Topic: Problem 1. Interconversions of ent-kaurane, ent-trachylobane, ent-atiserane diterpenoids via a common precusor. Problem 2. Synthesis of Spiromeroterpenoids: chermesin B

3. $\mathrm{CH}_{3} \mathrm{PPhBr}$ (5.0 eq.), $\mathrm{NaN}(\mathrm{TMS})_{2}$ (4.5 eq.), THF, $0^{\circ} \mathrm{C}$ to rt, 90%
4. 1 M aq. HCl (0.6 eq.), acetone, $20^{\circ} \mathrm{C}, 5 \mathrm{~h}, 87 \%$
5. $\mathrm{NH}_{2} \mathrm{NH}_{2}, \mathrm{KOH}$ (150 eq.), diethyl glycol, $210^{\circ} \mathrm{C}$

1-5
6. $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 62 \%$ for 2 steps
7. Dess-Martin periodinane (1.5 eq.), NaHCO_{3} (3.0 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 82 \%$
8. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ (1.1 eq.), benzene, rt; $\mathrm{NaOH}, \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(9: 1)$, rt, 51%

ent-16 α-hydroxy-atisane-3-one

Xu, Z.; Zong, Y.; Qiao, Y.; Zhang, J.; Liu, X.; Zhu, M.; Xu, Y.; Zheng, H.; Fang, L.; Wang, X.; Lou, H. Angew. Chem. Int. Ed. 2020, 59, 19919.

Answer 1

Regioselectivity:

1-1

 step 1

*The lithium counterpart of 1-2 is a planar structure and the electrophilic reaction site of 1-1 is methylene group, which led to a poor selectivity (3:2). HMPA can solvate K^{\oplus}, enabling oxygen anion more nucleophilic.

There's no chance for C9 epimerization.

1-19a
|tautomerization

1-5

phyllocladene-type
*The De Mayo reaction is reckoned as a stepwise cycloaddition reaction (page 3). Herein I draw the concerted transition state just for easy looking of the conformations. The stereochemical result won't be different in this ring system.
**In this step, Lewis acid catalyzed retro-aldol reaction occurred.
Because the newly formed tricyclo-system is too rigid for cyclopentanone to adopt typical envelope conformation, which might cause inadequate overlap of π orbital and σ orbital.
${ }^{* * *}$ Yields from 3:2 mixtures of 1-3 and 1-4

Brief mechanistic introduction of De Mayo reaction.

ground state a excited singlet stat
for α, β-unsaturated lactams and lactones
at around 250 nm excitation wavelengths.

1-23
triplet exciplexes
(excited complexes)

1-24
triplet 1,4-biradical and or other isomers

Evidence for regioselectivity of olefin [2+2] photocycloaddition reaction (De Mayo reaction).
DFT calculations (B3LYP/6-31G(d)) demostrates that the intermediate 1-3-TSa with kaurane-type skeleton is favored both kinetically and thermodynamically compared to the phyllocladene-type skeleton intermediate.

1-29

1-30

$\xrightarrow{-\mathrm{H}_{2} \mathrm{O}}$

> ROH = diethyl glycol

Discussion 1: Nucleophilic cyclopropanation

Table 1

entry	Conditions	yields		
		A	B	C
1	1 M aq. $\mathrm{HCl}\left(2.0\right.$ eq.) , acetone $(0.02 \mathrm{M}), 20^{\circ} \mathrm{C}, 5 \mathrm{~h}$		43%	38%
2	1 M aq. $\mathrm{HCl}(0.6$ eq.), acetone (0.02 M$), 20^{\circ} \mathrm{C}, 2 \mathrm{~h}$	69%	20%	
3	1 M aq. $\mathrm{HCl}(0.6$ eq.), acetone (0.02 M$), 20^{\circ} \mathrm{C}, 5 \mathrm{~h}$		87%	

proton can hardly approach from concave face

$\mathrm{H}_{2} \mathrm{O}$ plays a key role in the selectivity of reaction pathway.
In the acidic condition, there are always equilibrium between I and II, IV and V.
More equivalent aq. HCl increases the oppotunity of enol ether hydrolysis.
Less anount of aq. HCl allowed enol ether to act as nucleophile toward cation.

Discussion 2: Mechanism of acid catalyzed cyclopropane ring opening
Regio-stereoselectivity: acid-catalyzed rupture of cyclopropane results in the cleavage of the most substituted carboncarbon bond in preference to form more substituted carbon cation (Markovnikov rule).

Stereo-selectivity:

cleavage of $\mathrm{C} 12-\mathrm{C} 13$ or $\mathrm{C} 12-\mathrm{C} 16$

Carbon bonds $\mathrm{C}_{12}-\mathrm{C}_{16}$ and $\mathrm{C}_{13}-\mathrm{C}_{16}$ are more basic than $\mathrm{C}_{12}-\mathrm{C}_{13}$ due to more substituted Methyl group at C_{16}.
Protonation of $\mathrm{C}_{13}-\mathrm{C}_{16}$ is more favorable because the paths for $\mathrm{C} 12-\mathrm{C} 16$ protonation would encounter steric repulsion of concave face.
$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ can also act as a whole for the protonation of cyclopropane.

2.

(1.2 eq.)

1. n - BuLi (1.0 eq.) $-78^{\circ} \mathrm{C}, 2 \mathrm{~min}$; t-BuLi (2.2 eq.), rt; 2-2 $\xrightarrow[83 \%]{\text { pentane/ether (3:2), rt }}$
2. MnO_{2} (10 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 67-75 \%{ }^{*}$)
3. $\mathrm{Fe}(\mathrm{acac})_{3}$ (0.2 eq.), PhSiH_{3} (2 eq.), $\mathrm{EtOH}, 60^{\circ} \mathrm{C}, 88-95 \%^{*}$)
4. IBX (3.0 eq.), $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ (1.2 eq.), MS 4A, DMSO, $80^{\circ} \mathrm{C}, 72 \%$
5. I_{2} (1.1 eq.), $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}\right]$ (1.1 eq.), $\mathrm{MeCN}, 0^{\circ} \mathrm{C}, 84 \%$
6. $\mathrm{Pd}(\mathrm{OAc})_{2}$ (0.1 eq .), SPhos (0.2 eq.), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (4.0 eq .),
$\mathrm{MeB}(\mathrm{OH})_{2}$ (5 eq.), $\mathrm{H}_{2} \mathrm{O}$ (10 eq.), toluene, $80^{\circ} \mathrm{C}, 95 \%$
7. $\xrightarrow{(\mathrm{PhSeO})_{2} \mathrm{O}\left(2.0 \text { eq.), } \mathrm{NaHPO}_{4} \text { (3.0 eq.), } \mathrm{MS} 4 \mathrm{~A}, \mathrm{PhCl}, 100^{\circ} \mathrm{C} ; \mathrm{HCl}, 86 \%\right.}$

2-3
\longrightarrow

chermesin B
Yang, F.; Jr, J. A. P. J. Am. Chem. Soc. 2022, 144, 12970-12978.
Answer 2

The axial methyl group inhibit the approaching of lithium species from up face.

Kim, D.; Rahaman, S. M. W.; Mercado, B. Q.; Poli, R.; Holland P. L. J. Am. Chem. Soc. 2019, 141, 7473-7485.

Wei, C. S.; Davies, G. H. M.; Soltani, O.; Albrecht, J.; Gao, Q.; Pathirana, C.; Hsiao, Y.; Tummala, S.; Eastgate, M. D.

Discussion 3: Selectivities of intramolecular HAT reaction
2.1 Precedent work by the Yang group

2.1.1 Deuterium labeling studies

Which hydrogen was grabbed intramoleculartly?

2.1.2 Rationale for face selectivity of radical intermediate.

Chair-like conformation radical intermediate dominated.

2.1.3 Control experiment

The protons at the C1 and C3 positions can be abstracted intramolecularly largely due to the acitivation of carbonyl group.

2.2 Applicable to this case.
2.2.1 Consideration of transitions state and product conformations

Methyl group hinders the H to be seized

2.2.2 Deuterium labeling studies

Only proton at the C5 was abstracted other than C^{\prime} '.

2.2.3 Rationale for hydrogen selectivity

Less stable conformer led to the major product: the reaction rates are much slower than the rate of interconversion, ($\Delta \mathrm{GAB}$ is small relative to $\Delta \Delta \mathrm{G} 1$ and $\Delta \Delta \mathrm{G} 2$);
The lower energy of boat-like pathway product than chair-like pathway product might explain the exclusive abstraction of proton 5^{\prime}.
The selective proton 5^{\prime} transfer might also benefit from the activation of carbonyl group.
The radical in C might have characteristic of electrophilic radical which might be the reason why it is more stable than D, it might be stabalized by the adajecent carbonyl group.

Boat-HAT pathway
Chair-HAT pathway

DFT calculations at (M06-2X/6-31G(d,p)/PBF .

