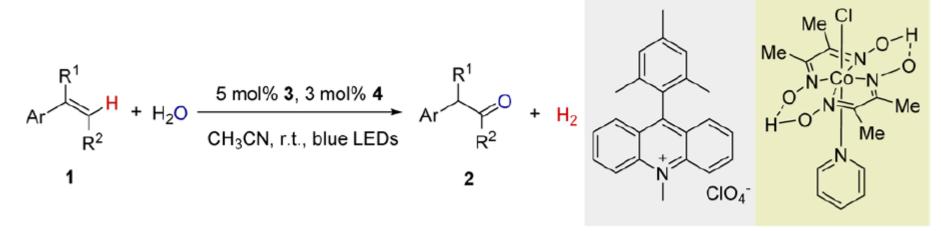
ΔG_1°	$\Im \left[E_{D^*/D}^\circ - E_{C\mathfrak{o}^{ll}/C\mathfrak{o}^{l}}^\circ \right]$
ΔG_2°	$\Delta G_1^{\circ} + \Im \left[E_{D^*/D}^{\circ} - E_{Co^{ii}/Co^{ii}}^{\circ} \right]$
ΔG_3°	$\Delta G_2^{\circ} + 2.303 RT \left[pK_a(HA) - pK_a(Co^{III}H) \right]$
ΔG_4°	$\Delta G_3^\circ + 2.303 RT \left[pK_a(HA) - pK_a(Co^{III} H) \right]$
ΔG_R°	$2\Im \left[E_{D^*/D}^\circ - E_{HA/H_2}^\circ \right]$
$\Delta G_{H_2}^{\circ}$	$2\Im \left[E_{Co^{II}/Co^{I}}^{\circ} - E_{HA/H_{2}}^{\circ} \right] - 2(2.303RT) \left[pK_{a}(HA) - pK_{a}(Co^{III} H) \right]$ $\Delta G_{p}^{\circ} - \Delta G_{A}^{\circ}$
ΔG_{2a}°	$\Delta G_1^\circ + 2.303 RT \left[pK_a(HA) - pK_a(Co^{III} H) \right]$
ΔG_{3a}°	$\Im \left[E_{D^*/D}^\circ + E_{Co^{\text{III}}/Co^{\text{III}}}^\circ - 2E_{HA/H_2}^\circ \right]$
$\Delta G^{\circ}_{H_2 a}$	$\Im \left[E^{\circ}_{Co^{II}/Co^{I}} + E^{\circ}_{Co^{II}/Co^{II}} - 2E^{\circ}_{HA/H_2} \right] - 2.303RT \left[pK_a(HA) - pK_a(Co^{III} H) \right]$ $\Delta G^{\circ}_{3a} - \Delta G^{\circ}_{2a}$

Harry B. Gray et al. J. Am. Chem. Soc. 2010, 132, 1060

Thermodynamic Analysis of Reaction Mechanism

 $\Delta G^{\circ} = \textbf{-}n \mathcal{F} \Delta E^{\circ}$

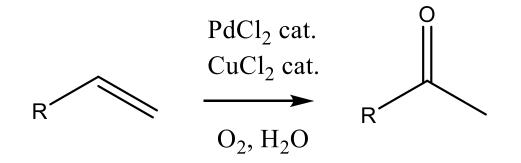
- n number of electrons
- \mathcal{F} Faraday's constant, 96485.31 C mol⁻¹
- R 8.31441 J K⁻¹ mol⁻¹
- T 293.15 K


Harry B. Gray et al. J. Am. Chem. Soc. 2010, 132, 1060

- $\Delta G = -RTlnK$
- $\Delta G = -2.302 RT \log K$
- $\Delta G = 2.302 RTpKa$

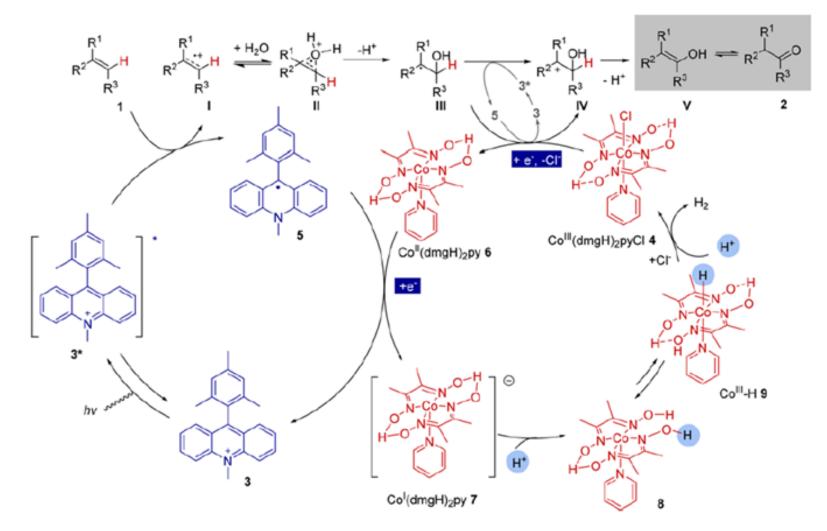
Table of Contents

- Introduction
- Electrochemical System
- Thermodynamic Analysis
- Synthesis using cobaloxime
- Summary

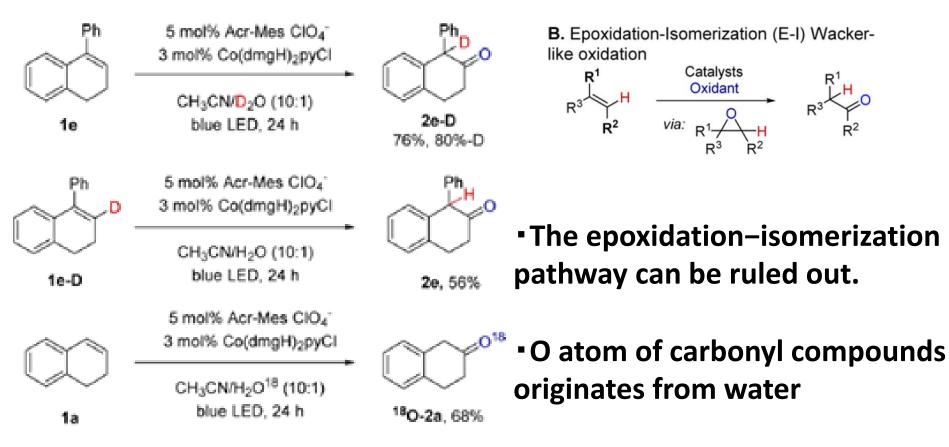

Reaction Accompanied by Hydrogen Evolution

3: Acr⁺-Mes ClO₄⁻ **4**: Co(dmgH)₂pyCl

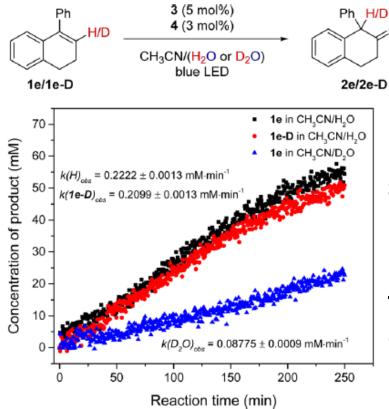
- Anti-Markovnikov regioselectivity oxygenation of alkenes
- Reaction without hydrogen acceptor


Conventional Wacker Oxidation

It can only oxidize terminal alkene.

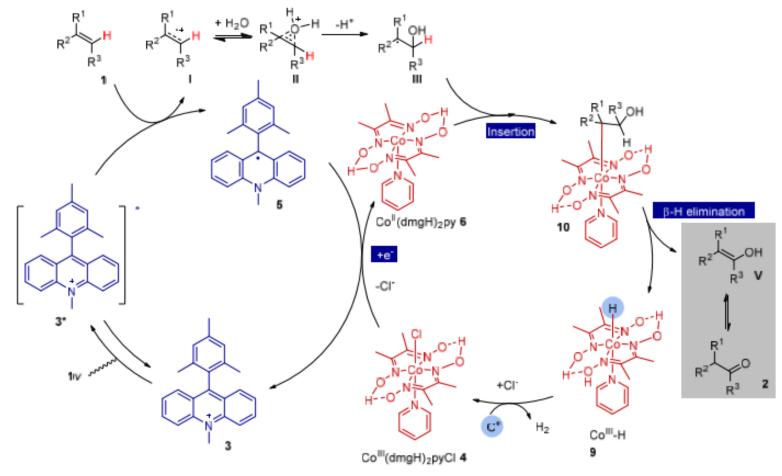

 Anti-Markovnikov regioselectivity oxygenation of alkenes

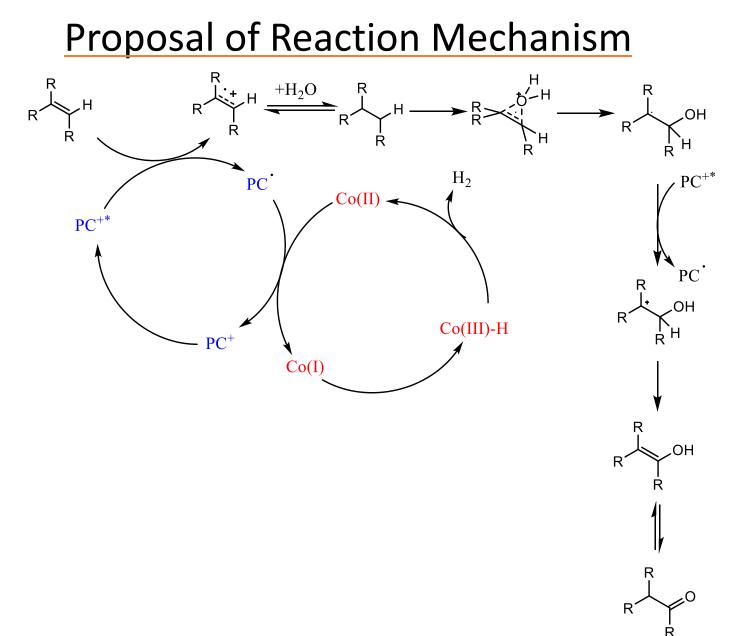
Reaction Mechanism


Aiwen Lei *et al. J. Am. Chem. Soc.* **2016**, *138*, 12037 ²⁸

Isotope Labelling Experiments

Kinetic Isotope Effect Experiments


Scheme 5. Kinetic Isotope Effect Experiments^a



 C–H bond breaking of the olefin is not involved in the rate-determining step of the reaction.

 The rate-determining step of the transformation might involve the O–H bond cleavage of water.

Alternative Reaction Mechanism

Table of Contents

- Introduction
- Electrochemical System
- Thermodynamic Analysis
- Synthesis using cobaloxime
- Summary

<u>Summary</u>

Cobaloxime can achieve reaction without hydrogen acceptor

 The reaction catalyzed by cobaloxime proceed with bimetallic pathway