1-1. Reaction mechanism

Chang, Y.; Ma, X.; Shao, H.; Zhao, Y. Org. Lett. 2021, 23, 9659.

$$
\rightarrow \text { more stable } \quad-2-
$$

1-2. Discussion 1: carbometalation

large steric repulsion

1-5

D-2
not obtained

1-3. Discussion 2: The role of $\mathrm{Ag}(\mathrm{I})$

Generally, $\mathrm{Ag}(\mathrm{I})$ additives give us three benefits.
(1) To increase the reaction rates
(2) To prevent deactivation of the palladium catalyst
(3) To minimize alkene isomerization of the product
(1)~(3) : due to the accelation of reductive elimination

Dounay, B.; Overman, L. Chem. Rev. 2003, 103, 2945

In addition to general benefits, it is thought that AgOTf worked to facilitate the nucleophilic addition in this case.

Without AgOTf (neutral pathway)

With AgOTf (cationic pathway)

1-6

$1-7$

Xu, L.; Wang, C.; Gao, Z.; Zhao, Y. J. Am. Chem. Soc.. 2018, 140, 5653.

Discussion 2:

Xu, L.; Wang, C.; Gao, Z.; Zhao, Y. J. Am. Chem. Soc.. 2018, 140, 5653.

step 2

2-16

Discussion 2: electrophilic aromatic substitution
\qquad

2-17

2-19
step 3

$-\mathrm{H}^{+}$

2-2. Discussion 1: carbometalation
The comparsion of two palladium-catalyzed cascade cyclizations

\rightarrow From this comparsion, three questions arise.
Question A: What controls the stereoselectivity?
Question B: What makes the material balance of (1) worse?
Question C: What is the role of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ in (1)?
2-2-1, Question A: What controls the stereoselectivity?
(1)

(2)
large steric repulsion

Question A: What controls the stereoselectivity?
\rightarrow The steric constraints surrounding the alkene diastereofaces.

2－2－2，Question B：What makes the material balance of（1）worse？
（1）

D－11
deco
pathwosition
pathway
decomposition
辻二郎；有機合成化学協会誌，2005，vol．63，No．5， 539

Another decomposition pathway from D－6

D－6
D－6＇
D－14
．．．distorted ring structure

Question B：What makes the material balance of（1）worse？
\rightarrow The intermediate D－6，D－7 are decomposable due to its good leaving group．

2-2-3, Question C: What is the role of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ in (1)?

- The authors reported that standard palladium-catalyzed conditions (without $\mathrm{Ag}_{2} \mathrm{CO}_{3}$) were examined, but only 2-3 was obtained (the yield was not reported).

with $\mathrm{Ag}_{2} \underline{C O}_{3}$ (cationic pathway)

\downarrow		
	CH activation fast	
$\mathbf{2 - 3}$		$\mathbf{2 - 2}$
21%		13%

- Ag divers the heck reaction from a neutral pathway to a cationic one.
In the cationic pathway, CO insertion and CH activation were facilitated.
without $\underline{A g}_{2} \underline{C O}_{3}$ (neutral pathway)

2-3
(thermodynamically stable) single diastereomer

- CO insertion and CH activation were slow.

Therefore, the equilibrium between D-16 and D-17 shifted completely toward D-16.
Dounay, B.; Overman, L. Chem. Rev. 2003, 103, 2945

Question C : What is the role of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ in (1)?
$\rightarrow \mathrm{Ag}_{2} \mathrm{CO}_{3}$ contributes to facilitate CO insertion and CH activation, to obtain 2-2.

2-3. Discussion 2: electrophilic aromatic substitution

Generally, there are two potential mechanisms in the reaction of palladium-catalyzed aryl $\mathrm{Csp}_{2}-\mathrm{H}$ bond functionalization.
(i) Electrophilic Palladation
(ii) Concerted-Metallation Deprotonation (CMD)

I^{-}

$$
]^{\ddagger}
$$

2-17

path (ii): CMD
Electron-poor substrates give better reactivity.

Electron-rich substrates give better reactivity.

2-19

- Substrate Scope of Palladium-Catalyzed Cascade Annulation

Author's opinion

Electron-withdrawing groups on the aromatic ring dramatically reduced the yield \rightarrow path (i) electrophilic palladation is thought to be appropriate.

2-4. Discussion 3: acetal formation

(2) step 2

2-13
|||

2-13'

2-14
81\% (brsm)

