Problem session (1)

Please provide the mechanisms for the following reactions.

Problem 1

Problem 2

${ }^{a}$ Two diastereomers were obtained (major one: 54\%, minor one: 22\%). Only the major diastereomer was used for the next reaction.

Grubbs' catalyst 2nd generation

$\mathrm{Tf}_{2} \mathrm{O}$

DAF

Dess-Martin periodinane

1. Problem 1

1-1. Reaction mechanisms

1-2. Discussion 1: Chemoselectivity and diastereoselectivity of intramolecular Diels-Alder reaction

looking from β-face of 1-8

1-8a'
\|

1-8a

1-8a-TS favored

1-9a
= 1-9 in page 2 obtained
looking from α-face of 1-8

1-8b'

1-8b
i
i

1-8b-TS

looking from α-face of 1-8

too far to react
1-8c'
$\|$

1-8c

1-8c-TS

1-9c
NOT obtained

${ }^{a}$ Two diastereomers were obtained (major one: 54%, minor one: 22%). Only the major diastereomer was used for the next reaction.
Nie, W.; Gong, J.; Chen, Z.; Liu, J.; Tian, D.; Song, H.; Liu, X-Y.; Qin, Y. J. Am. Chem. Soc. 2019, 141, 9712.
2-1. Reaction mechanisms

2-2. Discussion 2: Reaction mechanism and diastereoselectivity of aza-Wacker reaction
2-2-1. Reaction mechanism (only major product 2-3 is described)

Amidopalladation occurs in the syn fashion due to the coordination of N to Pd .

2-2-2. Proposed reaction pathway and the advantage of using DAF as a ligand

$\mathrm{Pd}(\mathrm{OAc})_{2}$ ($5 \mathrm{~mol} \%$)
ligand (5 mol\%)

Figure 1. Rates of consumpusion of Ex1-1 during aza-Wacker reaction with various ligand
—> DAF extremely accelerated aza-Wacker reaction.
Table 1. Effect of ligands on aza-Wacker reactivity

entry	ligand	yield
1	none	66%
2	$6,6^{\prime}-\mathrm{Me}_{2}$ bpy	81%
3	$6,6^{\prime}-\mathrm{Me}_{2} \mathrm{bpy}\left(24^{\circ} \mathrm{C}\right)$	40%
4	DAF	97%
5	DAF $\left(24{ }^{\circ} \mathrm{C}\right)$	97%

Experiment 2: Assessment of relative ligand binding strengths of bidentate ligands
(White, P. B.; Jaworski J. N.; Zhu G. H.; Stahl, S. S. ACS Catal. 2016, 6, 3340.)

Albeit lower affinity than pyridine, DAF prefered to form a k^{1}-ligand complex.

Rationale of the results in Experiment 2

(White, P. B.; Jaworski J. N.; Fry, C. G.; Dolinaar, B. S.; Guzei, I. A.; Stahl, S. S. J. Am. Chem. Soc. 2016, 138, 4869.) unligated ligands
angle α
N-N distance

73°
3.10 Å

$\mathrm{N}-\mathrm{N}$ distance
2,2'-bipyridine (bpy)
53°
2.66 Å
*angle a: defined by C2-N and C2'-N bond vectors of the two pyridine ring
ligand complexes of Pd^{11}

DAF (with one atom linker between 3- and 3'- positions of 2,2'-bipyridine)
: The κ^{2}-DAF complex of $\mathrm{Pd}^{\text {ll }}$ Ex2-1 requires contraction of angle α, but κ^{1}-DAF complex Ex2-2 does not. -> K^{1}-DAF complex is more favored than k^{2}-DAF complex.

6,6'- Me_{2} bpy and 2,9-Me ${ }_{2}$ phen (without one atom linker between 3- and 3'- positions of 2,2'-bipyridine, probably showing the similar angle α to 2,2'-bipyridine)
: The angle α of κ^{2}-bpy complex of $\mathrm{Pd}^{\text {l }}$ Ex2-3 is similar to that of unligated bpy.
-> K^{2}-ligand complex is favored.

Conputational study: DFT calculation of aza-Wacker reaction pathway with three bidentate ligands
(White, P. B.; Jaworski J. N.; Zhu G. H.; Stahl, S. S. ACS Catal. 2016, 6, 3340.)
Cationic complex D^{\prime} is unstable in toluene.
-> Authors propose electroneutral κ^{1}-ligand complex \mathbf{D} as an intermidiate.
Using DAF as a bidentate ligand, κ^{2}-ligand complex \mathbf{B} and \mathbf{C} is less stable, and κ^{1}-ligand complex $\mathbf{D}-\mathbf{H}$ is more stable.
-> DAF promotes transition from \mathbf{C} to \mathbf{D}, and lowers ΔE° in $T S \mathbf{E}$ and \mathbf{G}.

-> DAF extremely accelerates aza-Wacker reaction.

2-2-3. Diastereoselectivity

The orientation of allyl group is determined by 1,3-allylic strain.

2-3. Discussion 3: Diastereoselectivity of intramolecular Diels-Aider reaction

Orientation of dienophile is determind by 1,3 -allylic strain.

2-13 $\overline{ }$

2-21
smaller 1,3-allylic strain favored

2-22
larger 1,3-allylic strain disfavored

2-23
larger 1,3-allylic strain disfavored

Diene is placed at the β-side of the dienophile, so approach of diene from the β-face is favored.
-> Stereochemistry at highlighted carbon is ditermined.

2-21'
2-24

Stereochemistries of highlighted carbons are determined by orientation of diene

2-21a

2-21b

2-24a

2-24b

2-21a-TS'
(from 2-21a)
2-21b-TS'
(from 2-21b)

The conformations depicted as 2-21a-TS' and 2-21b-TS' are also possible. However, these transition states are considered to be less stable than 2-21a-TS and 2-21b-TS respectively because of large 1,3-diaxial intractions caused by bulky 4° carbon.

