Problem Session (2) -Answer-

Topic: Recent total synthesis by Prof. Tuoping Luo

2005 :B.S. in Chemistry, College of Chemistry and Molecular Engineering, Peking University (Prof. Zhen Yang)
2005-2011 :Ph.D. in Chemistry, Department of Chemistry and Chemical Biology, Harvard University; Chemical Biology Program, Broad Institute (Prof. Stuart L. Schreiber)
2011-2013 :Postdoctoral Fellow, H3 Biomedicine Inc., (Dr. John Yuan Wang)
2013-2019 :Assistant professor, College of Chemistry and Molecular Engineering, Peking University
2019- :Associate professor, College of Chemistry and Molecular Engineering, Peking University
Total synthesis:

(-)-triptonide
J. Am. Chem. Soc. 2022, 144, 2292-2300.

(-)-oridonin
J. Am. Chem. Soc. 2019, 141, 20048-20052. 200613_PS_Shimizu_Shinzuke

(-)-4-epi-Galiellalactone
Org. Biomol. Chem. 2019, 17, 1886-1892.
problem 1

(-)-batrachotoxinin A J. Am. Chem. Soc. 2020, 142, 3675-3679.

(-)-vinigrol
J. Am. Chem. Soc. 2019, 141, 3440-3443.

191207 LS_Yuto_Hikone_(-)-Vinigrol

(-)-Grayanotoxin III
J. Am. Chem. Soc. 2022, 144, 5268-5273.
problem 2
1.

1. $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1.5 \mathrm{eq}), 1-2(1.5 \mathrm{eq})$, toluene, 0 to $25^{\circ} \mathrm{C}, 43 \%$
(2 steps from previous alkylation)
2. $\mathrm{NaH}(1.5 \mathrm{eq}), 1-3(1.5 \mathrm{eq}), \mathrm{THF}, 0$ to $25^{\circ} \mathrm{C}, 63 \%$

3. 9-BBN (3 eq), THF, 0 to $25^{\circ} \mathrm{C}$ then $\mathrm{EtOH}, 6 \mathrm{M}$ aq. $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}, 0^{\circ} \mathrm{C}$
4. $\operatorname{DMP}(1.5 \mathrm{eq}), \mathrm{NaHCO}_{3}(4 \mathrm{eq}), \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0$ to $25^{\circ} \mathrm{C}, 74 \%$ (2 steps)
5. $\mathrm{TMS}_{3} \mathrm{SiH}(2 \mathrm{eq})$, AIBN (0.25 eq), toluene, $85^{\circ} \mathrm{C}, 86 \%$

6. $h v(254 \mathrm{~nm}), \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 9 \mathrm{~h}$ then additional 12 h without irradiation, 63%

1-1

1-2

1-3

9-BBN

DMP

Lu, Y.; Zhao, S.; Zhou. S.; Chen, S.-C.; Luo, T. Org. Biomol. Chem. 2019, 17, 1886-1892.

1-1

1-2'

1-2' can approach to ketone either from upper face or down face.
|||

1-2' approaches to ketone with minimizing gauch interaction in the transition states. So, H is antiperiplanar to O atom. The energy of TS-1-1-b is higher than TS-1-1-a because of large steric repulsion between CO_{2} Et and alkyl group.

2. Ring expansion

Rearrangement might occur either by 1-5 and 1-5', of which orbital orverlap are good.
The energy of TS-1-5' is higher than TS-1-5 because large $\mathrm{CO}_{2} \mathrm{Et}$ overlaps with 5 -membered ring in TS-1-5'.

TS-1-16' is more favourable because dipole interaction is smaller than the other.
And also, there is large steric repulsion between ethoxy methyl group and silyl group in TS-1-16".

Kong, L.; Yu, H.; Deng, M.; Wu, F.; Jiang, Z.; Luo, T. J. Am. Chem. Soc. 2022, 144, 5268-5273.

Discussion 2-1: asymmetric Mukaiyama aldol reaction

1. Catalytic cycle

$(+)-\mathbf{A}$ is highly reactive Lewis acid complex due to the hydrogen bond between the catalyst and triflate anion. ${ }^{3)}$

2. Conformation of the catalyst during Mukaiyama aldol reaction

The largest R group should be vertical to $\mathrm{C}-\mathrm{N}$ and $\mathrm{N}-\mathrm{H}$ bond of the catalyst, so conformation 2-21' or 2-21" are more stable than other conformations.
Among 2-21' and 2-21", 2-21' is less stable due to large steric repulsion.
So the reaction proceeds by 2-21".

3. Stereoselectivity

The lowest energy transition state of $[4+3]$ cycloaddition catalyzed by catalyst B, according to DFT calculation. Hydrogen bond between furan and amide moiety of the catalyst, and also between oxyallyl fragment and triflate anion are associated.

Banik, S. M.; Levina, A.; Hyde, A. M.; Jacobsen, E. N. Science. 2017, 358, 761-764.
In this reaction, $\mathrm{CH}-\mathrm{O}$ interaction between oxocarbenium ion and electron rich amide moiety ${ }^{4}$) of the catalyst, and cation- π interaction between oxocarbenium ion and 1-pyrenyl group seems to play an important role. * $\mathrm{CH}-\mathrm{O}$ interaction is classified as one of weak hydrogenbonds.

2-22'
large 1,3-allylic strain
Among 2-22 and 2-22', 2-22 is more favourable because of large 1,3-allylic strain in 2-22'. - spacial arrangement of the catalyst and oxocarbenium ion

2-23

--- hydrogen bond
--- cation-m interaction
-- - CH-O interaction

Due to cation-m interaction and $\mathrm{CH}-\mathrm{O}$ interaction between oxocarbenium ion and the catalyst, spacial arrangement of oxocarbenium ion and the catalyst is fixed either of 2-23 and 2-23'.
There is large steric repulsion between 1-pyrenyl group and acetyl group, so 2-23 is less favourable than 2-23'. Because β-face of oxocarbenium ion is shielded by 1-pyrenyl group, silyl enol ether approaches from α-face.

- aldol reaction

Silyl enol ether can't form a chelate, so 6-membered ring transition state doesn't need to be considered. Path b and path c is unfavourable because5-membered ring of oxocarbenium ion overlaps with 6membered ring of silyl enol ether in TS-2-23-b B and TS-2-23'-c.
Among path a and path d, path d is more favourable because there is large steric repulsion between 1 pyrenyl group and acetyl group in TS-2-23-a.

Reference

1. Brook. M. A.; Balduzzi. S.; Mohamed. M.; Gottardo. Tetrahedron. 1999, 55, 10027-10040.
2. Molander. G. A.; Biolatto. B. J. Org. Chem. 2003, 68, 4302-4314.
3. Banik. S. M.; Levina. A.; Hyde. A. M.; Jacobsen. E. N. Science. 2017, 358, 761-764.
4. Strassfeld. D. A; Algera. R. F.; Wickens. Z. K.; Jacobsen. E. N. J. Am. Chem. Soc. 2021, 143, 9585-9594.
