
Problem Session (5) 2021. 9. 11. Takahiro Watanabe

Please provide each reaction mechanisms and explain the stereoselectivities.
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Fe(acac)3 (1.5 eq.)
PhSiH3 (5 eq.)

EtOH/(CH2Cl)2
(9/1, 3 mM), 25 °C, 16 h

1. NaBH3CN (8 eq.)
i-PrOH/AcOH (4/1), 25 °C, 88%

2. Raney Ni (400 wt%), H2
EtOH, 80 °C, 92%

3. CbzCl (2.5 eq.), K2CO3 (5 eq.)
CH2Cl2, 25 °C, 97%

4. NaH (5 eq.), imidazole (2 mol%),
THF, 25 °C; CS2 (3 eq.), MeI (3 eq.), 93%

5. toluene (0.003 M), 150 °C
60% (as a major isomer)

N

N
Cbz

O

OTBS
CO2Me

1. KOH (10 eq.)
THF/MeOH/H2O (1/1/1), 70 °C

2. toluene, 108 °C, 2 steps 95%
3. A (10 eq.), DBU (3 eq.), MeCN

25 °C, 73% (brsm 92%)

* SmI2 was added until 6 was consumed
and its equivalent was not mentioned.

* Enantiomers were separated after step 3.
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Problem Session (5)-Answer- 2021. 9. 11. Takahiro Watanabe

Topic: Total synthesis of (-)-pseudocospinine and (-)-strempeliopine by Boger's group

0. Introduction
Boger group has achieved divergent total synthesis from common intermediate 4.
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Synthesis of common intermediate: [4+2]/[3+2] cycloaddition cascade 1)
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Please provide each reaction mechanisms and explain the stereoselectivities.
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EtOH/(CH2Cl)2
(9/1, 3 mM), 25 °C, 16 h
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Zeng, X.; Shukla, V.; Boger, D. L. J. Org. Chem. 2020, 85, 14817.
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discussion 1-1. stereoselectivity at C20 (indoline ring is omitted.)
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discussion 1-2. mechanism of quenching the generated radical
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>99% D incorporation

Fe(dibm)3
Na2HPO4, PhSiH3

The proton derives from ethanol. 2)

-> three possibilities for quenching the product radical are conceivable.
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radical quenching

Holland et al. mentioned (a) was unlikely.

[FeIII(acac)2]
+ + e- -> FeII(acac)2; EFe(III)/Fe(II)= -0.48 V (in EtOH, measured by cyclic voltammetry)

MeCH•(CO2Me)+ e- -> MeCH-(CO2Me); EFe(III)/Fe(II)= -1.04 V (in MeCN) 3)

FeII(acac)2+MeCH
•(CO2Me) -> [Fe

III(acac)2]
+ + MeCH-(CO2Me); Etotal= ~ - 0.56 V (13 kcal/mol) -> uphill

Though solvents are different, electron transfer from FeII to the generated radical will be kinetically unfavorable.
(They conducted DFT calculation and predicted it is more uphill (35.0 kcal/mol) in EtOH)
In contrast, activation barriers in (b) and (c) were calculated as 9.4 kcal/mol and 11.0 kcal/mol, resptectively, so
path (b) or (c) is more likely than path (a).

H

N

H

MeO2C

H
H

N

H

CO2Me

H

FeII(acac)2(EtOH)2

FeIII(acac)2OEt
EtOH

e-, H+

concave
H

H

N

H

MeO2C

H
H

N

H
H

FeII(acac)2

concave

H
N

N
Cbz

CO2Me

OMeO(acac)2Fe
III

H

N

H

CO2Me

H

H

(b) concerted proton-coupled electron transfer path

(c) protonation from an organometallic complex

O
FeIII

O

+

3

Fe(dibm)3 =

10 3 3

10 9 3

E1

E2

E3 E2 E4

EtOH

3



R'

N

N
Bn

O

OTBS

O

CO2Me

2. 1. NaBH3CN (8 eq.)
i-PrOH/AcOH (4/1), 25 °C, 73%

2. Raney Ni (1300 wt%), H2
EtOH, 80 °C, 92%

3. CbzCl (2.5 eq.), K2CO3 (5 eq.)
CH2Cl2, 25 °C, 92%

4. NaH (13 eq.), imidazole (2 mol%),
THF, 25 °C; CS2 (19 eq.), MeI (19 eq.), 90%

5. toluene (0.003 M), 150 °C
58% (as a major isomer)
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* Enantiomers were separated after step 3.
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* In ref 5), it is mentioned
imidazole works as a
catalyst for alkoxide formation.

Ring strain will be
larger if a hydride attacks
from below face.
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discussion 2. Elimination direction of Chugaev reaction
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-> In general, the influence of functional groups has been mainly attributed to their effect on the stability
of the resultant olefin ((1)~(3)). Exocyclic olefin was primarily generated in (4), and internal olefin would
be unfavored in the entire molecure due to the strain (1,3-allysic strain, for example).
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R = Bn (18-Bn)
R = Cbz (18)

benzene, 130 °C, 6 h*
toluene, 100 °C, 48 h

* Sealed tube was used.

Examples of (xanthate) ester pyrolysis 4):
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so tetrasubstituted olefin was primarily generated as usual manner.
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major product.



1. KOH (10 eq.)
THF/MeOH/H2O (1/1/1), 70 °C

2. toluene, 108 °C, 2 steps 95%
3. A (10 eq.), DBU (3 eq.), MeCN
25 °C, 73% (brsm 92%)
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discussion 2. Radical additon to C2 or C3 of indole
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(BDE of H-CH2CN: 402 kJ/mol
H-CH2C6H5: 370 kJ/mol)

-> Hydrogen abstraction of 30 from MeCN will be unlikely.



Stereoselectivity at C19:

M06-2X/CC-PVQZ(-g)

-> Intermolecular attack on indole C2 is kinetically and thermodynamically favored.
The equilibrium between 31 and 29 will be conceivable.
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