Please provide each reaction mechanisms and explain the stereoselectivities.

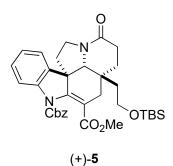
1.

Fe(acac)₃ (1.5 eq.)

PhSiH₃ (5 eq.)

EtOH/(CH₂CI)₂
(9/1, 3 mM), 25 °C, 16 h

N Cbz CO₂Me


20%

Cbz CO₂Me

2.

1. NaBH₃CN (8 eq.) *i*-PrOH/AcOH (4/1), 25 °C, 88%

- 2. Raney Ni (400 wt%), H₂ EtOH, 80 °C, 92%
- 3. CbzCl (2.5 eq.), K₂CO₃ (5 eq.) CH₂Cl₂, 25 °C, 97%
- 4. NaH (5 eq.), imidazole (2 mol%), THF, 25 °C; CS₂ (3 eq.), Mel (3 eq.), 93%
- 5. toluene (0.003 M), 150 °C 60% (as a major isomer)
- * Enantiomers were separated after step 3.

1. KOH (10 eq.) THF/MeOH/H₂O (1/1/1), 70 °C

- 2. toluene, 108 °C, 2 steps 95%
- 3. **A** (10 eq.), DBU (3 eq.), MeCN 25 °C, 73% (brsm 92%)

6

* Sml₂ was added until **6** was consumed and its equivalent was not mentioned.

7

Topic: Total synthesis of (-)-pseudocospinine and (-)-strempeliopine by Boger's group

0. Introduction

Boger group has achieved divergent total synthesis from common intermediate 4.

Synthesis of common intermediate: [4+2]/[3+2] cycloaddition cascade 1)

OTBS
O-DCB
$$180 \, ^{\circ}C$$
 71%
OTBS
O-DCB
 $180 \, ^{\circ}C$
 $CO_{2}Me$

OTBS
O-DCB
 $180 \, ^{\circ}C$
 $CO_{2}Me$
OTBS
O-DCB
 $180 \, ^{\circ}C$
 $CO_{2}Me$
OTBS
O-DCB
 $180 \, ^{\circ}C$
OTBS

Please provide each reaction mechanisms and explain the stereoselectivities.

discussion 1-1. stereoselectivity at C20 (indoline ring is omitted.)

$$\begin{array}{c} \text{MeO}_2\text{C} \\ \text{MeO}_2\text{C} \\$$

discussion 1-2. mechanism of quenching the generated radical

OTBS
$$\begin{array}{c}
Fe(dibm)_{3} \\
Na_{2}HPO_{4}, PhSiH_{3} \\
C_{2}H_{5}OD \text{ or } C_{2}D_{5}OD \\
68\%, respectively \\
>99\% D incorporation
\end{array}$$
E2
$$\begin{array}{c}
Fe(dibm)_{3} \\
Fe(dibm)_{4} \\
Fe(dibm)_{4} \\
Fe(dibm)_{5} \\
Fe(dibm)_{$$

The proton derives from ethanol. 2)

-> three possibilities for quenching the product radical are conceivable.

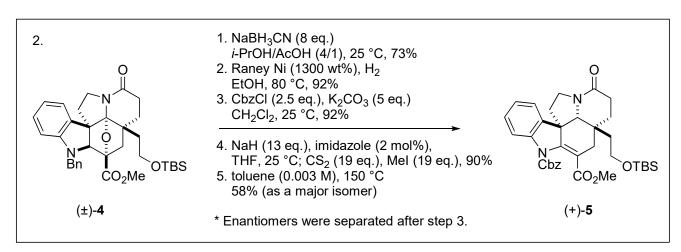
Mechanism (a): stepwise ET/PT pathway

Mechanism (c): protonation from an organometallic complex

$$Fe^{II}(acac)_{2} + EWG \longrightarrow R \xrightarrow{QR'} R \xrightarrow{EtOH} QR' \qquad QR'$$

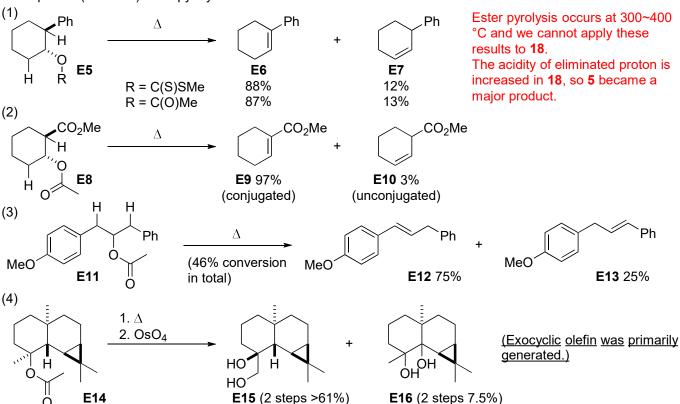
$$(acac)_{2}Fe^{III}(EtOH) \xrightarrow{QR'} Fe^{III}(acac)_{2}QEt + EWG \longrightarrow R$$

$$(acac)_{2}Fe^{III}(EtOH) \xrightarrow{QR'} Fe^{III}(acac)_{2}QEt + EWG \longrightarrow R$$

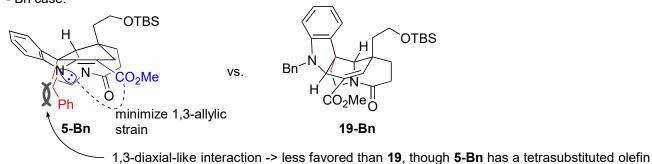

Holland et al. mentioned (a) was unlikely.

 $[Fe^{III}(acac)_2]^+ + e^- -> Fe^{II}(acac)_2; E_{Fe(III)/Fe(II)} = -0.48 \text{ V (in EtOH, measured by cyclic voltammetry)}$ MeCH⁺(CO₂Me)+ e- -> MeCH⁻(CO₂Me); $E_{Fe(III)/Fe(II)} = -1.04 \text{ V (in MeCN)}^{3)}$

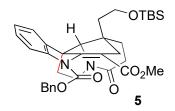
∴ Fe^{II}(acac)₂+MeCH*(CO₂Me) -> [Fe^{III}(acac)₂]* + MeCH*(CO₂Me); E_{total} = ~ - 0.56 V (13 kcal/mol) -> uphill Though solvents are different, electron transfer from Fe^{II} to the generated radical will be kinetically unfavorable. (They conducted DFT calculation and predicted it is more uphill (35.0 kcal/mol) in EtOH) In contrast, activation barriers in (b) and (c) were calculated as 9.4 kcal/mol and 11.0 kcal/mol, resptectively, so path (b) or (c) is more likely than path (a).


(b) concerted proton-coupled electron transfer path

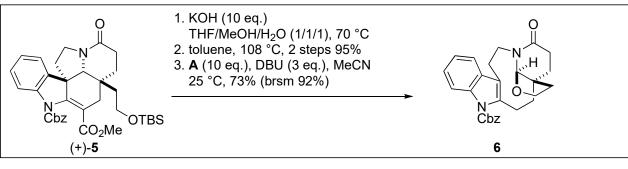
3

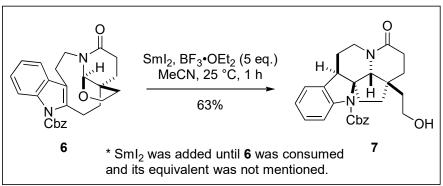

discussion 2. Elimination direction of Chugaev reaction

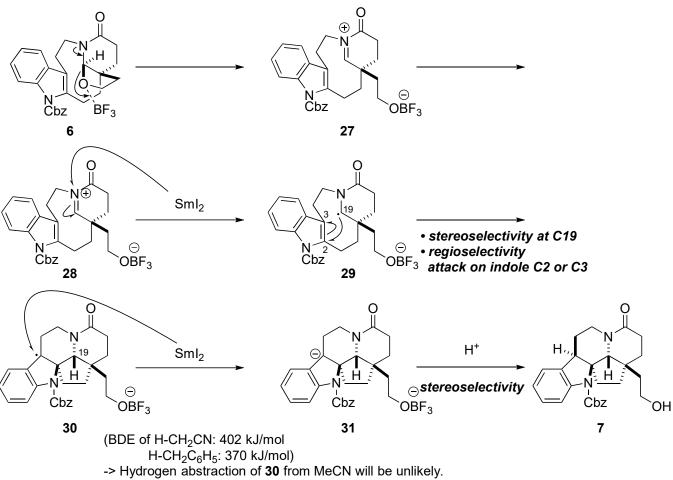
Examples of (xanthate) ester pyrolysis 4):



-> In general, the influence of functional groups has been mainly attributed to their effect on the stability of the resultant olefin $((1)\sim(3))$. Exocyclic olefin was primarily generated in (4), and internal olefin would be unfavored in the entire molecure due to the strain (1,3-allysic strain, for example).

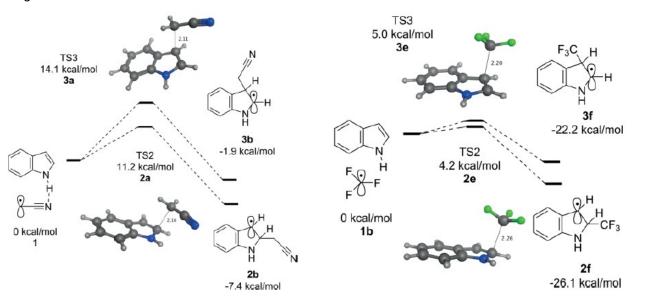

- Bn case:


- Cbz case:



no such a interaction as Bn case, so tetrasubstituted olefin was primarily generated as usual manner.

step 3



discussion 2. Radical additon to C2 or C3 of indole

7

Stereoselectivity at C19:

Regioselective addition of electron-deficient radicals on indole C2 6):

-> Intermolecular attack on indole C2 is kinetically and thermodynamically favored. The equilibrium between **31** and **29** will be conceivable.

Reference

- 1) Campbell, E. L.; Zuhl, A. M.; Liu, C. M; Boger, D. L. J. Am. Chem. Soc. 2010, 132, 3009.
- 2) Lo, J. C.; Gui, J.; Yabe, Y.; Pan, C. M.; Baran, P. S. Nature 2014, 516, 343.
- 3) Bortolamei, M.; Isse, A. A.; Gennaro, A. Electrochim. Acta 2010, 55, 8312.
- 4) DePuy, C. H.; King, R. W. Chem. Rev. 1960, 60, 431.
- 5) Barton, D. H.; McCombie, S. W. J. Chem. Soc. Perkin Trans 1 1975 1574
- 6) Li, Y.; Vaz, R. J.; Olson, S. H.; Munson, M.; Paras, N. A.; Conrad, J. Eur. J. Org. Chem. 2020, 5828.

M06-2X/CC-PVQZ(-g)