Topic: Reactions using nitrogen centered radical
-For recent reviews, see: Zard, A. Z. Chem. Soc. Rev. 2008, 37, 1603.
Xiong, T.; Zhang, Q. Chem. Soc. Rev. 2016, 45, 3069.
O'Neil, L. G.; Bower, J. F. Angew. Chem. Int. Ed. 2021, 60, 25640.
Pratley, C.; Fenner, S.; Murphy, J. A. Chem. Rev. 2022, 122, 8181.
-Early reaction of N -centered radical
Hofmann-Löffler-Freytag reaction

\qquad

0-5
Hofmann, A. W. Ber. 1883, 16, 558.
Hofmann, A. W. Ber. 1885, 18, 109.
Löffler, K.; Freytag, C. Ber. 1909, 42, 3427.

- Methods to generate N -centered radical

1. homolytic cleavage

2. oxidative conditions

3. oxidative PCET

Tvoe Structure Orbital Structure Confiauration
-Rate of ring closures of N -centered radical

155

BDE: $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}^{+} \mathrm{H}-\mathrm{H} \quad 101.5 \mathrm{kcal} / \mathrm{mol}{ }^{156}$
(J. Org. Chem. 1996, 61, 4778.)

BDE: iminyl N-H $93 \mathrm{kcal} / \mathrm{mol}$
157

BDE: $\mathrm{CH}_{3} \mathrm{CONMe} 106.5 \mathrm{kcal} / \mathrm{mol}$
$\stackrel{\text { H }}{\mathrm{H}}$
Successful application

0-6 $n-\mathrm{Bu}_{3} \mathrm{SnH}$ (2 eq.)

Zard, S. Z. et al. Angew. Chem. Int. Ed. 2002, 41, 1783. Zard, S. Z. et al. Tetrahedron 2008, 64, 4803. Unsuccessful example

0-9

$$
\begin{aligned}
& \text { 1. } \mathrm{NCS}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} \\
& \quad 50 \%
\end{aligned}
$$

2. AIBN, $n-\mathrm{Bu}_{3} \mathrm{SnH}$ toluene, $110{ }^{\circ} \mathrm{C}$

(1.5-HAT)

Reisman, S. E. ACS Cent. Sci. 2021, 7, 1311.
(1) Please explain the reasonable reaction mechanisms.

Han, G.; Liu. Y.; Wang, Q. Org. Lett. 2013, 15, 5334.

-Answer

1-1
1-3

1-8
1-9

(amidyl radical)
A. path a

-Discussion 1
single electron transfer to peroxide
see page 9 for the detail
oxidative radical cyclization

-Discussion 2

Alternative mechanism of cascade cyclization - 5-exo/6-endo cyclization-

Since both 1-26 and 1-27 were obtained, the reaction mechanism should be 5-exo/5-exo cyclization.
(2) Please explain the reasonable reaction mechanisms and stereoselectivities.

ee was not mentioned, nut should be >95\%ee

Aubé, J.; Peng, X.; Wang, Y.; Takusagawa, F. J. Am. Chem. Soc. 1992, 114, 5466.

prior to answer

Beckwith-Houk model for 5-exo radical cyclization

R^{1}, R^{3} : pseudoequatorial

2 or 4-substituted system \rightarrow trans-disubstituted product

Answer

2-5-A

2-5-B

2-5-D

2-5-E

2-5-F

Considering the interaction between olefin and alkyl group on N, 2-5-A-2-5-C should be less favorable than 2-5-D-2-5-F.
Considering the interaction between OCu and sustituent of $\mathrm{C} 0,2-5-\mathrm{F}$ should be the most stable conformer.

Ph migration would proceed through 5,5-cis-fused intermediate (2-9).
Thus flip at nitrogen was considered.

alternative pathway from 2-11 to 2-13

consider the rotation of $\mathrm{C} 0-\mathrm{N}$ bond and $\mathrm{C} 4-\mathrm{C} 5$ bond

Considering the interaction between olefin and alkyl group on $\mathrm{N}, \mathbf{2 - 1 6 - A - 2 - 1 6 - C}$ should be less favorable than 2-16-D-2-16-F.
Considering the interaction between OCu and sustituent of $\mathrm{C}, \mathbf{2 - 1 6 - \mathrm { F }}$ should be the most stable conformer.

calculation of alkyl peroxide (calculated by Dr. Fujino)

most stable conformer ($\Delta \mathrm{G}=0 \mathrm{kcal} / \mathrm{mol}$)

second stable conformer ($\Delta \mathrm{G}=+5.08 \mathrm{kcal} / \mathrm{mol}$ in gas phase, $+4.42 \mathrm{kcal} / \mathrm{mo}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)
M06-2X/6-31+G(d) (gas phase) or M06-2X/6-31+G(d)/CPCM $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

номо

LUMO

$$
\begin{aligned}
& \text { LUMO - HOMO: } \\
& 10.9 \mathrm{eV} \text { (gas phase) } \\
& 10.9 \mathrm{eV}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)
\end{aligned}
$$

LUMO+2
LUMO+2 - HOMO:
13.3 eV (gas phase)
$13.3 \mathrm{eV}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

Judging from the calculation, single electron reduction should occur at $\mathrm{C}=\mathrm{O} \pi^{*}$ orbital.

or directly provide $R \bullet$ in concerted mechanism

A radical lowers the bond dissociation energy of adjacent $\mathrm{C}-\mathrm{H}$

C Cooperative hydrogen atom transfer (cHAT)

West, J. G.; Huang, D. Sorensen, E. J. et al. Nat. Commun. 2015, 6, 10093.
The acidity of C-H adjacent to radical cation or conjugated to radical cation is high.

Jeffrey, J. L.; Petronijevic, F. R.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2015, 137, 8404.

