Please provide reasonable mechanisms of each steps and answer the question Q1.
(1)

(2)

1. phenol (1.1 eq.)

DIAD (1.2 eq.), PPh_{3} (1.2 eq,)
THF, rt
2. $\mathrm{Hg}(\mathrm{OAc})_{2}(20 \mathrm{~mol} \%)$
ethyl vinyl ether (solvent), $45^{\circ} \mathrm{C}$
55\% (2 steps)
3. $\mathrm{h} \nu(254 \mathrm{~nm})$
pentane, $\underline{25}^{\circ} \underline{\mathrm{C}}, \underline{27} \underline{\mathrm{~h}}, 67 \%$

2-1
(2R, 4R)-pentanediol

2-2

Q1. Explain the roles of chiral pentanediol motief in these transformations.

DMAP
DMDO
DIAD
m-CPBA

Topic: Skeletal reorganization in organic syntheses
Answer:

1. Hydroxylation of $\underline{C 14}$ position in gibberellins by Mander's group (Review: Nat. Prod. Rep. 2003, 20, 49.)

1-1. Reaction mechanism

 1-1	1. NaH ($60 \mathrm{wt} \%, \sim 2$ eq.) $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 82 \%$ 2. $\mathrm{Ac}_{2} \mathrm{O}$ (2.6 eq.), $\mathrm{Et}_{3} \mathrm{~N}$ (3.6 eq.) DMAP (cat.) $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 96 \%$ 3. TBSOTf (2.1 eq.), $E t_{3} \mathrm{~N}$ (4.3 eq.) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 70% 4. DMDO (in acetone, 7.0 eq.) $\mathrm{CH}_{2} \mathrm{Cl}_{2},-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$; evp. ; $n-\mathrm{Bu}_{4} \mathrm{NF}$ (10 eq.) THF, $25^{\circ} \mathrm{C}, 80 \%$ 5. NaH (60 wt\%, ~ 5.3 eq.) MeOH (one drop) $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 84 \%$ Liu, J.; Mander, L. N.; Wi	 1-2 A. C. Tetrahedron 1998. 54. 1

Key point: 1) acyloin rearragement (step 1 and 5) 2) three dimensional conformation of polycyclic compound

Key point: 1. Diastereoselective meta-photocycloaddition (step 3), 2. epoxidation induced fragmentation (step 4)
3. Stereoselective reduction of ketone (step 5)

1st step: Mitsunobu reaction

2nd step: vinyl etherification

3rd step: diastereoselective meta-photocycloaddition

singlet excited state
or

2-13-B aromatic ring from Re face of vinyl ether

2-15

2-15
not obtained
(kinetically disfavored)

2-16

2-16
not obtained (kinetically disfavored)

Once 2-18 and 2-19 are generated in the reaction system, 2-17, 2-18, and 2-19 are under the equilibrium via vinyl cyclopropane rearrangement.
 more stable

Fifer, N. L.; White, J. M. Org. Biomol. Chem. 2005, 3, 1776.
4th step: epoxidation induced fragmentation

5th step: Stereoselective Luche reduction

* CeCl_{3} can coordinate to the hydroxyl group on the substrate 2-27

1. anionic reductant approaches from the more polarized face $=$ favored

<TS analysis>

TS-1
donation from $2 \times C-C \sigma$ bond to newly formed C-H σ^{*} <TS analysis>

TS-2 donation from $2 \times \mathrm{C}-\mathrm{C} \sigma$ bond to newly formed C-H σ^{*} the energy of $\mathrm{C}-\mathrm{C} \sigma$ decreases due to the coordination of CeCl_{3}

H-2

H-3

Remote polar substituents can control the stereoselectivity of nucleophilic addition to cyclic ketones $\mathbf{H - 1}$.
Mehta, G.; Khan, F. A. J. Am. Chem. Soc. 1990, 112, 6140.
Paddon-Row, M. N.; Wu, Y. -D.; Houk, K. N. J. Am. Chem. Soc. 1992, 114, 10638.

Discussion:

1. arene-alkene photocycloaddition

1-1. Mode selectivity: [2+2] vs [3+2]

Streit, U.; Bochet, C. G. Beilstein J. Org. Chem. 2011, 7, $525 . \quad$ biradical intermediate
Frontier molecular orbital of benzene

π orbital of benzene is degenerated, so four orbitals should be incorporated to describe singlet excited state of benzene benzene-ethylene orbital interactions (independently)

Meta-photocycloaddition ([3+2] cycloaddition)

$r_{\text {ortho }}=1.395 \AA$

1. $S \rightarrow A^{*}$ transition is highly stabilized (2 x orbital interactions)
\rightarrow These stabilization overcomes the diasfavored orbital overlapping in [3+2] cycloaddition.

Houk, K. N. Pure. Appl. Chem. 1982, 54, 1633.

$\|$
2. $A \rightarrow S^{*}$

S*
$-A^{*}$

S*

four electrons in two orbitals

$$
\rightarrow \text { total = destabilized }
$$

1. single orbital interaction

When the HOMO and LUMO of an aromatic compound are at approximately the same energy level as that of olefin, the [$3+2$] cycloaddition reaction is favored.

[2+2] photocycloaddition

a. with electron deficient olefin

S* -

1. From the ground-state analysis, $S \rightarrow A^{*}$ transition is favored.
2. Interaction between A^{*} and π^{*} is possible

From the point of overlapping of the orbital [2+2] cycloaddition is favored.
3. Orbital interaction between A and π is impossible
b. with electron rich olefin

\qquad

π^{*}

1. From the ground-state analysis, $A \rightarrow S^{*}$ transition is possible.
2. Interaction between A^{*} and π^{*} is impossible

Houk, K. N. Pure. Appl. Chem. 1982, 54, 1633.
3. Interaction between A and π is possible

In this problem, cycloaddition between electron rich aromatic ring and electron rich olefin proceeds.

1. Olefins having electron-donor and electron-acceptor abilities preferentially afford [2+2] cycloadducts.
2. If olefin lacks good electron donor or electron acceptor, the reaction affords [3+2] cycloadducts.

1-2. Regioselectivity in meta-photocycloaddition using elecron rich aromatic ring

