Recent development in metal catalyzed hydroamination reactions
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I. Introduction

Nitrogen-containing compounds like amines, imines and enamines are important bulk and fine

chemicals, biologically interesting compounds, or versatile synthetic intermediates, hydroamination
reactions are of considerable interest for academic and industrial chemistry. Today, the methods for
the industrial production of alkylamines include the condensation of ammonia with alcohols in the
presence of a catalyst and the hydrogenation of cyano compounds. Both process always gave mixtures
dut to alkyl exchange side reaction. For example
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Furthermore, those reactions always involve high pressure and high temperature, so it is very
desirable to develop more pure, milder reaction.

The most attractive way to obtain amines is the direct addition of ammonia or primary or secondary
amines to alkenes. Except that, the corresponding reaction with alkyene can also give amines with an
additional reduction of ketoimine intermedidates.
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But alkenes are more inexpensive and can directly give amines, so this seminar will discuss the
recent development about hydroamination of alkenes.
In general, hydroamination reactions are hindered by two major problems:

1) a high activation barrier for the direct addition of amines across C=C double bonds exists which
arises from electrostatic repulsion between the electron lone pair at the nitrogen atom and the
electron-rich C=C bond; ( <121 70 k")

2) the general negative reaction entropy 4S°  of the reaction is responsible for the fact that the
equilibrium of hydroamination reactions is shifted towards the starting materials at the higher
temperatures that are necessary to overcome the activation barrier. This combination of facts
makes it indispensable to develop catalytic hydroamination processes, which involve either
activation of the C_C multiple bond or activation of the amine.
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Organolathanide-Catalyzed Regioselective Intermolecular Hydroamination of Alkenes,
Alkynes, Vinylarenes, Di- and Trivinylarenes, and Methylenecyclopropanes. Scope and
Mechanistic Comparison to Intramolecular Cyclohydroaminations

Jae-Sang Ryu, George Yanwu Li,+ and Tobin J. Marks* J Am. Chem. Soc. 2003, 125, 12584.
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Rational Design in Homogeneous Catalysis. Ir( 1)-Catalyzed Addition of Aniline to
Norbornylene via N-H Activation

Albert L. Casalnuovo, * Joseph C. Calabrese, and David Milstein]
J. Am. Chem. Soc. 1988, 110, 6738-6744
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Palladium-Catalyzed Intermolecular Hydroaminationof Vinylarenes Using Arylamines - ut
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The catalytic, intermolecular hydroamination of olefins is a highly desired, but difficult process. Efficient, intramolecular, lanthanidc-
catalyzed hydroaminations of alkenes have been developed.by Marks, but intérmolecular reactions are generally slow. but reaction of
piperidine or aniline with styrene gives enamine by oxidative aminationu4 or product mixtures.

An efficicnt, palladium-catalyzed hydroamination of vinylarenes using aromatic amines to give sec-phenethylamine products in the
presence of acid cocatalyst (eq 1). Was reported.
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A New Pathway for Hydroammat\on Mechamsm of
Palladium-Catalyzed Addition of Anilines to Vinylarenes

Ulrike Nettekoven and John F. Hartwig*
J. Am. Chem. Soc. 2002, 124, ¥6%.{/66
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Flgure 1. ORTEP plot of 1a at 50% probability level (hydrogen atoms,
triflate anion, and solvent molecules are omitted for clarity). Selected bond
lengths: Pd—C1 = 2.157(9) A; Pd—C4 = =2.323(10) A; Pd—P1 = 2.329-
(3) A; Pd—P2 = 2.285(2) A.
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intermolecular, Markovnikov Hydroamination of Vinylarenes with Alkylamines
Masaru Utsunomiya and John F. Hartwig* .
J. Am. Chem. Soc. 2003, 125, 14286-14287

Late transition-metal catalysts are likely to be more convenient Table 2. Pd-Catalyzed Hydroamination of Alkylamines with
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Coflll)-Alkyl Complex- and Co(lll)-Alkylperoxo Complex-Catalyzed
Triethylsilylperoxidation of Alkenes with Molecular Oxygen and Triethylsilane
Takahiro Tokuyasu, Shigeki Kunikawa, Araki Masuyama, and Masatomo Nojima*
Org. Lett, 2002, 4, 3595
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Convenient Synthesis of Alkylhydrazides by the Cobalt-CatalyzeHydrohydrazination

Reaction of Olefins and Azodicarboxylates

Je’ ro'me Waser and Erick M. Carreira* J. Am. Chem. Soc. 2004, 126, 5676.

Table 1. Hydrohydrazination Reaction of Olefins (Eq 1)
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 Standard conditions: 0.5 mmol of alkens, 05 mmol of PhSiH;, 0.75
mmol of 3, 5 mol % of catalyst 1, 2.5 mL of ethanol &t 23 *C under No.
4 0.5 mmol of alkene was added 3¢ & solution in 1 mL of CH;Cly weing 1.5
mol % of catalyst 1. € 0.5 mmol of alkene, 0.75 mmol of PhSiHy, and 1.0
mmol of 3 were used.
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Tuble 2: Hydrohydrazinati ctions of morechallenging alkenes.
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1 @ R 12 h at 23°C, whereas the Co system showed less than 20%
PHSTH, R" " conversion after 24 h when using this silane.
" . Ny COBY e 3 N.,-80c B
RL‘,)\Rs @uo,C” N #oH, 2-30.0°C Boc’ ‘u
R? .

2 3




b. Anti-Markovnikov product formation

Anti-Markovnikov Functionalization of Olefins:Rhodium-Catalyzed Oxidative

Aminations ofStyrenes**

Matthias Beller," Martin Eichber: er, and Harald T
Angen. Chem. Int. Ed Eng. 1997, 36, 222% rauthwein

[Rh{cod),]BF ¢ NR,
2Pl
A + HNR, “.FPha A'/\/NRQ + AT AN
) 2 3 A 5

Scheme 2. Rhodium-catalyzed regioselective oxidative amination of styrenes.
Ar = aryl; R = alkyl, aryl; cod = (Z,2)-1,S-cyclooctadiene.

Table 1. Oxidative aminations of styrene [a].

Amige Yield (%)

engmine ethy! benzene
dicthylamine 40 54
di-n-butylamine 48 44
piperidine 55 57
hexahydroazepine 45 80
N-methylaniline 9 9

[a} Ratio of styrene:amine 4:1, 2.5 mol % i i
b o styrene mol % [Rb(cod),]BF,/2 PPh, relative to amine,

Ar
\q

e

Ar
A
% :

Ar

\—

® RhH,

Ar

af\m

2
3
8

Postulated mechanism of the oxidative amination. Ar = aryl; R = alkyl
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Schems 5. R of 4-methylsty and in the g of 10 mol% N-(2-phenylethenyl)-

morpholine.
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Both enaming hove similer veact iv;’ty.

Interestingly, morpholine gencrated a comparatively high
yield of the hydroamination product compared with other
amines that we studied. One possibility is that the hemilabile

oxygen atom of morpholine

wﬂ coordinates to the rhodium cep-
AR ter and stabilizes the alkyirho-
03 _Sium compleg, |

thus decreasing
Scheme 11. Hypothetical coor-

the possnblhty of B-hydride

dination of the thodimealkyl _ climination (Scheme 11).
species with f:»otp!xol.ine to sup- The proposed SE&M_
press f-hydride elimination. is supported by the fact that an

dncrease ip g eopcepuationol
the amine or of protons also' ases the amount of the

hydroamination product. In addition, the formation of the
alkylamine is dependent on the styrene concentration. An

of styrene also the formation of the hydro-
amination product. This is in agreement with ‘22%&
hydroaguinafion_cycle, because at higher coficentrations of

styrene a hydrogenation of enamine by a rhodium-dihydride

species is unlikel,
P Y. | /2//;‘
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Ruthenium-Catalyzed Anti-Markovnikov Hydroamination of Vinylarenes

Masaru Utsunomiya and John F. Hartwig*

J. Am. Chem. Soc. 2004, 126, 2702

(n last reporl, oxidative aumiuation 1 form

enpming Gﬂmf’éw with AWWMM‘&VL

5% Rufcod)(2-methylaltyl)
7% DPPPeont 2
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\/ dioxane, 100°C, 240
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We disclose here selected ruthenium complexes that catalyze

with exquisite cWarkﬂnikov
hydroamination of vinylarenes. Reactions of cyclic or acyclic, NMarkey 10

functionalized or unfunctionalized secondary amines with vinyl-

arencs form_tegmi ines. In addition to demonstrating high
selectiv'nt‘)?%mﬁnal amines, these results demon-
strate the tolerance of these late-metal catalysts toward Lewis basic
and acid-labile functionality. '

Table 2 Ruthenium-Calalyzed Hydroamination of Vinylarenes

with Afkylamines®

HNRR'+ R T :] N

Smot% Rufcod)2-maethyl
mmMnm%hs,so.u

doxane, 100°C, 24 h

o

O/\/ N \)
DPPPent = 1, 5-bis(diphenylphosphinojpentane 6% fsolatod yiold ;
reouminateon { 3

Table 1. Effects of Catalyst Components on the Hydroamination
of Styrene and Morpholine in Dioxane at 100 =C#

Ru{cod){math:
Y W % ek o, L
PR +HN O - NPT
\—/" dioxane, 100°C.24h Ph X
" 1 2

enty  Ru(%) igand acid yields: ¥ 6) 2 (%)

5 T DPPPent  10% TIOH 96 <1

s - 10% TFOH 0 <1

S 7%DPPPemt - 0 0

S 7%DPPPent  10% TFA g 0

2 3%DPPPent 5% TfOH 90 <1

S 14%PPhy 10% TfOH 36 9

S M%PEMPh,  10% TfOH 61 3

5  TDPPB 10% TOH 54 12

9 5  7%DPPHex!  10% TfOH 33 2

§  7%DPPF 10% TfOH S5 44

U 5  T%DPEphos’  10% TROH 19 2

“ Reaction conditions: morpholine 0.4 mmol, styrene 0.8 mmol, dioxan:
0.2 mL, 100 °C, 24 h. * GC yields. < 1,4-Bis(diphenylphosphino)butane
‘ 1,6-Bis(diphenylphosphino)hexane. < 1,1"-Bis(diphenylphosphino)fer
rocene. / Bis(2-diphenylphosphinophenyl jether.
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* Amine/vinylarene RuDPPPent/TOH = §:2:0.05:0.07:0.10 (1 mmol of
amine} in 0.50 mL of dioxanc. & Isoladed yicld. * 4 mmol of vinylarene was
used. 80 °C. <48 h. £0.25 mL of dioxane. £ 110 °C. * DIPPF was used as

ligand. / 1.5 mmol of vinylarene was used. / 72 h.
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