Problem Session (2) -Answer-

Topic: Total synthesis of Waihoensene

Introduction

Isolation: Podocarpus totara var waihoensis (1997*)
Structural features: highly congested cis-fused tetracycle, six contiguous stereogenic centers
Total synthesis: (\pm)-Waihoensene...Lee (2017) Problem 1

$$
\begin{gathered}
(+) \text {-Waihoensene...Yang (2020) Problem } 2 \\
\text { Snyder (2020) }
\end{gathered}
$$

*Clarke, D. B.; Hinkley, S. F. R.; Weavers, R. T. Tetrahedron Lett. 1997, 38, 4297.
Introduction of problem 1: Lee's synthetic route

1-3
(\pm-Waihoensene

Problem 1

1. 1-2 (3.0 eq.), Mg (3.3 eq.), 1,2-dibromoethane (0.1 eq.), CuCN (0.3 eq.), THF, $0^{\circ} \mathrm{C}$
2. TBAF (2.0 eq.), THF, $0^{\circ} \mathrm{C}$ to rt, 95% (2 steps)

3. $(\mathrm{COCl})_{2}$ (1.5 eq .), DMSO (2.5 eq .), $\mathrm{Et}_{3} \mathrm{~N}$ (5.0 eq), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$ to rt, 94%
4. H_{2} NNHTs (1.1 eq.$\left.\right), \mathrm{MeOH}, 0^{\circ} \mathrm{C}$ to rt
(+)-Waihoensene

5. NaH (1.2 eq.), toluene, $0^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C}, 82 \%$ (2steps)
(1-3 : other isomers $=3.3: 0.79: 0.21$)

1-3

1-2
Lee, H.; Kang, T.; Lee, H.-Y. Angew. Chem. Int. Ed. 2017, 56, 8254.
Answer

$\xrightarrow[\text { work up }]{\text { TBAF; }}$
step 1

-2-

1-21

step 5
discussion 1: Construction of tetracyle
1.1. carbene vs enepyrazole
carbene path

enepyrazole path

From diazo compound 1-17, carbene 1-23 and enpyrazole 1-18 can be considered as an intermediate to generate biradical 1-19.

Kang, T.; Kim, W.-Y.; Yoon, Y.; Kim, B. G.; Lee, H.-Y. J. Am. Chem. Soc. 2011, 133, 18050.

L1-1

L1-3

L1-5

$\xrightarrow[110{ }^{\circ} \mathrm{C}]{\text { toluene }}$ 83\%

L1-2

L1-4

L1-6

Three-carbon tether compound L1-1 was subjected to the conditions above, and tricyclic compound L1-2 was obtained. However, when two-carbon tether and four-carbon tether were employed, pyrazole were isolated. These results suggest that pyrazole intermediate immediately generates before elimination of N_{2} to generate carbene.
Also, third entry shows the preference of five-membered ring.
1.2. Stereoselectivity and regioserectivity

1-26-A

1-26-B

1-26-C

1-26-D

1-26-E

1-26-F

1-25-A, 1-25-B, 1-25-C are considerable resonance structure. However, only 7 -exo-trig and 8-endo-trig are available from 1-25-A and 1-25-C. 7-exo-trig and 8-endo-trig are disfavored, so only 1-25-B is reactive. From 1-25-B, kinetically favored 5 -exo-trig cyclization proceeds.
-4-

1-25-B

The conformations of 1-25-B can be discribed as 1-27-A, 1-27-B, 1-27-C and 1-27-D. 1-27-C and 1-27-D have 1,3diaxial strain. Moreover, 1-27-D has steric repulsion between methyl group on five membered ring and axial methyl group. Therefore, 1-27-D would be least stable conformation. Also, 1-27-B has steric repulsion between methyl group on six-membered ring and methyl group on five-membered ring. Therefore, 1-27-A would be most stable conformation and major product is derived from 1-27-A.

From 1-28- A^{\prime}, biradical reacts and tetra cyclic compound $1-3$ is produced. When the biradical of 1-28- $\mathrm{A}^{\prime \prime}$ reacts, methyl group on six-membered ring and methylene groups on five-membered ring have to be close position. It is kinetically unfavored. Therfore, cyclization from 1-28-A' is favored.

1-28-B

1-28-B' favored

1-3-iso-A'

1-3-iso-A

$\begin{array}{c:c} & \begin{array}{c}\text { 1-28-B" } \\ \text { steric repulsion } \\ \\ \end{array}\end{array}$
$\begin{array}{c:c} & \begin{array}{c}\text { 1-28-B" } \\ \text { steric repulsion } \\ \\ \end{array}\end{array}$
$\begin{array}{c:c} & \begin{array}{c}\text { 1-28-B" } \\ \text { steric repulsion } \\ \\ \end{array}\end{array}$

1-30'

1-30'

From 1-28-B', biradical reacts and tetra cyclic compound 1-3-iso-A is produced. When the biradical of 1-28-B" reacts, methyl group on six-membered ring and olefin on five-membered ring have to be close position. It is kinetically unfavored. Therfore, cyclization from 1-28-B' is favored.

From 1-28-C', biradical reacts and tetra cyclic compound 1-3-iso-B is produced. In contrast, biradical of 1-28-C" is too far, so cyclization from 1-28-C" is disfavored.

In summary. 1-3 from 1-27-A is a major product of radical cyclization. 1-3-iso-A from 1-27-B and 1-3-iso-B from 1-27-C are minor products.
steric repulsion

1-27-B minor

1-3-iso-A'

1-3-iso-A

Introduction of problem 2: Yang's synthetic route

Problem 2

Qu, Y.; Wang, Z.; Zhang, Z.; Zhang, W.; Huang, J.; Yang, Z. J. Am. Chem. Soc. 2020, 142, 6511.

work up
\longrightarrow

discussion 2: Stereoselective reduction of olefin
2.1. Mechanistic study

2-31'

This result shows that olefin is reduced by hydride from PhSiH_{3}.

Lo, J. C.; Yabe, Y.; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 1304.

full conversion

These results show that $\mathrm{Fe}(\mathrm{acac})_{3}$ is necessary for olefin reduction. It indicates that hydride of PhSiH_{3} moves to Fe(III) first, then moves to olefin.
Also, second entry shows that oxygen does not oxidize Fe(II), which generates in olefin reduction.

2-3'

$\mathrm{CD}_{3} \mathrm{CD}_{2} \mathrm{OD}, 60^{\circ} \mathrm{C}$

2-3'

90\% (recovery)
These results show that protonation of α-position of ketone is caused by solvent. Also, proton exchange does not occur.

2-27'

1) Fe (acac) $)_{3}$ (0.2 eq .)
PhSiH_{3} (1.0 eq.)
EtOH, $60^{\circ} \mathrm{C}$
2) $1 \mathrm{M} \mathrm{HCl}, \mathrm{THF}$

2-3'
9\%

2-3-iso
70%

This result shows that proton has to be activated by carbonyl group. Also, this result indicates intramolecular HAT occurred.

Kim, D.; Rahaman, S. M. W.; Mercado, B. Q.; Poli, R.; Holland, P. L. J. Am. Chem. Soc. 2019, 141, 7473.

(20 eq.) (0.5 eq.)
$<1 \%$

86\%

(20 eq.)

89\%

(20 eq.) (0.5 eq.)
54\%
CN

Radical experiment using AIBN was conducted.
Without $\mathrm{Fe}(\mathrm{acac})_{2}$, hydrogenation did not occur. Though hydrogen source is solvent (shown by deuterium experiment), $\mathrm{Fe}(\mathrm{acac})_{2}$ is necessary. Also, when $\mathrm{Et}_{3} \mathrm{NHBF}_{4}$ was used as an hydrogen source, yield was low. It indicates that coordination of EtOH to $\mathrm{Fe}(\mathrm{acac})_{2}$ is necessary. These experiments indicate following reaction mechanism.

$$
\mathrm{Fe}(\mathrm{acac})_{2}+2 \mathrm{EtOH} \longrightarrow \mathrm{Fe}(\mathrm{acac})_{2}(\mathrm{EtOH})_{2}
$$

This mechanism is path A on page11.

DFT calculation shows that $\Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{PCET}}$ is $9.4 \mathrm{kcal} / \mathrm{mol}$.

Also, DFT calculation of other paths was conducted.
a) One MeOH molcule is involved.

$$
\Delta \mathrm{G}^{\ddagger}=20.0 \mathrm{kcal} / \mathrm{mol}
$$

b) One MeOH molcules are involved.

These paths are reduction via Fe enol ether. Path a which invloves one MeOH molcule is unfavorble. However, activation barrier of path b which involves two MeOH molcules is relatively low $\left(11.0 \mathrm{kcal} / \mathrm{mol}, \Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{PCET}}=9.4\right.$ $\mathrm{kcal} / \mathrm{mol})$. Though there is no experimental evidence, path b cannot be rejected.

This mechanism is path B on page 11 .

2.2. DFT calculation

a) Diastereoselective determined step calculation.

*Correct structure of B4 might be this (radical at C1 position).

b) conformational isomerization

When the conformation of six-membered ring is chair, HAT occurs in desired way. In contrast, when the conformation is boat, undesired HAT occurs. However, boat conformation is unstable ($\Delta \Delta \mathrm{G}^{\circ}$ between chair conformation A1 and boat conformation A2 is $10.3 \mathrm{kcal} / \mathrm{mol}$). It would be because there is sterical repulsion shown below, so desired HAT from chair conformation occurs.

A2

Also, $\Delta \Delta G^{\circ}$ between A2 and TS2 ($21.2 \mathrm{kcal} / \mathrm{mol}$) is higher than $\Delta \Delta \mathrm{G}^{\circ}$ between A1 and TS1 (14.0 kcal/mol). It would be because H atom on α-position of ketone is too far from carbon radical when the conformation is boat.

This DFT calculation supports the selectivity of olefin reduction.

References

1) Lai, Y.-H. Synthesis, 1981, 8, 585.
2) Gomberg, M.; Backmann, W. E. J. Am. Chem. Soc. 1927, 49, 236.
3) Kang, T.; Kim, W.-Y.; Yoon, Y.; Kim, B. G.; Lee, H.-Y. J. Am. Chem. Soc. 2011, 133, 18050.
4) Ricker, J. D.; Mohmmadrezaei, V.; Crippen, T. J.; Zell, A. M.; Geary, L. M. Organometallics. 2018, 37, 4556.
5) Kwak, Y.-S.; Corey, E. J. Org. Lett. 2004, 6, 3385.
6) Lo, J. C.; Yabe, Y.; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 1304.
7) Lo, J. C.; Kim, D.; Pan, C.-M.; Edwards, J. T.; Yabe, Y.; Gui, J.; Qin, T.; Gutierrez, S.; Giacoboni, J.; Smith, M. W.; Holland, P. L.; Baran, P. S. J. Am. Chem. Soc. 2017, 139, 2484.
8) Kim, D.; Rahaman, S. M. W.; Mercado, B. Q.; Poli, R.; Holland, P. L. J. Am. Chem. Soc. 2019, 141, 7473.
