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Francis, M. et al. J. Am. Chem. Soc. 2011, 133, 16970–16976

• Bioconjugation

Ishihara, K. et al. J. Am. Chem. Soc. 2019, 141, 1877-1881

• Initiating cycloaddition

Examples of one electron oxidation

Introduction
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• Conventional Alkylation Strategies

Ø Strong acids or Lewis acids required for generating carbocation。

Ø Alkylation reagents are very reactive.

Mesolytic Cleavage of Radical Cation
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Knowles, R. et al. Angew. Chem. Int. Ed. 2016, 55, 9969-9973.

• Previous works

Mesolytic Cleavage of Radical Cation

Ciampi, S., Coote, M. et al. J. Am. Chem. Soc. 2018, 140, 766–774.
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Ø Generating carbocation by mesolytic cleavage of radicalcation

Ø Under mild conditions without Lewis/strong acid
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Ø Stable and unreactive in neutral form without electrochemical stimuli.

Electrochemically activated methylation

Coote, M., et al. J. Am. Chem. Soc. 2019, 141, 15450–15455
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Optimization

Coote, M., et al. J. Am. Chem. Soc. 2019, 141, 15450–15455
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• Neither stoichiometric oxidants nor PC facilitated methylation

Ø Electrochemistry is crucial for this reaction

Optimization

Coote, M., et al. J. Am. Chem. Soc. 2019, 141, 15450–15455
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Substrate scope

Coote, M., et al. J. Am. Chem. Soc. 2019, 141, 15450–15455

Ø Methylation achieved in moderate 
to high yield

Ø Bearing functional groups 
susceptible to reduction

→ divided cells
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Solid line: Scan 1

Dotted line: Scan 2

Mechanism

Coote, M., et al. J. Am. Chem. Soc. 2019, 141, 15450–15455
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Ø Electrochemically activated methylation under mild condition.

Ø TEMPO-Me is stable in neutral form.

Ø There is still some room for improvement of the substrate scope and 
the reactivity of the donor.

Short Summary

Coote, M., et al. J. Am. Chem. Soc. 2019, 141, 15450–15455
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Cannot be applied to electron-rich arenes 

• Common SNAr pathway
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• Attempts to facilitate SNAr with electron neutral/rich arenes 

Oxidative SNAr Pathway

Diness, F. & Fairlie, D. Angew. Chem. Int. Ed. 2012, 51, 8012-8016

Meisenheimer complex
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Nicholas. T., & Nicewicz. D. J. Am. Chem. Soc. 2017, 139, 16100–16104

Huang, H., & Lambert, T. H. Angew. Chem. Int. Ed. 2020, 59, 658-662

• Previous reports
Ø Substitution at C–OMe

Ø Defluorinative substitution

Required excess amount of fluoroarene5 equiv. 1 equiv.

Oxidative SNAr Pathway
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Ø SNAr reaction with electron rich or neutral arene under mild condition

Ø Amine or carboxylic acid can be used as nucleophile

Nicewicz, D. et al. J. Am. Chem. Soc. 2020, 142 , 17187-17194

Oxidative SNAr Pathway

Electron neutral ~ rich arene 
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Nicewicz, D. et al. J. Am. Chem. Soc. 2020, 142 , 17187-17194

Optimization (Heteroarene)
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Using HFIP as solvent gave higher yield

Nicewicz, D. et al. J. Am. Chem. Soc. 2020, 142 , 17187-17194

Optimization (Heteroarene)
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Nicewicz, D. et al. J. Am. Chem. Soc. 2020, 142 , 17187-17194

Substrate Scope (Heteroarene)
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Optimization (Amine, Carboxylic acid)

• Xanthylium salt catalyst is not compatible with amine as nucleophile
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H2N-R1

• Using acridinium salt catalyst  (Catalyst B) instead
Nicewicz, D. et al. Synlett. 2019, 30, 827-832
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Optimization (Amine, Carboxylic acid)
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Nicewicz, D. et al. J. Am. Chem. Soc. 2020, 142 , 17187-17194

Substrate Scope (Amine, Carboxylic acid)
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Nicewicz, D. et al. J. Am. Chem. Soc. 2020, 142 , 17187-17194

Substrate Scope (Amine, Carboxylic acid)
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Ø Modification without racemizing→ 46~48

Ø Applicable to drug compound, but resulted in low to moderate yield.

Nicewicz, D. et al. J. Am. Chem. Soc. 2020, 142 , 17187-17194

Substrate Scope (Amine, Carboxylic acid)
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J. Am. Chem. Soc. 2017, 139, 16100–16104

Proposed Mechanism
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B3LYP/6-31+G(d,p) 

Positive charge resides on C-F

Nicewicz, D. et al. J. Am. Chem. Soc. 2020, 142 , 17187-17194

Rational for regioselectivity
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Ø Reverse the reactivity of electron-rich arene with single-electron 
oxidation.

Ø Late-stage functionalization of pharmaceutical compounds

Nicewicz, D. et al. J. Am. Chem. Soc. 2020, 142 , 17187-17194

Short Summary

Electron neutral ~ rich arene 
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• Previous reports

Ø Decarboxylative C term modification

MacMillan, D. et al. Nat. Chem. 2018, 10, 205–211

Sato, S., & Nakamura, H. Angew. Chem. Int. Ed. 2013, 52, 8681-8684

Ø Ligand directed Tyr modification

Application to Biomolecular
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Ø Tyrosine selective modification

Ø Further functionalization with versatile handle

Site-selective Tyr Modification

MacMillan, D. et al. Nat. Chem. 2021, 13, 902–908
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Optimization

MacMillan, D. et al. Nat. Chem. 2021, 13, 902–908
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MacMillan, D. et al. Nat. Chem. 2021, 13, 902–908

Substrate Scope of Peptide or Protein

Ø Site-selective Tyr modification was achieved
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Ø A residue surface-exposed and activated is modified.

Ø Sterically hindered or deactivated Tyr did not react.

Ø Cation-𝜋 interaction reduces 𝜋 electron density.

MacMillan, D. et al. Nat. Chem. 2021, 13, 902–908

Rational for Site-selectivity
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Ø From excited state absorption,
flavin oxidates phenoxiazine not Tyr.

MacMillan, D. et al. Nat. Chem. 2021, 13, 902–908

Proposed Mechanism
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Organic dye
Handles for click reaction

Ø Aldehyde selective and one-pot transformation

MacMillan, D. et al. Nat. Chem. 2021, 13, 902–908

Further Functionalization
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Ø 78% of the native activity was retained. 

MacMillan, D. et al. Nat. Chem. 2021, 13, 902–908

Influence on Protein Structure
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MacMillan, D. et al. Nat. Chem. 2021, 13, 902–908

Influence on Protein Structure

Ø Secondary structures were generally retained

• CD spectra of native and modified protein
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Short Summary

Ø Reactive Tyr residue is functionalized selectively.

Ø Further functionalization with various biorthogonal moieties

Ø Retaining 3D structure or enzymatic activities
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Summary

• Reaction proceeds generally under mild condition

• Reversing reactivity of the substrates unreactive in
conventional pathways

• Applicable to biomolecular modification


