Please provide the reaction mechanisms and explain why the chemical shifts of highlighted protons in 1-2 are low.

1

1-1
$\delta 3.41 \mathrm{ppm}(\mathrm{d}, J=3.4 \mathrm{~Hz}) \quad \delta 3.55 \mathrm{ppm}(\mathrm{d}, J=3.4 \mathrm{~Hz})$

1. $\mathrm{Cs}_{2} \mathrm{CO}_{3}(3.0 \mathrm{eq}), \mathrm{CDI}(1.1 \mathrm{eq}), \mathrm{THF}, 60^{\circ} \mathrm{C}$
2. $\mathrm{KN}(\mathrm{TMS})_{2}$ (3.0 eq), THF, $23^{\circ} \mathrm{C}, 61 \%$ (2 steps)
$\underline{\square}$

1-2

* coupling was observed between the two highlighted protons.

2

2-1

2-3

1. $\mathrm{KN}(\mathrm{TMS})_{2}(3.0 \mathrm{eq}), \mathrm{THF},-78^{\circ} \mathrm{C}$;

TBSOTf (3.0 eq), $-78{ }^{\circ} \mathrm{C}, 80 \%$

1. $\mathrm{KN}(\mathrm{TMS})_{2}(2.0 \mathrm{eq}), \mathrm{THF},-78{ }^{\circ} \mathrm{C}$; TIPSOTf (2.0 eq), $-78^{\circ} \mathrm{C}, 70 \%$
2. $\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}(1.0 \mathrm{eq}), \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}, 95 \%$
3. A (4.0 eq), $\mathrm{PPh}_{3}(2.2 \mathrm{eq}), \mathrm{CuCl}(10 \mathrm{eq}), \mathrm{LiCl}(12 \mathrm{eq})$ DMSO, $200^{\circ} \mathrm{C}$, microwave, 49%

2-2

2-4

CDI

A

Topic: Total synthesis of ocellatusone $C^{1)}$

ocellatusone C
isolation: solar-powered sea slug, Placobranchus ocellatus (2020) ${ }^{2)}$
structural features: • bicyclo [3.3.1] nonane skeleton
3 oxygen-based functionalities

- 3 stereocenters with 2 quaternary carbons
- racemic
bioactivity: unknown
total synthesis: Maimone (2022)
Retrosynthetic analysis:

Reference:

1. Sanchez, A.; Maimone, T. J. J. Am. Chem. Soc. 2022, 144, 7594.
2. Wu, Q.; Li, S.-W.; Xu, H.; Wang, H.; Hu, P.; Zhang, H.; Luo, C.; Chen, K.-X.; Nay, B.; Guo, Y.-W.; Li, X.-W. Angew. Chem. Int. Ed. 2020, 59, 12105.
3. Lee, G. S. 2014, PhD Thesis. University of California, Los Angeles.

1-1
$\delta 3.41$ (d, J = 3.4 Hz)

1. $\mathrm{Cs}_{2} \mathrm{CO}_{3}(3.0 \mathrm{eq}), \mathrm{CDI}(1.1 \mathrm{eq})$, THF, $60^{\circ} \mathrm{C}$ 2. $\mathrm{KN}(\mathrm{TMS})_{2}(3.0 \mathrm{eq}), \mathrm{THF}, 23^{\circ} \mathrm{C}, 61 \%$ (2 steps)

1-2

* coupling was observed between the two highlighted protons. Sanchez, A.; Maimone, T. J. J. Am. Chem. Soc. 2022, 144, 7594.

Answer:

1-1

1-3

1-5

discussion 1: Chemical shift

Discussion 1: Chemical shift

The compounds with tricyclo-[3.3.1.0 ${ }^{2,8}$]-3,6-diene skeleton, so called barbaralyl skeletone, have unique NMR spectral features.

Table 1. ${ }^{1} \mathrm{H}$ NMR spectrum of $1-\mathbf{8}^{2)}$

No.	at $-70^{\circ} \mathrm{C}(\delta)^{*}$	at $25^{\circ} \mathrm{C}[\delta$, multi, $J(\mathrm{~Hz})]$	Δ
1	2.46	$2.60(\mathrm{t}, 6.5)$	+0.14
2,8	2.91	$\underline{4.20}(\underline{\mathrm{t}, 7.0})$	+1.29
3,7	5.71	$5.69(\mathrm{t}, 7.3)$	-0.02
4,6	5.92	$\underline{4.20} \underline{(\mathrm{t}, 7.0)}$	-1.72
5	2.91	$2.60(\mathrm{t}, 6.5)$	-0.31
* signal patterns were not mentioned			

At $-70^{\circ} \mathrm{C}$, the peak of each proton is quite normal. However, at $25^{\circ} \mathrm{C}$, some peaks drastically shifted $(\mathrm{H} 2$ and $8, \mathrm{H} 4$ and 6), and H 1 and H 5 showed the same peak patterns.

$1-8$ shows unique ${ }^{1} \mathrm{H}$ NMR spectrum because it can change its structure by Cope rearrangement. At $-70{ }^{\circ} \mathrm{C}$, this rearrangement is slow that H 2 and H 4 can be distinguished. As the temperature increases, this rearrangement proceeds at time-scale of NMR, these protons cannot be distinguished. Finally, at $25^{\circ} \mathrm{C}, \mathrm{H} 1$ and H 5 showed the same peak pattern, as well as four protons (H2,4,6,8) showed the same peak pattern.

$$
\delta 3.55(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz})
$$

Since 1-2 has barbaralyl skeletone, the rapid Cope rearrangement of 1-2 proceeds like 1-8. Thus, there is in equilibrium between 1-2 and ent-1-2 at room temperature, and it displays a spectrum consistent with a fluxional structure with averaged resonances and chemical shifts.

Appendix:

Unlike 1-2 and 1-8, fluxional structure was not observed in 1-7. This is because the size of OTIPS is too large to proceed Cope rearrangement. So normal chemical shift are observed in this compound.

Answer:

$\xrightarrow{-\mathrm{TIPSCI}}$

2-13

- PhCN

2-14

A

2-16

$\mathrm{Cu}^{\prime} \mathrm{Cl}, \mathrm{LiCl}$

of \mathbf{A}, suggesting that 2-16 was generated in the reaction.

Discussion 2: Shapeshifting anions
2.1. Experimental results

2-23-H

TIPSOTf

2-11
73\%

2-24
not obtained

Results (a) and (b) suggest that there exist at least 5 intermediates (2-25-A to E) from deprotonation of 2-1 or 2-3. Based on the result (c), an equilibrium should exist between the five isomers, and equilibrium is shifted when different substituent is introduced ($X=\mathrm{H}: \mathbf{2 - 2 5 - B}$ and 2-25-E are in favor. $X=S P h: \mathbf{2 - 2 5 - D}$ is in favor.)

2.2. Computational calculation

For better understanding, the authors employed DFT calculations for each isomer.
Relative free energy differences of isomeric anions:

	$\Delta \mathrm{G}^{\circ}(\mathrm{kcal} / \mathrm{mol})$			
X	$\mathbf{2 - 2 5 - B}$	$\mathbf{2 - 2 5 - C}$	$\mathbf{2 - 2 5 - \mathrm { D }}$	$\mathbf{2 - 2 5 - E}$
SPh	0.0	+7.1	$\underline{-4.0}$	+0.4
OMe	0.0	+8.3	$\underline{-6.6}$	$\mathbf{- 3 . 0}$
F	0.0	+9.2	$\underline{-3.3}$	$\underline{-3.3}$
H	0.0	+8.2	+0.3	$\underline{-0.9}$
CN	0.0	+4.5	-1.7	$\underline{\mathbf{- 2 . 5}}$

* calculated at B3LYP-D3(BJ)/6-311+G(d,p)/PCM(THF)//B3LYP-D3(BJ)/6-31+G(d,p)/PCM(THF) at 195 K

Calculations showed that the chelating form is the most stable conformer of 2-25-D. When X is an electron-donating substituent (e.g., SPh, OMe), the stabilizing effect of chelation is enhanced, making 2-25-D the most stable of the five isomers.
On the other hand, when X is an electron-withdrawing substituent, this stabilizing effect is weaken, making 2-25-D less stable. As a result, 2-25-E became the most stable conformer ($X=C N$).
2.3. In case of 2-1 $(X=S P h)$

2-25-A-SPh
(disfavored)
(allylic anion)

2-25-B-SPh
(disfavored)
$\Delta \mathrm{G}^{\circ}=0.0 \mathrm{kcal} / \mathrm{mol}$

2-25-C-SPh
(disfavored)
$\Delta G^{\circ}=+7.1 \mathrm{kcal} / \mathrm{mol}$

2-25-D-SPh
(favored)
$\Delta G^{\circ}=-4.0 \mathrm{kcal} / \mathrm{mol}$

2-25-E-SPh
(unfavored)
$\Delta G^{0}=+0.4 \mathrm{kcal} / \mathrm{mol}$
no further reaction proceeds

2-2

2-22
$\mathbf{2 - 2 5 - A}, \mathbf{2 - 2 5 - B}$ and 2-25-C are thought to be disfavored due to unstable allylic anion (A) or large steric repulsion between highlighted atoms of cyclopropane (\mathbf{B} and \mathbf{C}).
$\mathbf{2 - 2 5 - D}$ is more favored in comparison with 2-25-E, because potassium enolate can be stabilized by adjacent carbonyl groups in the presence of electron donating group, SPh.
Calculation suggests that 2-25-D is by far the most stable isomer, so the anions are present almost only in the form of 2-25-D-SPh during the reaction, yielding 2-2 or 2-22 as a major product.
2.4. In case of 2-3 $(\mathrm{X}=\mathrm{H})$

2-25-A-H
(disfavored)
(allylic anion)

2-25-B-H
(favored) $\Delta G^{\circ}=0.0 \mathrm{kcal} / \mathrm{mol}$

2-25-C-H
(disfavored)
$\Delta G^{\circ}=+8.2 \mathrm{kcal} / \mathrm{mol}$

2-25-D-H
(favored) $\Delta G^{\circ}=+0.3 \mathrm{kcal} / \mathrm{mol} \quad \Delta \mathrm{G}^{\circ}=-0.9 \mathrm{kcal} / \mathrm{mol}$
$\mathbf{2 - 2 5 - B}, \mathbf{2 - 2 5 - D}$ and 2-25-E are in favor. Calculation shows that there are only small energy differences among these 3 isomers, so there are 3 isomers in the reaction mixture.

The α and β faces of enolate are shielded in all isomers. Among them, the β-face of 2-25-B-H is relatively uncrowded because it has only one sp^{2} carbon (the others have two or three sp^{2} carbons). SiOTf is too large to access to the other faces, so silyl etherification proceeds only from the β-face of 2-25-B-H, with 2-11 ($\mathrm{X}=\mathrm{TIPS}$) or 2-20 ($\mathrm{X}=\mathrm{TBS}$) being obtained as a major product.

2.4.2. Protonation

Compared to SiOTf, proton is small, so protonation can be proceed from all of 3 isomers. 2-24-E-H is the most stable conformer, but the protonation is relatively slow because of steric hindrance. 2-24-B-H is the second most stable conformer, and the protonation is faster than from 2-24-E-H. As a result, 2-21 was obtained as well as 2-23. (If $\Delta \mathrm{G}^{\circ}=0.9$, the ratio of $\mathbf{2 - 2 4 - B}-\mathrm{H}: \mathbf{2 - 2 4 - E}-\mathrm{H}$ would be $18: 82$).

Reference:

1) Sanchez, A.; Maimone, T. J. J. Am. Chem. Soc. 2022, 144, 7594.
2) von E. Doring, W.; Ferrier, B. M.; Fossel, E. T.; Hartenstein, J. H.; Jones, M.; Klumpp, G.; Rubin, R. M.; Saunders, M. Tetrahedron 1967, 23, 3943.
3) Han, X. J.; Stoltz, B. M.; Corey, E. J. J. Am. Chem. Soc. 1999, 121, 7600.
