Problem Session (3)
Topic: Lycopodium alkaloids
Please explain the reaction mechanism.
1.

1. 1-2 (3.5 eq.), AcOH/toluene (2/5), reflux, $70 \%{ }^{\mathrm{a}}$)
2. PtCl_{2} ($10 \mathrm{~mol} \%$), toluene, $90^{\circ} \mathrm{C}, 87 \%$
3. SeO_{2} (1 eq.), 1.4 -dioxane, $85^{\circ} \mathrm{C}, 54 \%$
4. 1 M NaOH aq. $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{\mathrm{b}}$, $\mathrm{rt}, 76 \%$
5. ethylene glycol (6 eq.), PPTS (1 eq.), benzene, reflux, 87%
6. m-CPBA (3 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 98 \%$

7. $\mathrm{KOH} \cdot$ alumina ($1000 \mathrm{wt} \%$), $\mathrm{CBr}_{2} \mathrm{~F}_{2}$ (13 eq.), t - $\mathrm{BuOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(7 / 3),-15^{\circ} \mathrm{C}$ to rt, 46%

1-1
a) as a 10:1 mixture of enamide isomers

1-1
b) 5 drops of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added to NaOH aq. $(20 \mathrm{~mL})$
2.

1. $i-\mathrm{Pr}_{2} \mathrm{NH}$ (6 eq.), $i-\mathrm{PrOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4/1), rt, 89%
2. PPh_{3} (1 eq.), THF, reflux; concentrated; $i-\mathrm{Pr}_{2} \mathrm{NEt}$ (6.25 eq .), TBSOTf (2.5 eq .), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 82 \%$
3. $\mathrm{Zn}(\mathrm{OTf})_{2}\left(3 \mathrm{eq}\right.$.), $\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}, 96{ }^{\circ} \mathrm{C}, 54 \%$

* Authors expected to obtain 2-3.

However, only 2-2 was obtained, instead.

m-CPBA

Topic: Synthesis of Lycopodium alkaloids using Sulfur

- sulfonyl rearrangement -

Introduction:

lycopodine (AChE inhibitor)

Lycopodium alkaloids: isolated mainly from Lycopodium species
isolation
lycopodine (1881)
(Bödeker, K. Liebigs Ann. Chem., 1881, 208, 363.)

structural features:

tetracyclic ABCD ring system
-> commonly divided into 4 classes in respect of their structures
lycopodine class, fawcettimine class, lycodine class, phlegmarine class tetrasubstituted carbon atom

fawcettimine

lycodine

phlegmarine

Lycopodium clavatum

Proposed biosynthetic pathway from lycopodine type to fawcettidine

For more information, see:
Siengalewicz, P.; Mulzer, J.; Rinner, U. In The Alkaloids; Knölker, H.-J.,Ed.; Academic Press: New York, 2013; Vol. 72, pp. 1-151.

Kozak, J. A.: Dake, G. R. Angew. Chem. Int. Ed. 2008, 47, 4221.

1-12

step 2

1-30

1-3
$\left(\begin{array}{l}\text { 1. } \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \\ \text { 3. } 1 \mathrm{M} \mathrm{HCl}, \text { THF } \\ \text { 2. } \mathrm{LiAH}_{4} / \mathrm{THF}, \mathrm{THF} \\ \text { 3. }\end{array}\right.$

fawcettidine

Appendix: The use of $\mathrm{CBr}_{2} \mathrm{~F}_{2}$ - stability of dihalocarbene -
In the one-pot procedure of Ramberg-Bäcklund rearrangement, a carbene adduct to generated olefin is sometimes obtained as a by-product.

Meyers, C. Y.; Malte, A. M.; Matthew, W. S. J. Am. Chem. Soc. 1969, 91, 7510.
Chan, T.-L.; Fong, S.; Li, Y.; Man, T.-O.; Poon, C.-D. J. Chem. Soc., Chem. Commun. 1994, 1771.

The larger overlap between $2 p_{(C)}$ and $2 p_{(F)}$ (than between $2 p_{(C)}$ and $\left.3 p_{(C I)}\right)$ stabilizes difluorocarbene than dichlorocarbene.
Therefore, $\mathrm{CBr}_{2} \mathrm{~F}_{2}$ is better halogen source for this Ramberg-Bäcklund rearrangement.
Also see: Moss, R. A. Acc. Chem. Res. 1980, 13, 58.

2-1
(as a mixture of diastereomers)

1. $i-\mathrm{Pr}_{2} \mathrm{NH}$ (6 eq.), $i-\mathrm{PrOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4/1), rt, 89%
2. PPh_{3} (1 eq.), THF, reflux; concentrated;
$i-\mathrm{Pr}_{2} \mathrm{NEt}$ (6.25 eq.), TBSOTf (2.5 eq.),
$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 82 \%$
3. $\mathrm{Zn}(\mathrm{OTf})_{2}(3 \mathrm{eq}),.\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}, 9{ }^{\circ} \mathrm{C}, 54 \%$
2-2

Yang, H.; Carter, R. G.; Zakharov, L. N. J. Am. Chem. Soc. 2008, 130, 9238. Yang, H.; Carter, R. G. J. Org. Chem. 2010, 75, 4929.

2-1
2-4
2-5

2-6
2-7
2-8
$ـ_{\text {step } 1}$

Discussion:

1. Diastereo-selectivity of intramolecular Michael addition

When C15-desmethyl model substrate 2-1-H was treated with the similar conditions, the same selectivity appeared. Therefore, $\mathrm{C} 15-\mathrm{Me}$ is omitted in this discussion.

2. Tandem 1,3-sulfonyl migration, Mannich reaction

2-1. Mechanism of 1,3-sulfonyl migration

Radical mechanism is also known.

Knignt, D. J.; Lin, P.; Whitham, G. H. J. Chem. Soc., Perkin Trans. 1, 1987, 2707.

However, this rearrangement (via radical pathway) needs radical initiator (or $h v$) and is inhibited by radical quencher. It is also known that acid promotes this migration, which is not inhibited by hydroquinone (radical quencher).

2-27 was also detected in the presence of $\mathrm{PhSO}_{2} \mathrm{Na}$.
-> Acidic conditions also initiate 1,3-sulfonyl migration via ionic mechanism.

2-2. Necessity of sulfonyl migration for Mannich reaction

2-15

2-15a
' Mannich
\downarrow reaction
(TfO)Zn

2-28

2-15b

2-16

2-17

Only 2-19 has a suitable conformer which has axial side chain R.
Therefore, Mannich cyclization proceeded via only 2-19a.

1,3-Sulfonyl migration occurred before Mannich cyclization to afford most preferable imine 2-19.

Vinyl sulfone 2-32 seems less reactive to the intramolecular 1,4-addition than activated imine 2-19.

