(1)

1-1

1. $\operatorname{DMDO}(1.25 \mathrm{eq}), \mathrm{CH}_{2} \mathrm{Cl}_{2},-10^{\circ} \mathrm{C}$ then $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(1.3 \mathrm{eq}), 0^{\circ} \mathrm{C}, 85 \%$
2. $\mathrm{Li}(50+50 \mathrm{eq}), s-\mathrm{BuOH}(70+50 \mathrm{eq})$ liq. $\mathrm{NH}_{3},-78^{\circ} \mathrm{C}$ to $-30^{\circ} \mathrm{C}$
3. HCl aq. (7.5 eq), $\mathrm{MeOH}, \mathrm{rt}, 70 \%$ (2 steps)
4. $\mathrm{H}_{2}(1 \mathrm{~atm})$, Rh/alumina (0.1 eq), MeOH rt, 97\%
5. DL-proline (12 eq), $(\mathrm{COOH})_{2}$ (12 eq) $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{eq})$, DMSO, $100^{\circ} \mathrm{C}, 64 \%$

1-2 (major) (diastereomixture at ${ }^{*}, \mathrm{dr}=3: 1$)

1-1. Reaction mechanism ${ }^{1)}$

> 1-2
> step 5

1-2. Discussion 1: Stereoinversion of tertiary alcohol
1-2-1. Proposed mechanism by Shenvi group ${ }^{2)}$

1-2-2. Stereoinversion via intramolecular cyclization
1-2-2-1. $S_{N} 2$ reaction and $S_{N} 1$ reaction

- $\mathrm{S}_{N} 2$ reaction

Stereoinvertive reaction

- $\mathrm{S}_{N} 1$ reaction

Stereoablative reaction

1-2-2-2. Stereoinversion via intramolecular cyclization by Cook's group ${ }^{3)}$

In the case of secondary alcohol, stereochemistry was almost completely inverted.
It is suggested that $S_{N} 2$-type reaction proceeded.
On the other hand, when tertiary alcohol was used as a reactant, racemization partially occurred and the ee was relatively lower, which indicated that $S_{N} 1$-type reaction should be considered. In this reaction, when the contact ion pair was generated, the intramolecular 5-exo-type cyclization would proceed faster than the ion pair dissociated. Therefore, $\mathbf{D}-16$ was synthesized with good enationselectivity.

In this conversion of tertiary alcohol to isonitrile, $S_{N} 1$-type reaction from contact ion pair should be dominant. Solvent amount of TMSCN would be important for the fast nucleophilic attack to achieve the stereoinversion.

2-1. Reaction mechanism ${ }^{4)}$

2-23

2-30

2-24

2-26

2-27

2-2. Discussion 1: stereoselectivity

2-3. Discussion 2: mechanism of further reduction of 2-6 (see also 210911_PS_Takahiro_Watanabe ${ }^{5}$) Based on Holland's report ${ }^{6)}$, there are 3 proposed pathways.
(a) stepwise ET/PT pathway

(b) Concerted Proton-coupled Electron Transfer (CPET) pathway

2-6

- $\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}$

2-10
(c) Intramolecular proton transfer to O-bond ester enolate pathway

According to the DFT calculation by Holland et al., the activation energy of path (a) is much greater than that of path (b) and path (c). Therefore, path (b) and (c) should be considered.
Considering the chelation of Fe to the aldehyde, path (c) should be more plausible.

2-4. Discussion 3: stereoselectivity

2-5. Discussion 4: epimerization at C9

(1) before epimerization
(2) after epimerization
(a) attack from α face
(b) attack from β face
(a) attack from α face
(b) attack from β face

TS-4A

TS-4B

TS-4D

undesired

undesired

TS-4C

2-20

undesired

Reference

1) Karns, A. S.; Ellis, B. D.; Roosen, P. C.; Chahine, Z.; Roch, K. G. L.; Vanderwal, C. D. Angew. Chem., Int. Ed. 2019, 58, 13749-13752.
2) Pronin, S. V.; Reiher, C. A.; Shenvi, R. A. Nature. 2013, 501, 195-199
3) Marcyk, P. T.; Jefferies, L. R.; AbuSalim, D. I.; Pink, M.; Baik, M. H.; Cook, S. P. Angew. Chem., Int. Ed. 2019, 58, 1727-1731.
4) Thomas, W. P.; Pronin, S. V. J. Am. Chem. Soc. 2022, 144, 118-122
5) 210911_PS_Takahiro_Watanabe_total_synthesis_of_pseudocopsinine
6) Kim, D.; Rahaman, S. M. W.; Mercado, B. Q.; Poli, R.; Holland, P. L. J. Am. Chem. Soc. 2019, 141, 7473-7485
