[3 + 3] Cycloaddition by 1,3-Dipoles
~ new method for cyclization reaction ~

2015. 2. 21.
Nagashima Nozomu
1. Introduction
Six membered ring in natural products

- Many natural products contain six-membered rings.
- Formation of six-membered rings would be a key step in synthesis.
Diels-Alder reaction is one of certificated methods for six membered ring.

New method for synthesis of 6 membered ring

Feature of [3 + 3] dipole cycloaddition

1. Some substrates would be more suitable for [3 + 3] cycloaddition
2. Quaternary carbon could be introduced before cyclization.
3. Stepwise reaction.
How to make 1,3-dipole?

Normal molecule: negative charge and positive charge emerges alternately.

1. Contain hetero atoms at center

2. Molecule changes acceptor to donor stepwise. (or donor to acceptor)

How to make 3-carbon unit dipoles?
Reactive dipole and Stable dipole (1)

These dipoles are stable dipoles and the reaction between stable dipoles wouldn’t proceed.

Stable dipoles react with “Reactive dipoles”
Reactive dipole and Stable dipole (2)

- First covalent bond formation step is important and second cyclization step would be supported by entropic effect.
- The reactive dipole is catalytically formed in the reaction.

How to make the “reactive dipole”?
2. Three carbon unit 1,3-dipole

(2-1) Normal 1,3-dipole species
● Trimethylenemethane

(2-2) Stepwise 1,3-dipole species
● NHC conjugated unsaturated aldehyde
● Phosphine conjugated allene
● Vinylcarbene
Nature of TMM (1)

Dimerization of TMM is proceeded from triplet TMM. (CIDNP analysis)

- [3 + 3] cycloaddition would be difficult by using triplet TMM

How prevent the ring closing and stabilize the ring open state of singlet TMM?
Nature of TMM (2)

- Cation is stabilized by palladium and prevents ring closing.
- Nucleophilic / Basic character of TMM

Pd-TMM complex reacts with only electron-deficient alkene. (Nucleophilic character)

Pd-TMM complex acts as base. (Basic character)
Nature of TMM (2)

- Cation is stabilized by palladium and prevents ring closing.
- Nucleophilic / Basic character of TMM

Pd-TMM complex reacts with only electron-deficient alkene. (Nucleophilic character)

2. Three carbon unit 1,3-dipole

Pd-TMM complex acts as base. (Basic character)
Pd-TMM [3 + 3] cycloaddition

TMM also reacts with azomethine imine.

T. Hayashi et al. JACS, 2006, 128, 6330.

<table>
<thead>
<tr>
<th>entry</th>
<th>R</th>
<th>product</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph (2a)</td>
<td>3a</td>
<td>81</td>
</tr>
<tr>
<td>2</td>
<td>4-MeC₆H₄ (2b)</td>
<td>3b</td>
<td>74</td>
</tr>
<tr>
<td>3</td>
<td>4-CF₃C₆H₄ (2c)</td>
<td>3c</td>
<td>92</td>
</tr>
<tr>
<td>4</td>
<td>3-ClC₆H₄ (2d)</td>
<td>3d</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>2-FC₆H₄ (2e)</td>
<td>3e</td>
<td>88</td>
</tr>
<tr>
<td>6</td>
<td>2-MeC₆H₄ (2f)</td>
<td>3f</td>
<td>70</td>
</tr>
<tr>
<td>7</td>
<td>3-pyrdyl (2g)</td>
<td>3g</td>
<td>75</td>
</tr>
<tr>
<td>8</td>
<td>1-cyclohexenyl (2h)</td>
<td>3h</td>
<td>71</td>
</tr>
<tr>
<td>9</td>
<td>t-Bu (2i)</td>
<td>3i</td>
<td>20</td>
</tr>
</tbody>
</table>

2. Three carbon unit 1,3-dipole

- Reaction between TMM and dipole equivalent was reported.

- TMM also reacts with azomethine imine.
Controlling substituent position would be difficult.

→ The synthesis is limited to cycloaddition from simple trimethylenemethane.

- Acethoxy group also attacks as nucleophile.

<table>
<thead>
<tr>
<th>entry</th>
<th>conditions</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10% Pd(OAc)$_2$, 60% P(OPr-i)$_3$</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>10% Pd(PPh$_3$)$_4$</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>10% Pd(OAc)$_2$, 30% P(Bu-n)$_3$</td>
<td>28, 20, 50</td>
</tr>
<tr>
<td>4</td>
<td>10% Pd(OAc)$_2$, 25% DPPP</td>
<td>41, 20, 30</td>
</tr>
</tbody>
</table>
Cycloaddition with aziridines which doesn’t have arylsulfoneamide didn’t proceed.

This reaction is sluggish reaction.

Sluggish reaction of TMM [3 + 3] cyclization

- Reaction is limited to less-hindered dipoles which have some reactivity?

Stable TMM dipole

TMM is used as stable dipole and cyclopropane is used as reactive dipole.

Other TMM (Nakamura TMM)

- Acetal substituent promotes ring cleavage.
- The reactivity of TMM doesn’t decrease.

[3 + 2] cycloaddition by Nakamurra TMM

- This TMM is suitable for [3 + 2] cycloaddition
- This five-membered product would lead to carboxylic acid in acidic condition.
[3 + 3] cycloaddition by Nakamura TMM

- [3 + 3] cycloaddition with 1,3-dipole is not reported (doesn’t proceed?)
- 6-membered ring is cleaved in acidic condition.
- Nakamura TMM is not useful for [3 + 3] dipole cycloaddition today.

Nature of enal with NHC

NHC catalyzed [3 + 3] cycloaddition

2. Three carbon unit 1,3-dipole

Stereoselectivity of cyclization

NHC application with Lewis acid

![Chemical structures and mechanisms](image)

Can this mechanism apply for [3 + 3] cycloaddition??

NHC problems

- Possibility of dimerization

![Chemical reaction diagram]

- Dimerization between NHC conjugated aldehyde and not conjugated aldehyde would occur.
- Aldehyde is also activated by Lewis Acid.
 → The reaction is limited to the stable dipole which is more reactive than starting \(\alpha,\beta \)-unsaturated aldehydes

- Lacking certifiable examples
 - Cycloaddition partner is limited to azomethine imine. (Only 1 example)
 → Reactivity is low and other dipoles can’t react with this dipole?
Phosphine catalyzed [4 + 2] cycloaddition

\[
\text{Me}\text{CO}_2\text{Et} + \text{R} = \text{N} - \text{Ts} \xrightarrow{\text{PBu}_3 (20 \text{ mol\%})} \text{CH}_2\text{Cl}_2, \text{rt}} \rightarrow \text{R} - \text{N} - \text{Ts} \text{CO}_2\text{Et}
\]

2. Three carbon unit 1,3-dipole

O. Kwon et al. JACS, 2003, 125, 4716.

<table>
<thead>
<tr>
<th>entry</th>
<th>R(^1)</th>
<th>phosphine</th>
<th>product</th>
<th>% yield(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph (2a)</td>
<td>P(NMe(_2))(_3)</td>
<td>3a</td>
<td>98</td>
</tr>
<tr>
<td>2</td>
<td>4-MeOC(_6)H(_4) (2b)</td>
<td>P(NMe(_2))(_3)</td>
<td>3b</td>
<td>94</td>
</tr>
<tr>
<td>3</td>
<td>4-BrC(_6)H(_4) (2c)</td>
<td>P(NMe(_2))(_3)</td>
<td>3c</td>
<td>86</td>
</tr>
<tr>
<td>4</td>
<td>Ph (2a)</td>
<td>P(4-FC(_6)H(_4))(_3)</td>
<td>4a</td>
<td>93</td>
</tr>
<tr>
<td>5</td>
<td>4-MeOC(_6)H(_4) (2b)</td>
<td>P(4-FC(_6)H(_4))(_3)</td>
<td>4b</td>
<td>90</td>
</tr>
<tr>
<td>6</td>
<td>4-BrC(_6)H(_4) (2c)</td>
<td>P(4-FC(_6)H(_4))(_3)</td>
<td>4c</td>
<td>85</td>
</tr>
<tr>
<td>7</td>
<td>2-furyl (2d)</td>
<td>P(4-FC(_6)H(_4))(_3)</td>
<td>4d</td>
<td>88</td>
</tr>
<tr>
<td>8</td>
<td>3-pyridyl (2e)</td>
<td>P(4-FC(_6)H(_4))(_3)</td>
<td>4e</td>
<td>80</td>
</tr>
<tr>
<td>9</td>
<td>N-Me-2-indolyl (2f)</td>
<td>P(4-FC(_6)H(_4))(_3)</td>
<td>4f(^*)</td>
<td>91</td>
</tr>
</tbody>
</table>

Phosphine catalyzed [3 + 3] cyclization

2. Three carbon unit 1,3-dipole

\[\text{CO}_2\text{Et} \rightarrow \text{CO}_2\text{Et} \]

24

Proton transfer (A to D) is promoted by PBu3.
6-endo cyclization of E is less efficient and proton transfer (E to G) proceeds when PBu3 is catalyst.
Control other cyclizations and promote only [3 + 3] cycloaddition is difficult.
e.e. or d.r. is not discussed in this paper

O. Kwon et al. JACS, 2011, 133, 13337.
Phosphine catalyzed cyclization problems

- 5 membered ring formation

- 7 membered ring formation

P-O interaction would be weaker when R = Bu because of steric hindrance.

- Steric hindrance of Bu substituents prevents the 6 membered cyclization

It is difficult to prevent other cyclizations.
Nature of vinylcarbene

Vinyl-gold-carbene

F. D. Toste et al. JACS, 131, 11654.
Vinylrhodium carbene

2. Three carbon unit 1,3-dipole

M. P. Doyle et. al. JACS, 2011, 133, 16402
Effect of Substituents

TBSO- substituent is important in cycloaddition of vinylcarbene.

Combination with Lewis acid

Reaction does not proceed without activation of hydrazone.

2. Three carbon unit 1,3-dipole
Dearomatization $[3 + 3]$ cycloaddition by vinylcarbene

$\text{OTBS\ CO}_2\text{Me} + \text{PhN=O} \xrightarrow{[\text{Rh}_2(\text{OAc})_4] 2 \text{ mol\%} \text{ rt, CH}_2\text{Cl}_2, 4\text{A MS.}} \xrightarrow{100\% \text{ conversion}} \text{PhCO}_2\text{Me}$

92% yield

What promotes side reaction?

M. P. Doyle et. al. ACIE, 2013, 52, 12664

$\text{OTBS\ CO}_2\text{Me} + \text{N=O-CN} \xrightarrow{\text{Rh cat. (3 mol\%) toluene, rt, 3 h}} \text{MeO}_2\text{C} \text{OTBS}$

+ $\text{MeO}_2\text{C} \text{OTBS}$

M. P. Doyle et. al. JACS, 2013, 135, 12439
Reaction mechanism (1)

1. Lewis acidic dirhodium compound promotes [3 + 2] cycloaddition (Entry 2, 4, 10)
2. Lewis base additives promotes [3 + 2]
3. Cyclopropene was also demonstrated to be a precursor of the same metal carbene intermediate (Entry 11 to 15)

M. P. Doyle *et. al.* JACS, **2013**, *135*, 12439
Stable dipoles which were not sufficiently basic don’t cause inhibition of dirhodium catalysts toward metal carbene formation.

Dirhodium compounds are mild Lewis acids that coordinate with Lewis bases (Isoquinolinium/ pyridinium methylylides are readily accessible nucleophiles).
Vinylcarbene reactivity

- **Gold catalyst**

 ![Gold catalyst diagram]

- **Rhodium catalyst**

 ![Rhodium catalyst diagram]
3. Summary
1,3-dipole cycloaddition methods

Pd-TMM complex

\[
\text{CH}_2=\text{SiMe}_3\text{OAc} + \text{NTs} \xrightarrow{\text{Pd catalyst}} \text{N}_2\text{Ts}
\]

NHC conjugated unsaturated aldehyde

\[
\text{R}^1\text{CH}=\text{H} + \text{PhN}^+\text{N}^-\text{R} \xrightarrow{\text{NHC Catalyst}} \text{R}^1\text{N}=\text{N}^+\text{Ph}
\]

Phosphine conjugated allene

\[
\text{R}^1\text{N}^+\text{N}^-\text{R} + \text{CO}_2\text{Et} \xrightarrow{\text{Phosphine catalyst}} \text{R}^1\text{N}=\text{N}^+\text{R}^2\text{CO}_2\text{Et}
\]

Vinylcarbene

\[
\text{CO}_2\text{Me} + \text{PhN}^+\text{N}^-\text{Ar} \xrightarrow{\text{Rh catalyst}} \text{Ph}^+\text{N}^-\text{ArCO}_2\text{Me}
\]
Comparison of 1,3-dipole cycloaddition methods

<table>
<thead>
<tr>
<th></th>
<th>Feature</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMM</td>
<td>· Synthesized easily</td>
<td>· AcO group also acts as nucleophile.</td>
</tr>
<tr>
<td></td>
<td>· Used as both reactive dipole and stable dipole</td>
<td>· Difficult to control enantioselectivity. (From less hindered side)</td>
</tr>
<tr>
<td>NHC</td>
<td>· Umpolung</td>
<td>· Possibility of dimerization.</td>
</tr>
<tr>
<td></td>
<td>· Stereoselectivity is determined by ligand of NHC</td>
<td>· Partner is limited to azomethine imine. (Other partners are less reactive than aldehyde?)</td>
</tr>
<tr>
<td>Phosphine</td>
<td>· Umπpolung</td>
<td>· Other cyclizations ([3 + 2] or [3 + 4]) also proceed.</td>
</tr>
<tr>
<td></td>
<td>· Allene can be applied for this method.</td>
<td>· Low yields.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>· Stereoselectivity is difficult to be controlled?</td>
</tr>
<tr>
<td>Vinylcarbene</td>
<td>· Many examples are reported.</td>
<td>· Reaction is supported by Ester or ether substituents.</td>
</tr>
</tbody>
</table>
Future of [3 + 3] cycloaddition

- Possibility of high stereoselectivity or enantioselectivity
 - Stereoselectivity or enantioselectivity is controlled by chiral auxiliary.
 → Selectivity will be more strengthened by 2 chiral auxiliary??

- First addition step could be reversible?

If first step is reversible, compounds attacked from concave side are obtained selectively?