Ammonia in Transition Metal-catalyzed Reaction

Contents

1. Introduction

- 1-1. Ammonia As Nitrogen Source
- 1-2. Difficulty in Using Ammonia in Metal-catalyzed Reaction

2. Reactions Without Metal-Ammonia Coordination

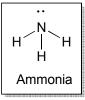
- 2-1. Reductive Amination
- 2-2. Allylic Substitution

3. Amination of Aryl Halides

- 3-1. Pd-catalyzed Reactions
- 3-2. Cu-catalyzed Reactions

4. Hydroamination

- 4-1. Hydroamination with Amines
- 4-2. Hydroamination with Ammonia


5. N-H Activation of Ammonia

- 5-1. Multimetallic Activation
- 5-2. Monometallic Activation

<u>6. Summary</u>

1. Introduction

1-1. Ammonia As Nitrogen Source

•Colorles, irritating smelling gas. •Bp. –33.4 °C, Mp. –77.7 °C •pKa : 38 (H₂O), pK_{AH+} : 9.2 (H₂O) •N-H bond strength : 107 kcal/mol •Soluble in water, alcohol. and other polar organic solevents

Ammonia in Industry

Industrial Production: Haber-Bosch Process

 $3H_2 + N_2 = 2NH_3$

High Temperature : 400~500 °C High Pressure : 10~35 MPa

•Ammonia was formed industrially around 100 million tonnes per year. (almost the same amout by biological system)

•1~2% of the total global energy demand annually.

For recent advances in N₂ reduction and fixation lit. Mr. Kimura 2010/4/21 lit. Dr. Yamaguchi 2009/2/21

Review: Chem. Rev. 1992, 92, 1.

Chem. Soc. Rev. **2010**, 39, 2302. Angew. Chem., Int. Ed. **2011**, 50, 86.

Tatsuhiko Yoshino (D1)

2011.4.20

<u>Usage</u>

•Fertilizer (>80%)

Synthesis of amines

 $NH_3 + RX \longrightarrow NH_2R + NHR_2 + NR_3$

•Synthesis of Inorganic acids and salts (nitric acid)

Most synthetic N-containing compounds can be derived back to ammonia.

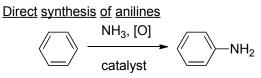
1-2. Difficulty in Using Ammonia in Metal-catalyzed Reaction

Homogenios catalytic reactions using ammonia as a substrate are still limited.

•Metals and ammonia tends to form stable Werner complexs.

M-----NH₃

Werner complex


·Low acidity and moderate basicity

•Strong N-H bond (107 kcal/mol) : Difficulty in N-H activation

•Ammonia is toxic gasous compound.

•Diffucult to supress over reactions.

Two reactions using ammonia are litsted as "The 10 challenges for catalysis"

anti-Markovnikov selective hydroamination of unreactive olefin

R _____ R ____ NH₂

C&EN, 1993, 23

Ammonia Surrogates

 $H_2N CF_3 H_2N$ H_2N^{-NHR} $_{NH_{2}}$ BnNH₂ increased increased acidity nucleophilicity of N-H bond

These protected ammonia equivalents are good substrates for several catalytic reactions. However, deprotection step is required.

2. Reactions Without Metal-Ammonia Coordination

2-1. Reductive Amination

Hydroaminomethylation in Biphasic System Using Water Soluble System

Herwig, J.; Beller, M. et al. Angew. Chem., Int. Ed. 1999, 38, 2372.

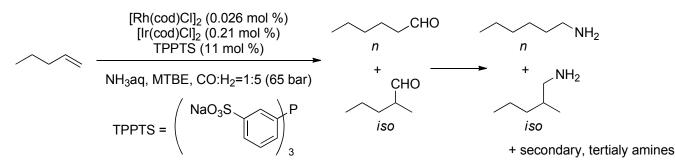
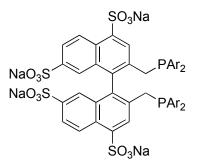
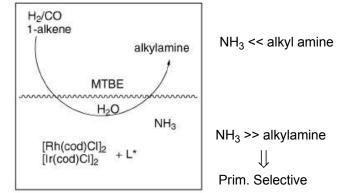



Table 1. Hydroaminomethylation of 1-pentene with ammonia and the Rh/Ir/TPPTS (1) catalyst system.^[a]

Entry	T	t	Organic	NH ₃ :	Conversion		Yield	%] ^[b]	n:iso	Prim.:sec.
8	[°C]	[h]	solvent	olefin	[%]	2-pentene	amine	high boilers ^[c]	prim.	amines
1	110	10	MTBE	8:1	87	12	72	3	86:14	86:14
2	130	5	MTBE	8:1	84	11	69	1	84:16	91:9
3	130	5	MTBE	4:1	90	n.d.	56	1	87:13	86:14
4	130	5	MTBE	2:1	90	n.d.	51	1	87:13	72:28
5	130	5	MTBE	0.5:1	95	n.d.	60	3	84:16	6:94
6	130	10	MTBE	2:1	98	21	78	0	87:13	69:31
7	130	10	anisole	2:1	97	20	76	0	88:12	78:22
8	130	10	toluene	2:1	96	26	69	0	88:12	82:18
9	130	10	MTBE/salt ^[d]	2:1	96	23	68	0	96:4	76:24

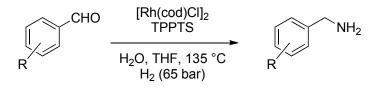

[a] Conditions: p(cold) = 78 bar, CO:H₂=1:5, 0.026 mol% Rh, 0.21 mol% Ir, TPPTS: P:Rh=425, P:Ir=52. n.d. = not determined. [b] GC determination (alcohols <1%). [c] Higher boiling products (alcohols stion products, tertiary amines, imines). [d] 15% Na₂SO₄ in the aqueous phase.

n/iso Selectivity depends on ligand.

BINAS gave exclusively *n*-product. (See the Table below)

Extraction Effect

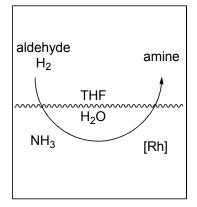
Reaction proceeds in water.


Olefin	NH ₃ :		TPP	TS	BINAS			
	olefin	yield. (amin [%]	n:iso e)	prim.: sec.	yield. (amine [%]	n:iso e)	prim.: sec.	
propene	8:1	80	76:24	72:28	90	99:1	77:23	
1-butene	8:1	80	85:15	78:22	85	99:1	78:22	
1-pentene	8:1	75	84:16	90:10	75	99:1	87:13	
propene	0.5:1	90	82:18	20:80	95	99:1	1:99	
1-butene	0.5:1	90	87:13	38:62	95	99:1	1:99	
1-pentene	0.5:1	85	82:18	48:52	90	99:1	10:90	

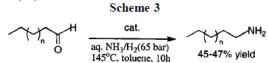
[a] Conditions: T = 130 °C, p(cold) = 78 bar (pentene/butene) or 60 bar (propene), CO:H₂=1:5, t = 10 h, 0.026 mol % Rh, 0.21 mol % Ir, TPPTS: P:Rh = 425, P:Ir = 52; BINAS: P:Rh = 140, P:Ir = 18.

Reductive amination using H₂ as reducing reagents are well known in the case of heterogeneous catalyst.

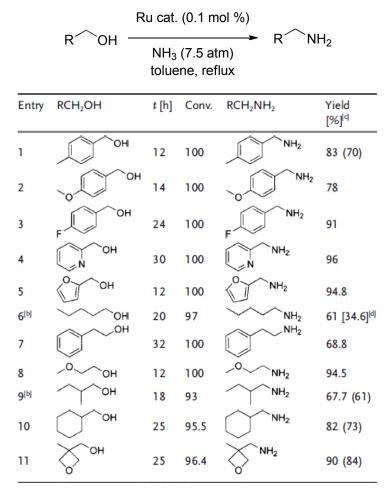
$$\begin{array}{c} O \\ R \\ H_2 O \end{array} + NH_3 \longrightarrow R \\ H_2 O \end{array} \begin{array}{c} NH \\ H_2 \\ H_2 \end{array} \begin{array}{c} Pd/C \text{ or other cat.} \\ H_2 \\ H_2 \end{array} \begin{array}{c} NH_2 \\ H_2 \\ H_2 \end{array}$$


Reductive Amination of Aldehyde and Ammonia

Beller, M. et al. Org. Lett. 2002, 4, 2055.

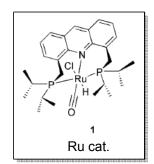

Table 2.

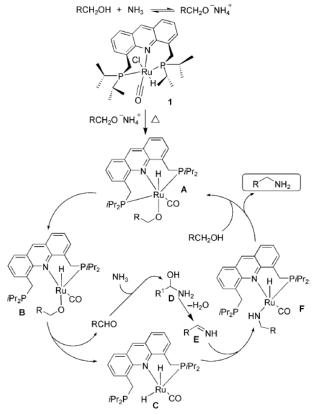
Rh(I)-TPPTS catalyst is water soluble and could be recycled after phase seperation.


substrate	yield 1	yield 2	Selectivity
	%	%	1 vs. 2 alcohol, %
СНО	86	3	97
СНО	75	4	95
СНО	65	7	90
СІСНО	55	8	87
СІСНО	78	9	90
MeO	77	4	95
ОМе	85	3	97
СР3	33	5	87
СНО	58	9	87
Г СНО	62	11	85
F CHO	62	14	82

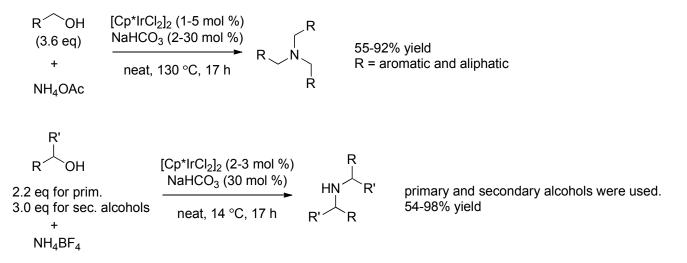
^a Reaction conditions: substrate (0.034 mol), [Rh(cod)Cl]₂ (0.05 mol %), TPPTS (1.3 mol %), NH₄OAc (50 mol %), THF (20 mL), 25% aqueous ammonia (20 mL), NH₃/substrate (8:1), org/aq (1:1), H₂ (65 bar) temperature (135 °C), time (2 h).

n = 1, 2, 4

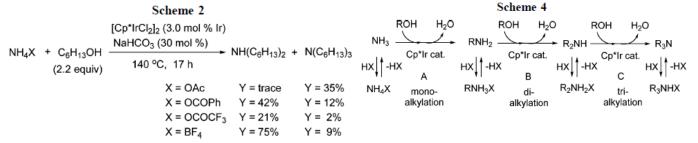

 $cat. = [Rh(cod)Cl]_2 / [Ir(cod)Cl]_2$ or [Rh(cod)Cl]2, TPPTS

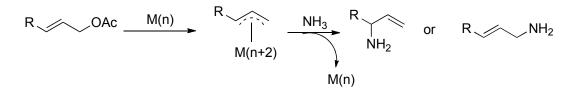


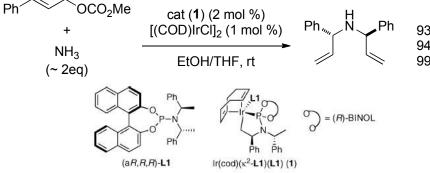
[a] Complex 1 (0.01 mmol), alcohol (10 mmol), ammonia (7.5 atm), and toluene (3 mL) were heated in a Fischer–Porter reactor.^[23] Conversion of alcohols and yield of products were analyzed by GC. Yield in parenthesis represents the yield of isolated product. [b] Neat reaction. Yield of isolated product is an average of two experiments. [c] The corresponding imine is the major byproduct in all reactions (analyzed by GC-MS and MS(ESI)); its yield was not determined. [d] Yield of dipentylamine.


Reaction in water gave good results.

	1 (0.	1 mol %), A	DOUND + RCH	NCH₂R
RC	CH ₂ OH + NH ₃ Wate	er, 135 °	Ċ	► RCH ₂ NH ₂ + RCH=	NO 121
Entry	RCH ₂ OH	‡ [h]	Conv.	RCH ₂ NH ₂	Yield [%] ^[♭]
1	ОН	18	100	NH ₂	95.4 (86)
2	ОН	18	100	NH ₂	91.7 ^{[4}
3	ОН	36	100	NH ₂	80.4 ^[c] y
4	~~~он	24	92.4	~~~NH2	54.8 ^[d]
5 ^[e]	~~~он	28	89.4	~~~	74.3 a
6 ^[f]	~~~он	30	99	~~~	79.7 2
7 ^(f)	ОН	30	98.7	~~~NH2	70.0

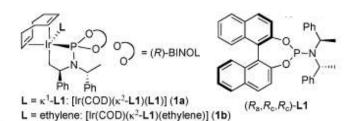



[a] Complex 1 (0.01 mmol), alcohol (10 mmol), ammonia (7.5 atm), and water (3 mL) were heated at reflux in a Fischer–Porter reactor.^[23] Conversion of alcohols and yield of products were analyzed by GC; yield of isolated product in parenthesis. [b] Corresponding imine was the major byproduct in entries 1–3; corresponding acid was the byproduct in entries 5–7. [c] Corresponding acids were found in aqueous layer. [d] Hexamide was found in aqueous layer. [e] Mixture of 2 mL water and 2 mL toluene was used as solvent. [f] Mixture of 1 mL water and 2 mL dioxane was used as solvent.


Selectivity depends on acidity of ammonium salts. Stronger acidic salts gave secondary amines. However, the reason for selectivity was unclear.

2-2. Allylic Substitution

Ir-catalyzed Asymmetric Allylic Amination

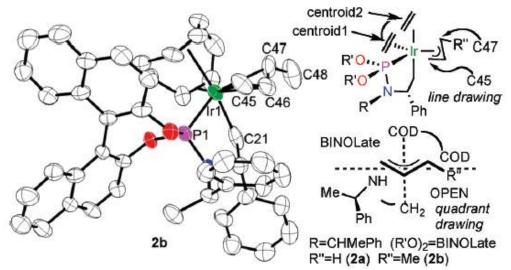

93% yield 94/6 dr No primary amine was 99% ee obtained.

Formed primary amine showed higher reactivity than ammonia itself.

To obtain primary amine, they used ammonia surrogates.

Hartwig, J. F. et al. J. Am. Chem. Soc. 2009, 131, 11312.

n/~	∽₀	CO2R + NF13	Catalyst or 30 °C	Ph 2	H2	Ph.,	
entry	R	Ir cat. (mol %)	equiv of NH ₂	т (°С)	time (h)	yield (%) ⁶	2:3 ^b
1	Et	1a (2) + [Ir(COD)CI] ₂ (1)	100	30	15	45	94:6
2	Me	1b (4)	16	n	24	59	65:35
2	Me	1b (4)	100	n	24	63	90:10
4 5°	Et	1b (4)	100	rt	48	66	91:9
5°	Et	1b (4)	100	30	15	81	92:8


^a Reactions were conducted in 1:1 THF-d₈/ethanol-d₆ in a medium-wall NMR tube with 4.0 mol % Ir catalyst, 0.15 mmol of cinnamyl carbonate, and hexamethylbenzene or mesitylene as an internal standard. ^b Determined by ¹H NMR spectroscopy of the reaction mixture. ^c Performed in THF-d₈.

Large excess NH₃ was necessary to obtain primary amine.
Additional Ir source was not tolerant with large amout of NH₃ (entry 1) This additional Ir captures ligand from catalyst to give active 16 electron complex.

		+ NH3	1) 1b (4 m THF, 30		H ₃ CI
К	OCO2Et	(100 equiv)	2) HCI	R 11a	H I
entry	R	11	yield (%) ^b	time (h)	ee (%) ^c
1	C ₆ H ₅	11a	73	4	97
2	p-MeC ₆ H ₄	11b	63	4	99
3	p-MeOC6H4	11c	58	14	98
4	p-BrC6H4	11d	57	12	99
4 5	p-CF3C6H4	11e	51	12	99
6	m-MeOC ₆ H ₄	11f	66	12	98
7^d	n-heptyl	11g	49	24	96
80	TrOCH ₂	11h	53	5	97
9	1-cyclohexenyl	11i	57	12	99

^a Reactions were conducted on a 0.5 mmol scale in THF (0.5 mL) in a 10 mL pressure vessel with a vacuum side arm. Yields and enantioselectivities are averages from two independent runs. Products were characterized as their HCI salts. ^b Isolated yields of branched monoallylation products 11. ^c Determined by chiral HPLC, ^d Conducted at room temperature. ^c Isolated as the free amine. ^f Conducted with 5 mol % 1b.

<u>X-ray Structure of π -allyl Ir Complex</u>

Ir-C47 : 2.377 Å \implies Nucleophilic Attack on C47 is favorable. Ir-C45 : 2.240 Å (trans effect of P ligand)

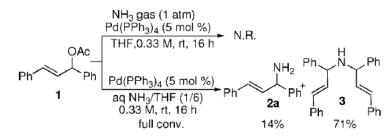
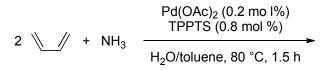
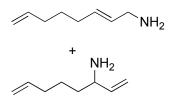


Table 1. Optimization of Reaction Conditions

1


Pd(PPh ₃) ₄ cat.	2a	+	3
ag. NH ₃ /solvent, rt	24	Ŧ	3


		NH ₃ (aq)/	conc.	cat.	time	selectivity	yield	(%) ^b
entry	solvent	solvent	(M)	(mol%)	(h)	(2a/3) ^a	2a	3
1	THF	1:6	0.33	5	16	26:74	14	71
2	THF	1:2	0.33	5	6	28:72	20	66
3	THF	1:2	0.17	5	10	47:53	34	55
4^c	THF	1:2	0.11	5	23	59:41	40	42
5	THF	1:2	0.11	10	12	62:36	44	39
6	toluene	1:2	0.11	10	12	_	trace	trace
7	DMF	1:2	0.11	10	12	68:32	48	37
8	acetonitrile	1:2	0.11	10	12	58:42	39	46
9	1,4-dioxane	1:2	0.11	10	12	77:23	61	29
10	1,4-dioxane	1:2	0.06	10	18	83:17	66	22
11	1,4-dioxane	1:2	0.04	10	18	89:11	71	16
12	1,4-dioxane	1:2	0.03	10	18	_	0	0
13 ^d	1,4-dioxane	1:2	0.03	10	18	91:9	73	13

^{*a*} The 2a/3 molar ratio was determined by ¹H NMR spectroscopic analysis of the crude material. ^{*b*} Isolated yield after chromatography (2a and 3 were separated). Yield of 3 was based on half the amount of 1. ^{*c*} 12% of 1 was recovered. ^{*d*} 13 mol % of external PPh₃ was added.

Telomerization of Butadinene and Ammonia

Driessen-Hölscher, B. *et al. Angew. Chem., Int. Ed.* **1996**, 35, 1708. Driessen-Hölscher, B. *et al. Chem. Eur. J.* **1999**, 5, 2069.

QAc

Ph

Ph

 secondary tartiary amines

 NH_2

71% yield 87% ee

Ρh

One pahse reaction mainly gave tertiary amines.

Table 2. Influence of the organic solvent on the catalytic two-phase telomerization of butadiene and ammonia [a].

Entry	Second phase	Selectivity [%]			Total yield	
-		1+2	3	4	[%] [b]	
1	_	60.5	30	,	41	
2	toluene	88	6		55	
3	pentane	79	16	-	61	
4	ethyl acetate	53	18		40	

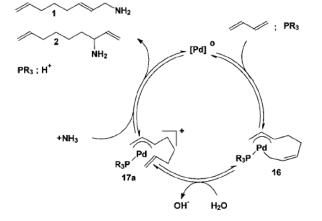
[a] Reaction conditions: Pd(OAc)₂ (0.15 mmol), tppts (0.6 mmol), H₂O (20 mL), organic solvent (12.5 mL), ammonia (300 mmol), butadiene (75 mmol), T = 80 C, t = 1.5 h. [b] Total yield based on butadiene.

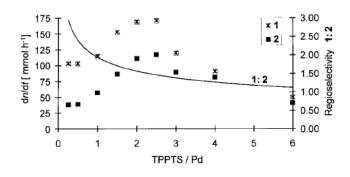
Table 2. Allylic Amination Using Aqueous Ammonia

Entry	Substrate	Product (2)	Cond- itions ^a	Select- ivity ^b	Yield (%) ^c
1	AcO H_2N	-R a : R = Ph	А	89/11	71
2	R R	b : R = -(CH ₂) ₂ Ph	А	93/7	79
з		\mathbf{c} : $\mathbf{R} = \mathbf{P}\mathbf{h}$	В	96/4	81
4	OCO ₂ Me NH ₂	$d: R = p-MeOC_6H_4$	в	94/6	80
5	\bigwedge^{R}	e : R = <i>m</i> -NO ₂ C ₆ H ₄ -	В	95/5	80
6 🤇		f: R = 3,5-CF ₃ C ₆ H ₃	- A	97/3	82
7		\mathbf{g} : R = -(CH ₂) ₃ Ph	В	>99/<1	82
8	OCO ₂ Me	NH_2 h	В	94/6 ^d	85
9		$h \rightarrow NH_2 i: n = 1$	В	94/6	82
10	() _n) _n j: n = 3	В	93/7	76

^{*a*} A: Table 1, entry 11. B: Table 1, entry 9. ^{*b*} The primary/secondary amine molar ratio was determined by ¹H NMR spectroscopic analysis of the crude material. ^{*c*} Isolated yield of **2** after chromatography. ^{*d*} Calculated on the basis of isolated products.

[PdCl(allyl)]₂ (5 mol%) (*R*)-binap (20 mol%)


aq NH₃/1,4-dioxane (1/2)


0.04 M, rt, 18 h

Scheme 2. Preliminary Investigation of Asymmetric Allylic Amination Using Aqueous Ammonia

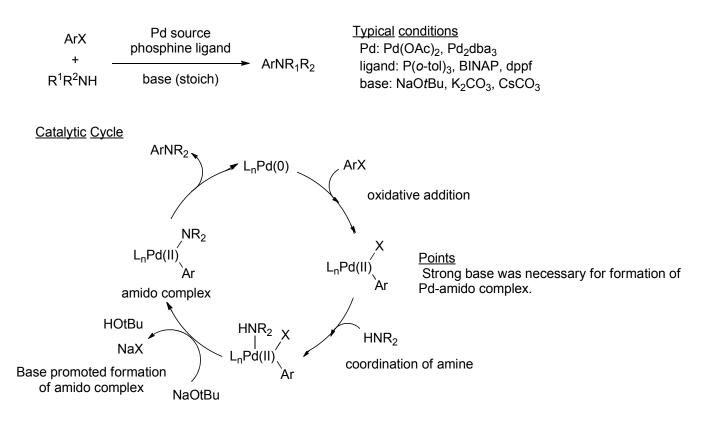

Proposed Reaction Mechanism

Relation between Ligand/Pd Ratio and Reactivity or Selectivity

Selectivity and Reactivity of Several Intermediates

 NH_3 : σ -donor ligand : deaccelerate the nucleophilic attack. olefin, PR_3 : σ -donor and π -acceptor ligand : accelerate the nucleophilic attack.

These effects are larger at *trans* position to the ligand.


Summary of Reductive Amination and Allylic Substitution

In these reactions, ammonia reacts with substrates without participation of catalysts. Main problem is the selectivity between primary, secondary and tertiary amines. Biphasic reaction systems or use of large excess amount of NH_3 could solve this problem.

3. Amination of Aryl Halides

3-1. Pd-catalyzed Reactions

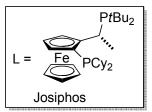
Buchwald-Hartwig Amination Using Amines

Problems of Aniline Syntesis by Ammonia

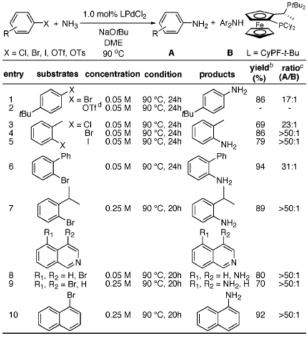
•Ligands tends to be kicked out by the coordination of ammonia.

•Metal-amido complexes often favor the bridging structure and reductive elimination is difficult.

$$\begin{array}{c} H_2\\ R_1 \\ R_2 \\ \end{array} \\ M \\ M \\ H_2 \\ \end{array} \\ M \\ H_2 \\ M \\ H_2 \\ \end{array} \\ M \\ R_1 \\ H_2 \\ H_2$$


•Produced anilines are generally more reactive than ammonia.

Bulky, electron-rich, strongly coordinating ligands are suitable to overcome these problems.
Ammonia would not kick out the ligands.
Ligands could Inhibit the formation of dimer and promote reductive elimination.
Sterically unhindered ammonia would react faster than produced anilines.


The First Report of Buchwald-Hartwig Amination Using NH3

Hartwig, J. F. et al. J. Am. Chem. Soc. 2006, 128, 10028.

$$\begin{array}{c} \operatorname{ArX} \\ X=\operatorname{Cl}, \operatorname{Br}, \operatorname{I} \\ + \\ \operatorname{NH}_{3} \\ (200 \text{ psi; ca. 14 atm}) \end{array} \xrightarrow{\operatorname{LPdCl}_{2} (1.0 \text{ mol } \%)} \operatorname{ArNH}_{2} + \operatorname{Ar}_{2}\operatorname{NH} \\ \xrightarrow{\operatorname{DME}, 90 \ ^{\circ}\operatorname{C}} \end{array}$$

Table 1. Coupling of Aryl Halides with Ammonia, Catalyzed by CyPF-t-BuPd Cl_2^a

^{*a*} Reactions conducted in a Parr bomb with 1.0 mol % of Pd(CyPFt-Bu)Cl₂, 1 mmol of ArBr, and 2.0 equiv of NaOt-Bu at 90 °C in DME (20.0 mL). ^{*b*} Isolated yield. ^{*c*} Determined by ¹H NMR of the crude product. ^{*d*} No product; only the phenol was observed.

Improved Reaction Conditions

Hartwig, J. F. et al. J. Am. Chem. Soc. 2009, 131, 11049.

Other ligands

did not promote reactions.

using LiNH₂ as N source.

Identification of Intermediates

and lower A/B ratio.

(PtBu₃, Q-Phos, X-Phos, IPr, dppf, BINAP etc)

•Lower NH₃ pressure gave lower conversion

 NH_3

Pd(II

PPh₃-d₁₅

C₆D₆,

mixture of stereoisomers (4:1) X-ray

90 °C

This condition also applicable reactions

AgOTf, NH₃

CH₂Cl₂

Pd(I

NMR

Ar₂NH

45%

KHMDS

ArNH₂

45%

NH₂

They screened several catalyst precursors and found the combination of $Pd[P(o-tol)_3]$ and CyPF-*t*Bu (Josiphos) in dioxane was the best conditions.

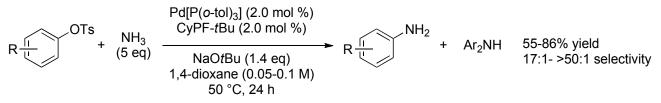
Table 2. Determination of the Catalyst Loading Required for the Coupling of Ammonia with *ortho*-Substituted Aryl Halides^a

X NH ₃ V 5 equiv	CyPF-t-Bu			r ₂ NH B	CyPF-t-Bu	
aryl halide	loading (%)	concentration [M]	T [⁰C] ^b	<i>t</i> [h]	conv. (%) ^c	A:B ^d
E	sr 0.5	0.04	80	24	100	>30:1
	0.25	0.04	80	24	<10	
Bu	0.1	0.1	100	24	100	2:1
€ CX ^B	r 0.1	0.1	100	24	100	17:1
Č	^I 0.1	0.1	100	24	100	17:1
	aryl halide	$ \begin{array}{c} & \begin{array}{c} & \text{NH}_{3} \\ & 5 \text{ equiv} \\ \hline & 5 \text{ equiv} \\ \hline & 1.4 \text{ equiv N} \\ \end{array} $ $ \begin{array}{c} & \text{aryl halide} \\ & \text{loading (\%)} \\ & $	$\begin{array}{c} + \frac{NH_3}{5 \text{ equiv}} & \frac{CyPF-t-Bu}{1.4 \text{ equiv NaO-}t-Bu} & \mathbb{R} \stackrel{\text{fr}}{\longleftarrow} \\ \hline \\ $	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	$ \begin{array}{c} \begin{array}{c} & NH_3 \\ + 5 \text{ equiv} \end{array} & \frac{CyPF-t-Bu}{1.4 \text{ equiv NaO-t-Bu}} & R \\ \hline \\ \hline \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{B} \\ \hline \\ \hline \\ \mathbf{A} \\ \mathbf{B} \\ \hline \\ \mathbf{B} \\ \mathbf{C} $	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} X \\ + \end{array} & \begin{array}{c} NH_3 \\ 5 \ equiv \end{array} & \begin{array}{c} \frac{CyPF-t-Bu}{1.4 \ equiv \ NaO-t-Bu} \\ 1.4 \ equiv \ NaO-t-Bu \end{array} & \begin{array}{c} R \\ \hline u \\ A \end{array} & \begin{array}{c} H \\ + \end{array} & \begin{array}{c} A \\ B \end{array} & \begin{array}{c} H \\ + \end{array} & \begin{array}{c} Ar_2 NH \\ B \end{array} & \begin{array}{c} Fe \\ CyPF-t-Bu \\ \hline CyPF-t-Bu \\ \hline equiv \\ B \end{array} \\ \hline \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \hline \end{array} & \begin{array}{c} \\ \hline \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c} \end{array} & \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \end{array} & \end{array} $

^{*a*} Reactions conducted with 1:1 ratio of metal to ligand, 0.5 mmol aryl bromide, 5 mL of 0.5 M ammonia solution, and 1.4 equiv of NaO-*t*-Bu in 1,4-dioxane. ^{*b*} Temperature of bath. ^{*c*} Determined by GC analysis. ^{*d*} Determined by ¹H NMR spectroscopy.

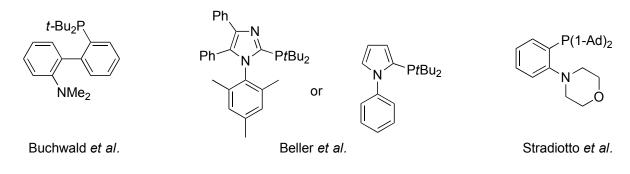
•No need to use excess amout of gasous ammonia.

•Results were sensitive to concentration.

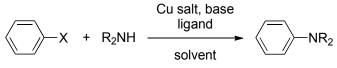

•0.1 mol % catalyst gave excellent results.

•These conditions showed wide substrate scope with ArX (CI, Br, I) by using 0.1-2.0 mol % catalyst.

•When Pd(II) compounds were used as Pd sources, Pd(0) generation seemed not efficient.

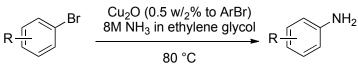

•Ester, ketone, nitrile are tolerant by changing the base to K_3PO_4 and decreasing temp. to 70 °C.

Reaction using tosylates proceeded in mild conditions to give good results.


(Higher temp. promoted decomp. of tosyltes by base.)

Buchwald, S. L. *et al. J. Am. Chem. Soc.* **2007**, *129*, 10354. Beller, M. *et al. Chem. Eur. J.* **2009**, *15*, 4528. Stradiotto, M. *et al. Angew. Chem., Int. Ed.* **2010**, *49*, 4071.

3-2. Cu-catalyzed Reactions


Ullmann Reaction

Similiar mechanism to Pd is proposed (Cu(III),Cu(I) cycle)

Several reaction of halopyridines with ammonia were repoted from early 20th century. However, high temperature (150-250 °C) were necessary.

First Mild and Practical Copper-catalyzed Amination

Lang, F. et al. Tetrahedron Lett. 2001, 42, 3251.

•Substrate scope was limited to electron-deficient aryl bromide or iodide. (pyridine or benzene with electron-withdrawing groups)

•Small amount of addition of ethylene glycol proceeded.

Neither secondary nor tertiary amines were observed, which is common in Cu-catalyzed amination.

2^[c]

76

68

79

73

63

DMF

DMF

DMF

DMF

DMF

DMF

Using Aqueous Ammonia

3

4

5

6

7

8

Cul

Cul

Cu

CuO

Cu₂O

Cu(OAc)₂

Table 2: Amination of 4-bromobiphenyl using various copper sources (0.1 equiv) in the presence of supporting ligand 2,4-pentadione (1).^[a]

Ρ	n - Br	+ NH ₃ •H ₂ O 2 equ	$\frac{\sqrt{1}}{1}$ $\frac{\sqrt{1}}{1}$ $\frac{\sqrt{1}}{10}$ $$	→-NH ₂
	[Cu]	Ligand 1 (equ	iv) Solvent	Yield [%] ^[a]
1	-	0.6	DMF	0
2	Cul	_	DMF	0 ^[b]

0.6

0.6

0.6

0.6

0.6

0.6

Taillefer, M. et al. Angew. Chem. 2009, 121, 343.

9	[Cu(acac) ₂]	_	DMF	23
10	[Cu(acac) ₂]	0.4	DMF	76
11	[Cu(acac) ₂]	0.4	DMSO	18
12	[Cu(acac) ₂]	0.4	CH₃CN	34
13	[Cu(acac) ₂]	0.4	NMP	50
14	[Cu(acac) ₂]	0.4	H ₂ O	0
15	[Cu(acac) ₂]	0.4	DMF	6 ^[d]
16	[Cu(acac) ₂]	0.4	DMF	45 ^[e]
17	[Cu(acac) ₂]	0.4	DMF	45 ^[f]
18	[Cu(acac) ₂]	0.4	DMF	93, ^[g] 20 ^[h]

[a] GC yield determined using 1,3-dimethoxybenzene as an internal standard. [b] Same result at 140 °C. [c] Without base. [d] DMF presaturated with gaseous ammonia. [e] Addition of 0.5 equiv NBu₄Br. [f] K₂CO₃ was used instead of Cs₂CO₃. [g] Reaction time 24 h. [h] Reaction time 24 h, 3% of [Cu (acac)₂]was used. acac=acetylacetanoate.

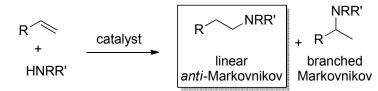
12

	$R = X + NH_3 \cdot H_2O \xrightarrow{0.4 \text{ equiv } I = 0.4 e$			ligand 6 (entry 3)			
	ArX	ArNH ₂	Yield [%] ^[a]			1 1	
1		NH ₂	90	9	Me	Me-	65, 79 ^{idj}
2	MeO		80	10	С———Br		90,98 ^[c]
3			94,93 ^[b] 99 ^[c]	11	NC-		92, 82 ^[b]
4			63	12	о — — — Вг		92, 84 ^[b]
5			23	13	Br — Br		41
6	PhBr Br	PhNH ₂ NH ₂	78	14	N= Br	N= NH2	84
7			88	15	Sr √Br Br		82
8	MeO Br		85		90°C (general case). [l action time, 36 h.	o] At 60°C. [c] At 90°C w	vith ligand 6 .

For other examples, see review: Angew. Chem., Int. Ed. 2011, 50, 86.

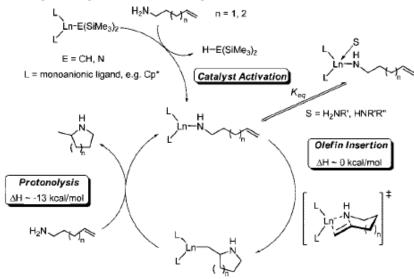
Summary of Arylation

Pd-catalyzed Reactions


- •Bulky, electron-rich, phosphine ligands are essential to obtain desired product.
- •Selectivity between primary and secondary amines are main problem.
- Use of large excess amount of ammonia is effective for primary selective reaction.
- •Wide substrate scope has been obtained. Even ArCl and ArOTs gave good results with low catalyst loading.

Cu-catalyzed Reactions

- •In most cases, primary amines are only product.
- •Relatively high catalyst loading is necessary and substrate scope is limited.
- Sensitive to steric hiderance. Reaction with ArCl is difficult.

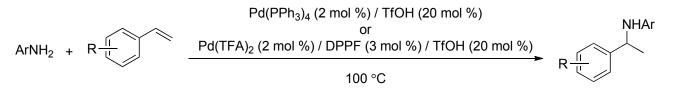

4. Hydroamination

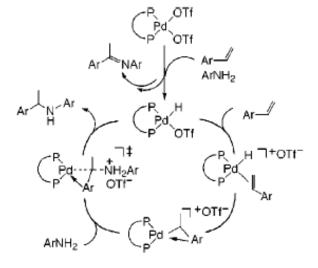
4-1. Hydroamination With Amines

Rare-Earth Metal-catalyzed Hydroamination

Scheme 3. Simplified Mechanism for Rare-Earth Metal Catalyzed Hydroamination/Cyclization of Aminoalkenes

anti-Markovnikov selective intermolecular hydroamination of olefin to give linear amines is highly imortant and formidable challeng.

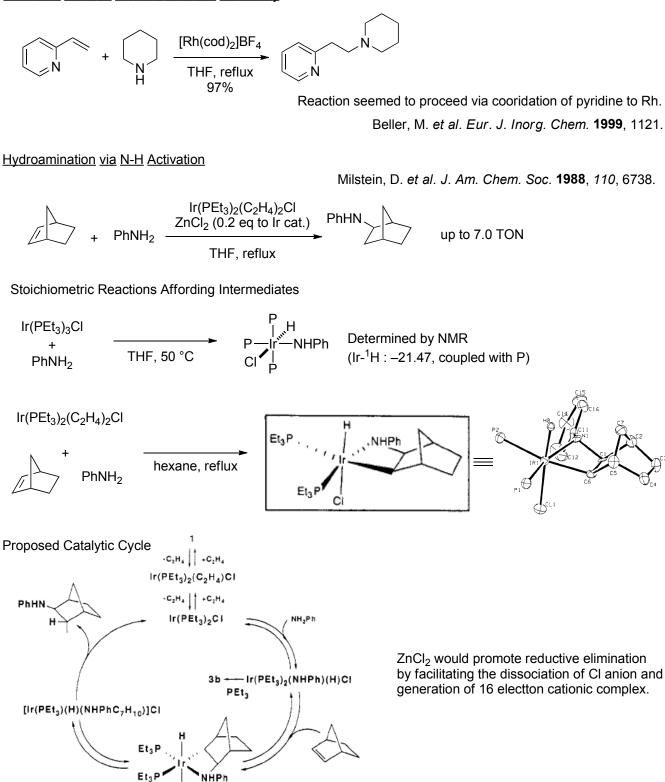

> This type reactions were well studied using rare-earth metal-Cp* amido complexs or related complexs.


Also alkaline-earth metal amido complex are known to catalyze hydroamination.

However those reactions show Markovnikov-selectivity.

For detail, see review: *Chem. Rev.* **2008**, *108*, 3795.

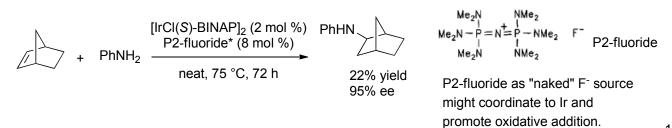
Late Transition Metal Catalyzed Markovnikov Selective Reactions

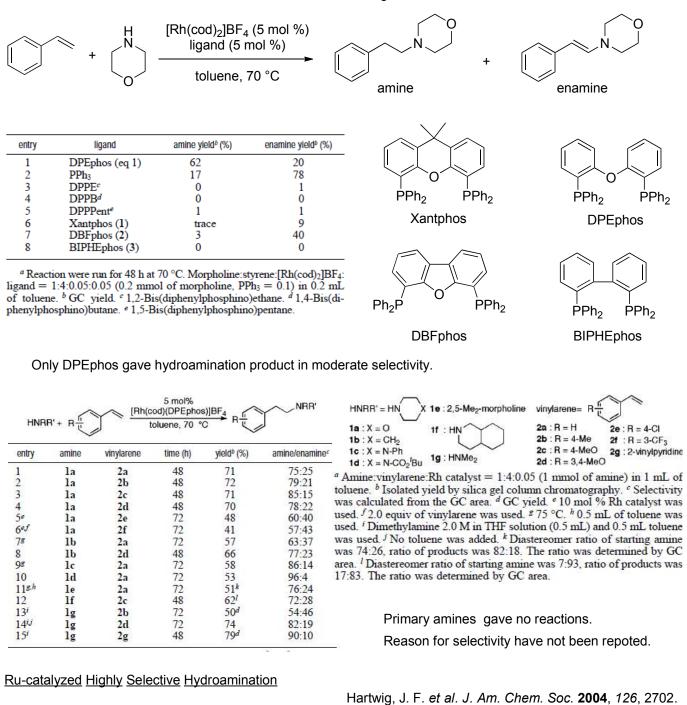


Markovnikov Selectivity

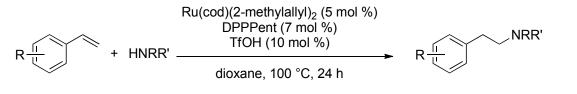
•Pd π -benzyl complex is major species in reaction mixture (isolated and characterized by NMR and X-ray)

•Addition of amines proceed via stereo inversion.

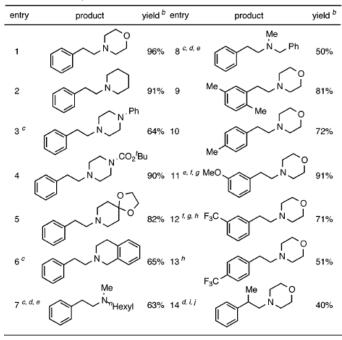

Hartwig, J. F. *et al. J. Am. Chem. Soc.* **2000**, *122*, 9546. Mechanistic Study: *J. Am. Chem. Soc.* **2002**, *124*, 1167. Substrate Induced anti-Markovnikov Selectivity

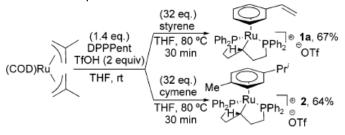

Aysmmetric Version

ĊI


Togni, A. et al. J. Am. Chem. Soc. 1997, 119, 10857.

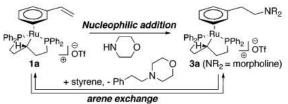
Hartwig, J. F. et al. J. Am. Chem. Soc. 2003, 125, 5608.

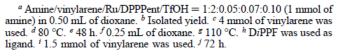

J. Am. Chem. Soc. 2005, 127, 5756.

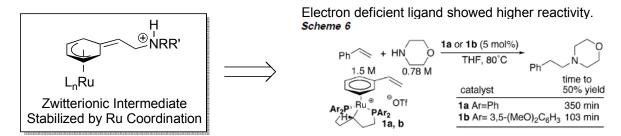

•No enamine was observed.

•Only trace amout of branched product was observed under optimized conditions. •No reaction occured in the absense TfOH or Ru cat.

Substrate Scope

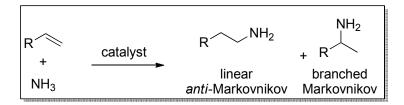

Ru-arene complexes as Intermediates

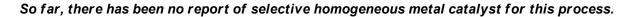


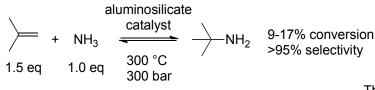

These complexs showed slightly higher reactivity when used as catalyst.

Proposed Reaction Mechanism

Scheme 5





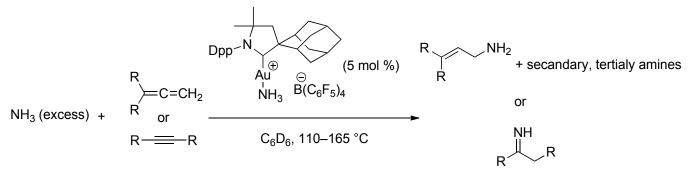

Problem: The reaction of this type mechanism can be applied to only aryl-vinyl substrates in principle.

4-2. Hydroamination With Ammonia

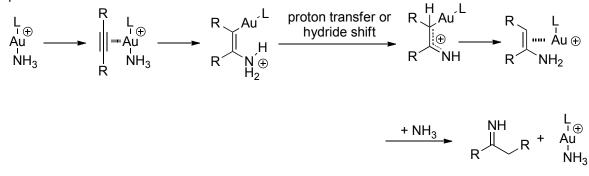
Heterogeneous Catalyst

This process was commercialized by BASF. Hayes, K. S. *Applied Catalysis A: General* **2001**, *221*, 187.

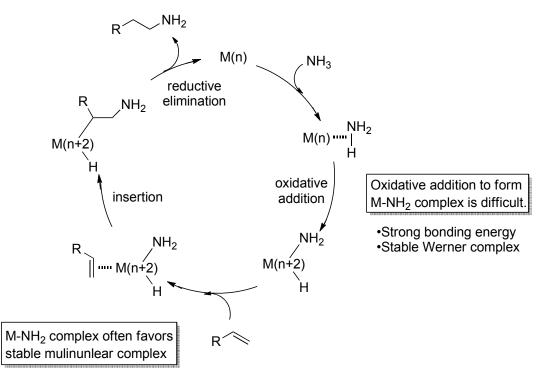
Alkali Metal-catalyzed Hydromination


Reactions between NH₃ and olefin under extremely harsh conditions were reported.

$$R + NH_{3} \xrightarrow[175-200 \ \circ C]{NH_{2}} + secondary amines + tertiary amines} + secondary amines + tertiary amines + terti$$

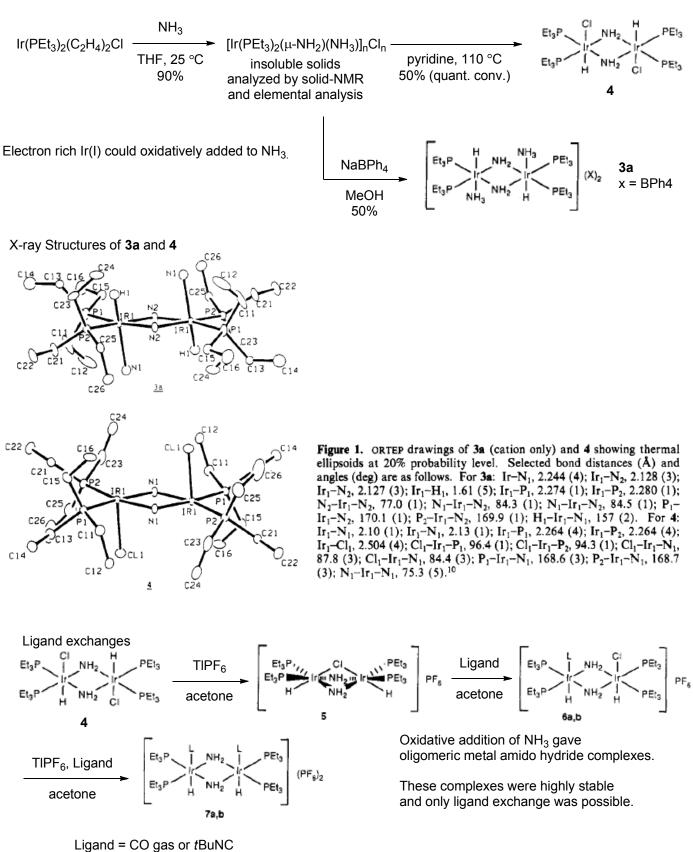

Howk, B. W. et al. J. Am. Chem. Soc. 1954, 76, 1899.

Gold-catalyzed Hydroamination of Alkynes and Allenes with Ammonia


Bertrand, G. et al. Angew. Chem., Int. Ed. 2008, 47, 5224.

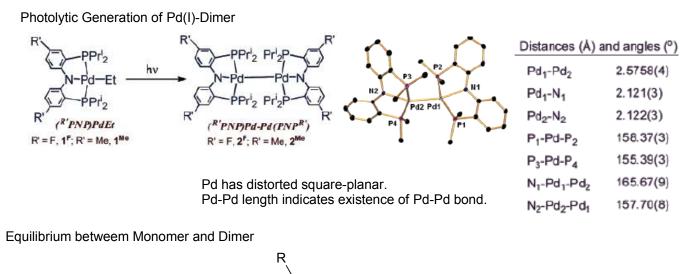
Proposed Reaction Mechanism

One of The Hypothetical Mechanism of Hydroamination with Ammonia



5. N-H Activation of Ammonia

5-1. Multimetallic Activation


Oxidative Addition of Ir(I)

Casalnuovo, A. L.; Milstein, D. et al. Inorg. Chem. 1987.26. 971.

Oxidative addition also occured without σ-donating ligands. See: Milstein, D. *et al. Angew. Chem., Int. Ed.* **1991**, *30*, 707.

Oxidative Addition of Pd(I) Dimer Comlex

?HiPr₂

Pd(0)

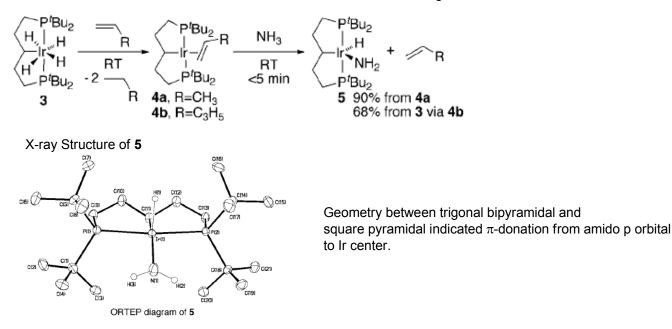
. ∕H*i*Pr₂

N۰

NMR analysis shows the Pd-dimer is almost diamangnetic.

But EPR spectrum indicates existence of "organic radicals".

Bimetallic Oxidative Addition of Ammonia

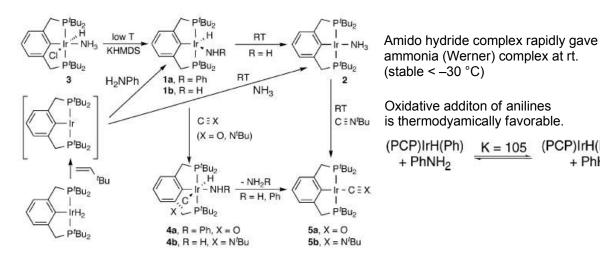

 $\binom{R'PNP}{Pd-Pd(PNP^{R'})} \xrightarrow{H-NH_2} \binom{R'PNP}{C_6D_6, 85 \ ^{\circ}C} \binom{R'PNP}{5^{\circ} r \ 5^{M\circ}} + \binom{R'PNP}{7^{\circ} r \ 7^{M\circ}} Reaction mechanism was unrevealed.$

5-2. Monometallic Activation

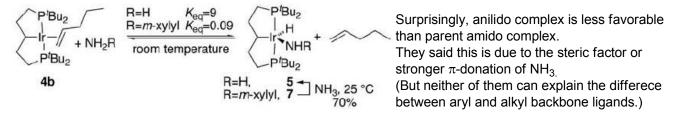
Oxidative Addition of NH₃ to Form Monomeric Ir Complex

2

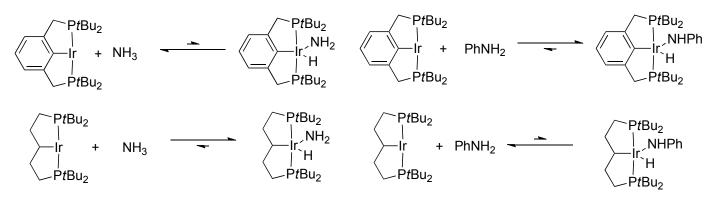
Hartwig, J. F. et al. Science 2005, 307, 1080.

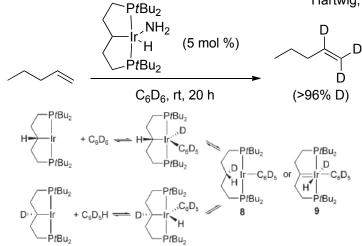


Mechanistic studies, reaction using $\text{ND}_3\,$ and kinetic experimetns, supported the path of direct oxidative addition after ligand dissociation,

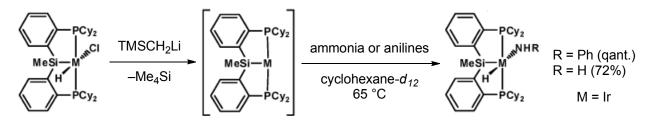

Electron-donating alkyl backbone is essential.

(PCP)IrH(NHPh)

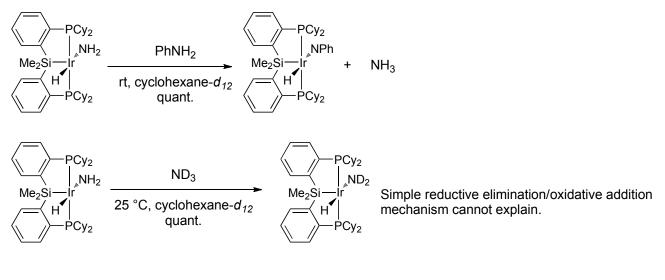

+ PhH


Thermodyanmics with Alkyl Backbone Ligand

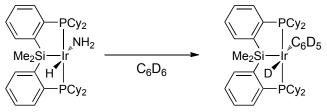
If the coordination of olefin (good π -acceptor) does not affect the equilibrium,...



This [PCP]Ir(H)NH₂ was not so kinetically stable.



Scheme 1. Proposed pathways for the iridium-catalyzed H/D exchange in C₆D₆.


Hartwig, J. F. et al. Angew. Chem., Int. Ed. 2008, 47, 5785.

Amido Exchange by Unrevealed Mechanism

Reductive Elimination

This reaction proceeded at only higher temp (>100 °C).

6. Summary

Recently, several transitionmetal-catalyzed reactions using NH₃ has been achieved.

Reactions which don't require formation of M-NH₂, reductive amination, allylic substitutions, could be achieved by relatively small modification of reaction conditions to inhibit over reactions.

Excellent reaction conditions for Buchwald-Hartwig amination and Ullmann amination were also achieved. Key for the former is using bulky, electron rich ligand, which is recent standard strategy used in several transitionmetal catalyzed reactions.

Hydroamination is one of the most important but challenging reaction and has not been achieved.

To discover and develop new catalytic reactions, several groups are challenging oxidative addition of $NH_{3.}$ So far, only stoichiometric processes have been reported.