Please provide the reaction mechanisms.

2. NBS (1.5 eq), AIBN (0.3 eq)

A (3 eq), CCl_{4}, reflux, 87\%
3. O_{2}, TPP ($0.5 \mathrm{~mol} \%$), $h v^{\mathrm{c}}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\xrightarrow{\mathrm{c}^{\circ} \text { Sunlamp }}{ }^{\circ} \mathrm{C}, 46 \%$ for $\mathbf{1 - 4}, 42 \%$ for $\mathbf{1 - 5}$
${ }^{\text {c }}$ Sunlamp (200 W)

1-4
$\left(\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}_{8}\right)$
$+$

4. $\mathrm{Zn}(10 \mathrm{eq}), \mathrm{AcOH}$ (2.5 eq)
$\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 65 \%$

$$
\begin{gathered}
1-5 \\
\left(\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}_{8}\right)
\end{gathered}
$$

2

NBS

AIBN

$$
\overbrace{-}^{N^{\prime}} \overbrace{}^{(\text {cyclohexene oxide })}
$$

TBAF

TPP

DDQ

TPAP

Problem Session (2) -Answer-

Topic: Bis-steroidal Pyrazine Natural Product
Cephalostatin:
isolated from marine tube worm Cephalodicsus gilchristi ${ }^{11}$
20 compounds were isolated (cephalostatin 1 to 20) ${ }^{1,2)}$
bioactivity: anticancer

Total syntheses:
Fuchs' group (1998, 1999) ${ }^{3,4)}$
Shair's group (2010) ${ }^{5}$
Tian's group (2011) ${ }^{6}$) <- problem 1
For total synthesis by Fuchs' group in 1998, see also 100605_LS_Ken_Mukai.
For total synthesis by Shair's group, see also 181027_PS_Takumi_Fukuda.
Common features in total synthesis:

- Late-stage pyrazine construction

Coupling reaction with western half and eastern half was performed after each fragment was synthesized.

Total syntheses:
Fuchs' group ${ }^{7,8)}(1995, \underline{2005})$
<- problem 2

Same starting material

Of all total syntheses of cephalostatin, hecogenin was used as a starting material (except for eastern half by Shair's group).
(Hecogenin already has A/B/C-ring system of western half and eastern half.)

Related compound: ritterazine
isolated from marine tunicate Ritterella tokioka ${ }^{1)}$
26 compounds were isolated (ritterazine A to $Z)^{1}{ }^{1}$
bioactivity: anticancer

Total synthesis:
isolated in 19951)
Reisman's group ${ }^{9)}$ (2020)
cancer grouth inhibitory activity $E D_{50}: \sim 0.17 \mathrm{nM}$
'one of the most powerful cancer cell growth inhibitors ever tested' ${ }^{13}$

1) Moser, B. R. J. Nat. Prod. 2008, 71, 487.
2) Pettit, G. R.; Xu, J.-P.; Chapuis, J.-C.; Melody, N. J. Nat. Prod. 2015, 78, 1446.
3) T. G. LaCour, C. Guo, S. Bhandaru, M. R. Boyd, P. L. Fuchs, J. Am. Chem. Soc. 1998, 120, 692.
4) S. Kim, S. C. Sutton, C. Guo, T. G. LaCour, P. L. Fuchs, J. Am. Chem. Soc. 1999, 121, 2056.
5) K. C. Fortner, D. Kato, Y. Tanaka, M. D. Shair, J. Am. Chem. Soc. 2010, 132, 275.
6) (a) Shi, Y.; Jia, L.; Xiao, Q.; Tang, X.; Wang, D.; Li, M.; Ji, Y.; Zhou, T.; Tian, W.-S. Chem. Asian. J. 2011, 6, 786.;
(b) Shi, Y.; Xiao, Q.; Lan, Q.; Wang, D.-H.; Jia, L.-Q.; Tang, X.-H.; Zhou,T.; Li, M.; Tian, W.-S. Tetrahedron 2019, 75, 1722.
7) (a) Jeong, J. U.; Sutton, S. C.; Kim, S.; Fuchs, P. L. J. Am. Chem. Soc. 1995, 117, 10157.; (b) Jeong, J. U.; Guo, C.; Fuchs, P. L. J. Am. Chem. Soc. 1999, 121, 2071.
8) Lee, J. S.; Fuchs, P. L. J. Am. Chem. Soc. 2005, 127, 13122.
9) Nakayama, Y.; Maser, M. R.; Okita, T.; Durbrovskiy, A. V.; Campbell, T. L.; Reisman, S. E. J. Am. Chem. Soc. 2021, 143, 4187.

Reaction mechanism:

* cyclohexene oxide was added as an acid scavenger.

(cyclohexene oxide)

1-5: 1-20 ~ $1: 1.1$

discussion 2
difference between 2 diasteromers

1-4 (only from 1-20) \square step 3

1-27
hydrolysis

Higher temperature will be needed to procede migration

1-28 (stable)

Steric repulsion between lone pair and H atom is smaller.

Steric repulsion between $\mathrm{C}-\mathrm{C} \pi$ bond and H atom is larger.
-> More unstable than 1-5

O-O bond cleavage proceeded at lower temperature

1-29

* Major diastereomer is described below.

1) Oku, A.; Kinugasa, M.; Kamada, T. Chem. Lett. 1993, 165.

Oxidation mechanism of TPAP

2-2-C
(1 anomeric effect)

2-2-D
(1 anomeric effect)

Considering steric repulsion between two quaternary carbon (C13 and C22), C20-C22 bond should be vertical to olefin bond. Thus 2 confomers (2-1-0 ${ }^{\circ}$ and 2-1-180 ${ }^{\circ}$) need to be consider when discusssing stereoselectivity.

