Problem Session (2) -Answer- 2023/11/04 Yuyan Liang

Topic: Recent synthetic works of scabrolide A.
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Introduction €.l :
-Isolation: Isolated from soft coral Sinularia scabra. in 2002, along with three other novel
norcembranoids (scabrolides B-D) and four known norcembranoids (e.g., ineleganolide). \
Sheu, J.; Ahmed, A. F.; Shiue, R.; Dai, C.; Kuo, Y.; J. Nat. Prod. 2002, 65, 1904-1908. H"

o o - o Vals
-Bioactivities: Scabrolide A is shown to inhibit IL-6 and IL-12 production in vitro and has O
a potential as an anti-inflammatory agent. .
scabrolide A

-Structual features: A fused [5,6,7] carbocyclic framework featuring 6 stereogenic centers, five of which are contiguous.

-Total synthesis
Hafeman, N. J.; Loskot, S. A.; Reimann, C. E.; Pritchett, B. P.; Virgil, S. C.; Stoltz, B. M.
J. Am. Chem. Soc. 2020, 142, 8585. see 200606 _PS_ Takahiro_Watanabe
Meng, Z. C.; Furstner, A. J. Am. Chem. Soc. 2022, 144, 1528. — problem 2
Serrano, R.; Boyko, Y. D.; Hernandez, L. W.; Lotuzas, A.; Sarlah, D. J. Am. Chem. Soc. 2023, 145, 8805. — problem 1

Problem 1
1. Pdy(dba)s (0.1 eq), P(o-furyl); (0.4 eq)
BusSN oo CuDPP (1.5eq), THF, 60 °C, 89% Me/"OTBso
N 2. LiN(i-Pr), (4.0 eq), Znl, (2.0 eq)*, 0 °C, 53%,
dr.=20:1
+ > o
{ ; /—Me
=
Me 0 //_
1-1 1-2 1-3
*ca. 1.1-1.2 eq newly formed base was added.
Serrano, R.; Boyko, Y. D.; Hernandez, L. W_; Lotuzas, A.; Sarlah, D. J. Am. Chem. Soc. 2023, 145, 8805.
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Liebeskind-Srogl coupling l o Ph the effectiveness of the Ph,P(O)O counterion facilitate the
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Discussion 1
Stereoselectivity
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Is it the reason of low yield?
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Discussion 1

Stereoselectivity of coupling reaction

1. Screening of base & additives
The decomposition and low yield may result from the strong basicity of the  base & additives yield
base (bad tolerance of base-sensitive functionalities). NaN(TMS), or KN(TMS),  decomp.
It is reported ") that organozinc base (less basic) could deprotonate wide  LiN(i-Pr), or LIN(TMS), 5-10%
ranges of functionalized organics under mild conditions. Finally, the author  LiN(i-Pr),, ZnCl, 30-40%
found that premixing of Znl, and LDA in 1 : 2 ratio proved critical, LiN(i-Pr)5, Znl, 53%

suggesting the bis-amidozinc base is operative in the coupling reaction. LiN(i-Pr),, MgBr, decomp. 2




. Reaction mechanism

Chelation control studies
The author declared the chelation effect of zinc with oxygens of ketone and OPMB fix the reaction conformation;

however, even in substrate 1-13 whose chelation effect is supressed, desired compund could be obtained in

moderate yield. That's controdictory.
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l LiN(i-Pr)y, Znl,, 40-53%, d.r. = 20 : 1

tBSO O QPMB
Me: .,
LiN(i-Pr),, Znl, LiN(i-Pr)5, Znl,
53% 40-53% g s
dr.=20:1 dr.=20:1 /'//Me

117 (= C14-epi-1-8)

My opion: substrates with opposite sterechemistry at C14 could provide same result, indicating no chelation.

3. Stereoselectivity
The highly congested cyclohexenone is formed by coupling of lactone and cycloheptenone.

Four transition states are described below.
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cycloheptene suffered more obstruction
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2. Cl

1.2-1 (1.0 eq), Nal (1.0 eq), acetone, 50 °C;
2. AgBF,4 (0.9 eq), 2,6- tert-butyl-4-methylpyridine (1.1 eq),
2-2 (0.2 eq), MeCN, rt;

0
N t-BuOK (1.4 eq), MeCN, rt.
e 3. TBAF (0.18 eq), THF, 80 °C, 4 h
21 2-2
HO H
Me,, - O
4. Bu3SnH (9.6 eq), AIBN (0.3 eq), toluene, 85 °C; )=
2.3 5. DBU (10 eq), MeCN, 80 °C, 79% (2 steps) ’00 O
31% (3 steps) 6. 2-5 (100 eq), toluene, 100 °C, 77% H L
0 J e
+ .
HO 2:6
Me.,) O/>
steps 4 & 5 o step 6
—_— ——>
2-4 66% (2 steps) H
33% (3 steps
o (3 steps) o 27 Me
Meng, Z. C.; Furstner, A. J. Am. Chem. Soc. 2022, 144, 1528.
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Discussion 2
structure revision
Discussion 3
[2,3]-sigmatropic
rearrangement

Me 51BS
the stereochemistry of 2-11 is
validated by crystallography
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|€-5|a Heb

H Me=~ "'flg'a Heb

2-12-proposed structure
provided by author

2-12-revised structure by me step 2

see Appendix of NOESY information 4




The mixtures of 2-11 and 2-12 are subjected to next step.

Me” \\

2-12-revised structure by me

H,O

workup 5
(or residual water in . \\
the reaction mixture) Me OH

Me
>
2-3-revised structure by me 2-4

31% (3 steps) 33% (3 steps)

step 3

desilylation of isomer mixtures enable the seperation and yield calculation (3 steps).

Discussion 2
structure revision

Key NOESY correlation signals in Supporting information: H6b-H10, H6b-H11, H13-H22
2-3-proposed structure provided by author 2-3-revised structure by me

C12-C13 bond rotation

+ -« impossible to detect H6b-H11
signal due to long distance




Discussion 3

[2,3]-sigmatropic rearrangement
Allylic sulfonium ylide undergo [2,3]-sigmatropic rearrangement to produce sulfide in a concerted pattern.

Generally, the stereochemistry of this rearrangement can be predicted in terms of a cyclic five-membered envelope-like
trasition state in which large substituent prefers an equatorial orientation.
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R \)I( R - = R4S
2-13 2-14
Ry : equatorial R, : axial (1,3-diaxial interaction)
favored unfavored
2-15 2-16

Considering the conformation of fused [7,5]-bicyclo ring system, only favored transition state 2-17 is disscussed here.
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Subsequent tranformation from isomer 2-3-revised structure by me.
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cycloaddition
{ . O
HC-) H\_/l Oi-Pr
9.35 R R =ArorH (2-40) 2-36

Ruthium catalyst firstly react with mono-substituted vinyl group.

C|l e
2-39 2-40 2.6 77% step6
It is too far for isopropene to participate the cyclizaiton, the resulting cyclooctene with a briged ring is highly strained.

Tranformation from isomer 2-4.

4. Bu3SnH (9.6 eq), AIBN (0.3 eq), toluene, 85 °C;
5. DBU (10 eq), MeCN, 80 °C, 66% (2 steps)
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unstable (not obtain) K/O
MesN_ _NMes
I .Cl
=Ru
rScl
éi—Pr 2-5
941 2-41 (= C13-epi-2-6)
1) Srogl, J.; Allred, G. D.; Liebeskind, L.S. J. Am. Chem. Soc. 1997, 119, 12376. not obtain

2) Hlavinka, M.L. Hagadorn, J.R. Organometallics 2007, 26, 4105. 8



