Please provide the mechanisms for the following reactions.

Problem 1

3. 1-2 (1.5 eq), $\left[\operatorname{lr}\left\{\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right\}_{2}(\mathrm{dtbpy})\right] \mathrm{PF}_{6}$ (0.01 eq) $\mathrm{Ni}(\mathrm{cod})(\mathrm{DQ})(0.03 \mathrm{eq})$
 4,4'-dimethyl-2,2'-bipyridine (0.05 eq) $\mathrm{PPh}_{3}(1.5 \mathrm{eq}), \mathrm{Na}_{2} \mathrm{CO}_{3}$ (2.0 eq) DMF, blue LED, rt, 70\%

4. $\mathrm{K}_{2} \mathrm{CO}_{3}(2.0 \mathrm{eq}), \mathrm{MeOH}, 40^{\circ} \mathrm{C}, 77 \%$

1-3
$\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$
1-4

Problem 2

1. Hoveyda-Grubbs Catalyst 2nd (0.01 eq), toluene, reflux, 86 \%

2. $\mathrm{H}_{5} \mathrm{IO}_{6}(2.0 \mathrm{eq}), \mathrm{AcOEt}, 25^{\circ} \mathrm{C}$
3. 2-2 (1.2 eq), toluene, $100^{\circ} \mathrm{C}$, 83% (over 2 steps)
4. $[\mathrm{RhCl}(\mathrm{cod})]_{2}(0.02 \mathrm{eq}), \mathbf{2 - 3}(1.5 \mathrm{eq}), \mathrm{Et}_{3} \mathrm{~N}(2.0 \mathrm{eq})$ 1,4-dioxane $/ \mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}, 93 \%$
5. DDQ (1.2 eq), $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}$ then DMP (1.2 eq), 85\%
6. hv $(300 \mathrm{~nm}), \mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}(1.0 \mathrm{eq}), \mathbf{2 - 4}(1.0 \mathrm{eq})$ toluene, $25^{\circ} \mathrm{C}, 65 \%$

2-5

$\left[\operatorname{Ir}\left\{\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right\}_{2}(\mathrm{dtbpy})\right] \mathrm{PF}_{6}$

$\mathrm{Ni}(\operatorname{cod})(\mathrm{DQ})$

4,4'-dimethyl-2,2'-bipyridine

Hoveyda-Grubbs Catalyst 2nd

$[\mathrm{RhCl}(\mathrm{cod})]_{2}$

Topic: Photoreactions for Constructing Fused Multicyclic Core Skeleton
Problem 1 Total synthesis of grandilodines A, C, lapidilectine B and lundurine A

3. 1-2 (1.5 eq), $\left[\operatorname{Ir}\left\{\mathrm{dF}\left(\mathrm{CF}_{3}\right) \text { ppy }\right\}_{2}(\mathrm{dtbpy})\right] \mathrm{PF}_{6}(0.01 \mathrm{eq})$ $\mathrm{Ni}(\operatorname{cod})(\mathrm{DQ})$ (0.03 eq) 4,4'-dimethyl-2,2'-bipyridine (0.05 eq) $\mathrm{PPh}_{3}(1.5 \mathrm{eq}), \mathrm{Na}_{2} \mathrm{CO}_{3}$ (2.0 eq) DMF, blue LED, rt, 70\%
4. $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.0 eq), $\mathrm{MeOH}, 40^{\circ} \mathrm{C}, 77 \%$

1-3

Chen, L.; Xie, K.; Zhang, J.; Zu, L. Angew. Chem. Int. Ed. 2022, 61, e202212042

1-2

$$
\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}
$$

1-13 \qquad step 3

Comparative Experiment

Only 1-21 is generated from less hindered substrate 1-20. This fact suggests generating kinetic product is much faster than generating thermodynamic product.

Furthermore, 1-4 was gained from 1-14 converted from 1-21 under the same condition.

Discussion 1 -Enantioselectivity of Dieckmann Condensation-

N -PMB group should be on equatorial side in order to avoid large 1,3-diaxial interaction

The orientation of highlighted S atom and O atom is the same due to Na^{+}chelation. Also, (Z)-enolate will be generated preferentially to avoid repulsion. To understand the enantioselectivity, two possibilities of proton abstraction $\left(\mathrm{H}_{\mathrm{a}}\right.$ or $\left.\mathrm{H}_{b}\right)$ should be discussed.

1. Deprotonation of H_{a}

2. Deprotonation of H_{b}

The isopropyl groups face the opposite side of each other. Therefore, generating 1-10 is favorable.

Discussion 2 -Ir, Ni-catalyzed Regioselective Acylation-

2-1 Proposed catalytic cycle ref3,4

1-3
[*|r ${ }^{\text {III }]: ~} \mathrm{E}_{1 / 2^{\text {red }}}=+1.21 \mathrm{~V}$ vs SCE $\mathrm{Ph}_{3} \mathrm{P}: \mathrm{E}_{1 / 2}^{\text {red }}=+0.98 \mathrm{~V}$ vs SCE
$\left.{ }^{*} \mid r^{\mathrm{II}]}\right]: \mathrm{E}_{1 / 2}{ }^{\text {red }}=+1.21 \mathrm{~V}$ vs SCE
$\mathrm{h}_{3} \mathrm{P}: \mathrm{E}_{1 / 2}{ }^{\text {red }}=+0.98 \mathrm{~V}$ vs SCE

1-24

2-2 Role of $\mathrm{PPh}_{3}{ }^{\text {ref3,4 }}$

- Deoxygenation is usually difficult due to the similar bond dissociation energies of $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bonds.

- The desired reaction did not proceed when PPh_{3} was not added. Once TEMPO was added as radical quencher, 1-37 was only detected. These experiments indicate acyl radical was generated with PPh_{3}.
$\left[\operatorname{Ir}\left\{\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right\}_{2}(\mathrm{dtbpy})\right] \mathrm{PF}_{6}(0.01 \mathrm{eq})$

- The luminescence quenching experiment shows PPh3 can quench [*I ${ }^{\text {II }}$] faster than 1-34.

Luminescence quenching of [${ }^{*} \mid{ }^{[I I}$] by 1-34

Luminescence quenching of [* ${ }^{*}{ }^{[I I}$] by PPh_{3}

- The calculation shows the energy barrier is low and acyl radical 1-39 is more stable than intermediate 1-38.

Problem 2 Total synthesis of periglaucines A-C, N, O-dimethyloxostephine and oxostephabenine

2-1

1. Hoveyda-Grubbs Catalyst 2nd (0.01 eq), toluene, reflux, 86%
2. $\mathrm{H}_{5} \mathrm{IO}_{6}(2.0 \mathrm{eq}), \mathrm{AcOEt}, 25^{\circ} \mathrm{C}$
3. 2-2 (1.2 eq), toluene, $100^{\circ} \mathrm{C}$, 83% (over 2 steps)
4. $[\mathrm{RhCl}(\mathrm{cod})]_{2}(0.02 \mathrm{eq}), 2-3(1.5 \mathrm{eq}), \mathrm{Et}_{3} \mathrm{~N}(2.0 \mathrm{eq})$ 1,4-dioxane $/ \mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}, 93 \%$
5. DDQ (1.2 eq), $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}$ then DMP (1.2 eq), 85%
6. hv (300 nm), Ti(Oi-Pr) ${ }_{4}(1.0 \mathrm{eq}), \mathbf{2 - 4}(1.0 \mathrm{eq})$ toluene, $25^{\circ} \mathrm{C}, 65 \%$

2-5
Ding, S.; Shi, Y.; Yang, B.; Hou, M.; He, H.; Gao, S. Angew. Chem. Int. Ed. 2023, 62, e202214873

2-1

2-8

2-6
2-7

2-11

2-9
$\mathrm{H}_{5} \mathrm{IO}_{6} \rightleftarrows \mathrm{HIO}_{4}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{HIO}_{4} \rightleftarrows \mathrm{H}^{\oplus}+\mathrm{IO}_{4}{ }^{\ominus}$

2-12

2-13

2-14

2-15

HIO_{3}
HCHO

2-10

Discussion 1 -Rh-catalyzed 1,4-addition of Aryl Boronic Acid-

1-1 Proposed catalytic cycle ${ }^{\text {refl, } 8}$

LnRh'OH complex is reported as an active intermediate for transmetallation with organoboronic acids.

1-2 Chemoselectivity and Diastereoselectivity

Discussion 2 - Ti-promoted Diels-Alder Reaction-

2-1 Role of $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr}) 4^{\text {ref9 }}$

- No reaction occurred without irradiation, which indicates photoenolization is crucial for the desired Diels-Alder reaction. Also, Diels-Alder reaction did not proceed without acids. This means the diene generated by photoenolization decomposed before reacting with 2-36.

- The amount of $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}$ strongly affects the yield. Stoichiometric $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}$ is needed for good yields.

Considering these results, $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}$ seems to form complex with dienol and dienophile and stabilizes the dienol.

2-2 Role of the chiral ligand ref10,11

Chiral ligands can accelerate the reaction rate and control the reaction selectivity.

2-3 Selectivity on synthesis of 2-5

2-45 would not be generated due to steric repulsion between Ti complex and acetonide. This kind of limitation arising from steric repulsion is observed in other total synthesis. ref12
2 styles of dienophile approaching are possible. 2-47 should be less stable than desired 2-5 because of its boat conformation highlighted in blue, which leads 2-29E to be converted into 2-5 only.

*acetenide is omitted to simplify

2-30
2-5'
2-5
*acetenide is omitted to simplify

2-46

2-47'

2-47
(not detected)

References: (1) Evans, D. A.; Downey, C. W.; Shaw, J. T.; Tedrow, J. S. Org. Lett. 2002, 4, 1127. (2) Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc. 1982, 104, 1737. (3) Li, Y.; Shao, Q.; He, H.; Zhu, C., Xue, X. S.; Xie, J. Nat. Commun., 2022, 13, 1 (4) Zhang, M.; Xie, J.; Zhu, C. Nat. Commun., 2018, 9, 1. (5) Chatterjee, A. K.; Morgan, J. P.; Scholl, M.; Grubbs, R. H. J. Am. Chem. Soc. 2000, 122, 3783. (6) Haag, R.; Wirz, J.; Wagner, P. J. Helv. Chim. Acta. 1977, 60, 2595. (7) Hayashi, T.; Takahashi, M.; Takaya, Y.; Ogasawara, M. J. Am. Chem. Soc. 2002, 124, 5052. (8) Sakuma, S.; Miyaura, N. J. Org. Chem. 2001, 66, 8944. (9) Yang, B.; Lin, K.; Shi, Y.; Gao, S. Nat. Commun. 2017, 8, 1. (10) Hou, M.; Xu, M.; Yang, B.; He, H.; Gao, S. Chem. Sci. 2021, 12, 7575. (11) Hou, M.; Xu, M.; Yang, B.; He, H.; Gao, S. Org. Lett. 2021, 23, 7487. (12) D. Xue.; M. Xu.; C. Zheng.; B. Yang.; M. Hou.; H. He.; S. Gao. Chin. J. Chem. 2019, 37, 135.

