Ferroptosis Inducer

Literature Seminar D3 Miura Kensuke

Outline

- Introduction of Ferroptosis
- Main Paper

nature chemical biology

ARTICLES

https://doi.org/10.1038/s41589-018-0031-6

FINO₂ initiates ferroptosis through GPX4 inactivation and iron oxidation

Michael M. Gaschler^{1,9}, Alexander A. Andia^{2,9}, Hengrui Liu¹, Joleen M. Csuka³, Brisa Hurlocker², Christopher A. Vaiana², Daniel W. Heindel², Dylan S. Zuckerman², Pieter H. Bos¹, Eduard Reznik³, Ling F. Ye³, Yulia Y. Tyurina⁴, Annie J. Lin³, Mikhail S. Shchepinov⁵, Amy Y. Chan², Eveliz Peguero-Pereira², Maksim A. Fomich⁷, Jacob. D. Daniels⁸, Andrei V. Bekish⁶, Vadim V. Shmanai¹, Valerian E. Kagan⁴, Lara K. Mahal², K. A. Woerpel^{2*} and Brent R. Stockwell^{1,3*}

Outline

- Introduction of Ferroptosis
- Main Paper

nature chemical biology

ARTICLES

https://doi.org/10.1038/s41589-018-0031-6

FINO₂ initiates ferroptosis through GPX4 inactivation and iron oxidation

Michael M. Gaschler^{1,9}, Alexander A. Andia^{2,9}, Hengrui Liu¹, Joleen M. Csuka³, Brisa Hurlocker², Christopher A. Vaiana², Daniel W. Heindel², Dylan S. Zuckerman², Pieter H. Bos¹, Eduard Reznik³, Ling F. Ye³, Yulia Y. Tyurina⁴, Annie J. Lin³, Mikhail S. Shchepinov⁵, Amy Y. Chan², Eveliz Peguero-Pereira², Maksim A. Fomich⁷, Jacob. D. Daniels⁸, Andrei V. Bekish⁶, Vadim V. Shmanai¹, Valerian E. Kagan⁴, Lara K. Mahal², K. A. Woerpel^{2*} and Brent R. Stockwell^{1,3*}

Prof. Brent R. Stockwell

1994: A. B. University of Cornell

1999: Ph. D. Harvard University (Prof. Stuart L. Schreiber)

1999-2003: Research Fellow. Whitehead Institute (Prof. Stan Fields)

2004-: Assistant Professor/ Professor. University of Columbia

Research topics: Probong cell death mechanism with small molecules and genomic tools, Ferroptosis

New Type of Cell Death Induced by Erastine

Erastin: identified as a compound having a lethal effect on RAS expressing cancer cells

manner of cell death was different from what had been seen before. no nuclear morphological changes, DNA fragmentation (nonapoptotic)

Discovery of Ferroptosis

Cell death induced by erastin and RSL3 was inhibited by iron chelators.

→Ferroptosis ("Ferr" + "optosis")

- 1) Lemmon, A. M.; Schlessinger, J. Cell, 2010, 141, 1117
- 2) Volinsky, N.; Kholodenko, B. N. Cold Spring Harb. Perspect. Biol. 2013, 5, a009043

Reactive Oxygen Species (ROS)

iron-mediated generation of ROS: Fenton reaction

$$Fe^{2+}$$
 + H_2O_2 \longrightarrow Fe^{3+} + •OH + OH

ROS generate lipid peroxidation products

Lipid Oxidation

substrate: polyunsaturated fatty acid (PUFA)

Lipid oxidation

initiation of lipid oxidation was conducted by ROS or lipidoxygenase (LOX)

initiation of lipid oxidation by ROS

7

Regulatory System of Ferroptosis

Mode of Action of Erastin and RSL3

Programed Cell Death for Cancer Therapy

Targeting other forms of non-apoptotic cell death has become a new treatment approach to eliminate cancer cells and reduce the drug resistance of cancer cells

Ferroptosis has a potential for cancer treatments

Class of Ferroptosis Inducer

Class 1: System Xc⁻ Inhibitors

Class 2: GPX4 inhibitors

11

Natural Product Inducing Ferroptosis

FINO2 selectively induces cell death in Bj-eLR cancer cells compared to the isogenic, non cancerous BJhTERT

Outline

- Introduction of Ferroptosis
- Main Paper

nature chemical biology

ARTICLES

https://doi.org/10.1038/s41589-018-0031-6

FINO₂ initiates ferroptosis through GPX4 inactivation and iron oxidation

Michael M. Gaschler^{1,9}, Alexander A. Andia^{2,9}, Hengrui Liu¹, Joleen M. Csuka³, Brisa Hurlocker², Christopher A. Vaiana², Daniel W. Heindel², Dylan S. Zuckerman², Pieter H. Bos¹, Eduard Reznik³, Ling F. Ye³, Yulia Y. Tyurina⁴, Annie J. Lin³, Mikhail S. Shchepinov⁵, Amy Y. Chan², Eveliz Peguero-Pereira², Maksim A. Fomich⁷, Jacob. D. Daniels⁸, Andrei V. Bekish⁶, Vadim V. Shmanai¹, Valerian E. Kagan⁴, Lara K. Mahal², K. A. Woerpel^{2*} and Brent R. Stockwell^{1,3*}

Ferroptosis Induced by FINO2

supression of lethality of FINO2 by ferroptosis inhibitor →induction of ferroptosis by FINO2

Ferroptosis Induced by FINO2 (2)

supression of oxidaton by iron cherator →iron dependency of lipid peroxidation

Mechanistic Study of FINO2 Comparing Erastin

CHAC1: gene encoding GSH specific γ-glutamylcyclotransferase enzyme

Induction of different transcriptioinal responses than erastin

FINO2 does not display the charactaristic functional or genetic hallmarks of a class 1 ferroptosis inducer

Inhibition of GPX4 by FINO2

- 1. preincubation with compounds
- 2. cell lysis

- extracted with chroloform/MeOH
- s. incubation with PCOOH and GSH 2. LC-MS analysis for quantification of PCOOH

PCOOH was detected in the case of incubation with GPX4 inhibitor →FINO2 inhibited the activity of GPX4

Indirect Interaction with GPX4 (1)

HSQC spectrum of GPX4 did not change with FONO2→indirect inhibition of GPX4

Indirect Interaction with GPX4 (2)

bypassing xc⁻ system and increasing intracellular cysteine availability

FINO2 induces ferroptosis in different mechanism other than calss 1 and class2 ferroptosis inducer

SAR study was conducted to determine functional group required for inducing ferroptosis

19

SAR Study of FINO₂ (1)

SAR study was conducted to determine functional group required for inducing ferroptosis

>100 µM, all cells

>100 µM, all cells

>100 µM, all cells

>100 µM, all cells

FINO₂ 20 µM, CHK-1 11 µM, BJ-eLR 23 µM, BJ-hTERT

The activities of nonperoxide derivatives were significantly lower than FINO2. →The peroxide moiety was essential for the induction of ferroptosis.

SAR Study of FINO₂ (2)

- · t-Bu group and spirobicyclic core structure is not required
- The hydroxy portion of FINO2 must be present and have a specific spacitial relationship to the peroxide.

Direct Oxidation of Fe(II) (1)

Degradation of FINO2: Fenton reaction

$$t$$
-Bu t -Bu

Iron oxidation by FINO2 is accompanied by a degradation of endoperoxide. The selectivity of iron oxidation by FINO2 is higher than analogues and artemisnin

→oxidation of iron might be important to ferroptosis induced by FINO2

Direct Oxidation of Fe(II) (2)

Lipid Oxidation by FINO2

Deuteration at bis-allylic position→kinetic isotop effect in lipooxygenase enzymes

suppresion of ferroptosis→dependent on oxidation by ALOX

Ferroptosis induced by FINO2 does not require ALOX peroxidation

Remaining Question

Mechanism of indirect GPX4 inactivation

The increased activity of one enantiomer

→FINO2 might have a specific protein interaction necessary for its activity

Summary

FINO₂ induces ferroptosis by

1. direct oxidation of ferroptosis-relevant substrates

- 2. indirect GPX4 inactivation
- no degradation of GPX4
- neither an allosteric nor active site ligand of GPX4

- FINO2 is a new class of ferroptosis inducer
- Undetected targets of FINO2 may be important regulators of ferroptosis

26