New Methods of Nitrogen Fixation System $N_2 \longrightarrow NH_3$ ### Today' topic - 1. General feature and history of N₂ fixation system - 1.1 Haber-Bosch process - 1.2 Nitrogenase - 1.3 Dinitogen-complex - 2. Approach of N₂ activation under normal temperature and pressure - 2.1. N₂ fixation using H₂ - 2.2. N₂ fixation using proton source - 2.3 N₂ fixation using polyhydride complex - 3. Application of NH₃ in the future Fritz Haber (1868-1934) Nobel prizes, in 1918 Carl Bosch (1874-1940) Nobel prizes, in 1931 Sir William Crookes predicted scarcity of food by population increase in 1898 and called scientists's attention to new nitrogen fixation system for human life Haber process was invented in 1909 and developed to industlialization by Bosch in 1913 It has been the main industrial route to synthesis ammonia until now ### Nitrogen Cycle the process by which nitrogen is converted between its various chemical forms. Animal and plants in the world couldn't incorporate N_2 as N element in their body. For introducing N element in their body, N_2 need to be converted to NH_3 cited by homepage in Nishibayashi's laboratory First industrial Haber-Bosch process operated at the BASF **General scheme** $$3 CH_4 + 6 H_2O \rightarrow 3 CO_2 + 12 H_2$$ $12 H_2 + 4 N_2 \rightarrow 8 NH_3$ Habor process has been called the method for "making breads from coal and air" !! About the half amount of food in the world is produced by Harbor-Bosch process nowadays!! N₂ fixation by Haber-Bosch process $$N_2 + 3 H_2 = \frac{\text{cat. Fe}_3O_4/\text{K}_2O/\text{Al}_2O_3}{200-500 \text{ atm, } 500-600 \text{ °C}} > 2 \text{ NH}_3$$ cat. role: 1. Fe3O4 is reduced to Fe in the condition, Fe provide π back donation to N₂. - 2. K_2O support π back donation of Fe - 3. Al₂O₃ inhibit aggregation of Fe ΔG° = -7.7 kcal/mol at 298 K, 1atm in the overall reaction an equilibrium composition with 96% ammonia from a 1:3 of N_2 and H_2 . the thermodynamics of nitrogen fixation can be favorable, but..... J. B.Howard et al, Chem. Rev. 1996, 96, 2965. $$N_2 + H_2$$ \longrightarrow N_2H_2 $\triangle Hf = +50.9 \text{ kcal/mol}$ $N_2H_2 + H_2$ \longrightarrow N_2H_4 $\triangle Hf = -27.2 \text{ kcal/mol}$ $N_2H_4 + H_2$ \longrightarrow $2NH_3$ $\triangle Hf = -45.6 \text{ kcal/mol}$ the kinetic stability of the N₂ triple bond complicated realization of ammonia synthesis #### **Equilibrium shifts toward the reactants** 1 atm $$723 \text{ K}$$ $N_2(g) + 3H_2(g)$ — 2NH₃ (g) 0.2% increase of pressure 500 atm 723 K $N_2(g) + 3H_2(g)$ — 2NH₃ (g) 35% High temperatures are required for N_2 triple bond dissociation, which is the ratedetermining step. But the equilibrium shifts toward the reactants with increasing temperature, so the reaction pressure is needed. If N₂ bond dissociation is realized in low temperature, reaction pressure isn't needed ### 1.2 Nitrogenase Nitrogenases are enzymes used by prokaryotic organisms to fix atmospheric nitrogen gas, and composed of two proteins, Fe protein and MoFe protein $$N_2 + 8 H^+ + 8 e^- + 16 MgATP$$ nitrogenase $$1 atm, rt$$ 2 NH₃ + H₂ + 16 MgADP + 16 Pi under mild reaction conditions The yield of NH₃ = 75% #### One half of the nitrogenase complex #### 1.2 Nitrogenase B. M. Hoffman et al, Acc. Chem. Res. 2005, 42, 609. recently identified as carbon O, Einsle et al, Science 2011, 334, 940. S, Debeer et al, Science, **2011**, 334, 974. The mechanisms for nitrogen fixation divided in two main groups (conversion at Mo and conversion at Fe) has been unclear... ### 1.2 Nitrogenase #### Elucidation of the mechanism L. C. Seefeldt et al, Dalton Trans., 2006, 2277. Mutation of the amino acid residue such as $\alpha\text{--}195^{His}$, $\alpha\text{--}70^{val},~and~Freezing$ the MoFe protein These two changes successfully sought to trap states during reduction of N2, a diazene, and hydrazine Nitrogenase has been thouht to conduct N₂ fixation by Alternating pathway Imitating nitrogenase, N₂ fixation under mild condition in artificial reaction system would be realized? ### 1.3 Dinitogen-complex #### Various dinitrogen-complex Kagakudojin, Chemistry, 2013, 6, 37. ### **Characterof Dinitogen-ligand and complex** - 1. N_2 ligand is isoelectronic to CO, but weaker σ -donor and π -acceptor. - 2. usual binding mode is end-on. - 3. strong π -back donation can stabilize N_2 comple. - 4. distance of N_2 bond of complex is longer than N_2 molecule - 5. Redox mode of N_2 complexs are generally $[N_2]^0$, $[N_2]^{2-}$, $[N_2]^4$. ### 1.3 Dinitogen-complex The breakthrough of stoichiometric N_2 fixation Conversion from N_2 to NH_3 needs 6 electron. 2.1. $\rm N_2$ fixation using $\rm H_2$ Hidai group discovered the formation of $\rm MoP_2H_2$ (Mo with trans dihydrides by IR) \Longrightarrow It is difficult for nitrogen complex to react wth H $_2$ directly to produce NH $_3$ 2.2. N_2 fixation using proton source Chatt group suceeded stoichiometric N2 fixation under a protic condition. #### The first example of N2 fixation using hydrogen under mild condition Y. Nishibayashi, S. Iwai and M. Hidai, Science, 1998, 279, 540. Direct treatment of W complex with 10 eq. of Ru complex under above condition afforded NH3 in 22% yield the condition using Fe-H and Co-H instead of Ru-H afforded N.R. (M, Hidai et al, JACS. 1972, 94, 110.) #### **Reaction mechanism** Kagaku Dojin, bond activation and molecular activation, published in 2011 Because W complex acted as reductant, catlytic cycle wasn't achieved. If the remaining Ru-H act as the reduction of the W(VI) to regenerate, catlytic cycle will be realized ### Recent development of N₂ fixation using H₂ #### N2 Reduction and Hydrogenation to Ammonia by a Iron-Potassium Complex P.L. Holland et al, Science **2011**, 334, 780. First report Incorporating two H of H₂ to N₂ complex J. Chirik *et al*, *Nature* **2004**, *427*, 527. Hf, Ti complex was also synthesized by Chirik. $$(\eta 5-C_{5}Me_{4}H)_{2}ZrCl_{2} \xrightarrow{Na/Hg} \frac{H_{2}}{N_{2}} \xrightarrow{Zr} \frac{H_{2}}{N_{2}} \xrightarrow{Zr} \frac{H_{2}}{N_{2}} \xrightarrow{Zr} \frac{H_{2}}{N_{2}} \xrightarrow{(60\%)} \frac{H_{2}}{4}$$ If Cp* as ligand was used, H2 wasn't activated (Bercaw, 1976) #### X-ray crystallography shows the molecular structure Fe1-N1,1.812(2) Å; Fe1-N2, 1.906(2) Å; Fe2-N1, 1.809(2) Å; Fe2-N2, 1.918(2) Å; Fe3-N2, 1.832(2) Å; N1-N2, 2.799(2) Å ♦ High spin Fe 1,2 (III), Fe 3,4 (II) was assigned by Mössbauer and magnetic properties #### **Iron-Potassium Complex Analogue** N-N distance is 1.10 Å (free N₂), 1.14 Å (general mono,di-Fe complex), 1.25 Å (diazene), 1.45 Å (hydrazine) C: there is no N-N bond; six-electron reduction of N_2 ; $[N_2]^6$ Ni(I)-Potassium Complex S. Limberg et al., ACIE 2009, 48, 3357. N-N bond is 1.12 $\mbox{\normalfont\AA}$ Ni-N (N₂) bond is 1.83 $\mbox{\normalfont\AA}$ N-N bond is 1.14 \AA Ni-N (N₂) bond is 1.77 \AA N-N bond is 1.19 \AA Ni-N (N₂) bond is 1.75 \AA N2-activated rate ## Y-(N₂)³⁻ Radical Complexes ♦ [N₂]³ redox mode was only reported $$Y[N(SiMe_3)_2]_3 + KC_8 \xrightarrow{THF, N_2}$$ W, J. Evans et al, JACS, 2009, 131, 11195. N-N bond is 1.41 Å (Me₃Si)₂N THF Y N(SiMe₃)₂ THF THF ### **Short Summary 2.1.** Under mild reaction condition, catalytic N₂ fixation using H₂ hasn't been reported... Problematic point: How H₂ is utilized as reductant (H⁻), instead of metal reductant I think most possible reaction system to realize catalytic reaction using H₂ Y. Nishibayashi, S. Iwai and M. Hidai,, Science, 1998, 279, 540. corporated use of two complex is desirable (one can activate H2, while the other can actiate N2) #### First catalytic synthesis of NH3 equivalent K. Shiina *et al*, *JACS*, **1972**, *94*, 9266.M. Hidai *et al*, *JACS*. **1989**, *111*, 1939. $$N_2 + 6 M + 6 Me_3 SiCI \xrightarrow{\text{catalyst}} 2 N(SiMe_3)_3$$ 1 atm M = Li or Na catalyst: $$CrCl_3$$ Ph Me_2P Ph Me_2P Ph Me_2P Ph Me_2Ph Ph e_2Ph reducing reagent: $M = Li$ $M = Na$ amount of silylamine: 5 equiv (6.3%) 24 equiv (36.6%) Byproduct (TMS₂) **25.1% 39.0%** ### **Proposed mechanism** #### **Development of synthesis of NH3 equivalent** Y. Nishibayashi et al, organometalics, 2008, 27, 3947. Background: Nishibayashi's group reported chiral ferrocene complex (*ACIE*, **2006**, *45*, 3819). As an extension of their study, They have now envisaged the preparation of W and Mo-dinitrogen complexes bearing ferrocenyldiphosphines as auxiliary ligands. #### The ratio of cis:trans = 6:1, cis-isomer was isolated in 19% by recrystallization | complex ^a | $v_{\rm NN}/{\rm cm}^{-1_b}$ | $E_{1/2}/V^c$ | |---|------------------------------|---------------| | cis-W(N ₂) ₂ (depf) ₂ (cis -1) | 1972, 1906 | -0.88qr | | cis-W(N ₂) ₂ (PPhMe ₂) ₄ | 1991, 1913 | -0.83qr | | trans-W(N ₂) ₂ (depf) ₂ ($trans$ -1) | 1883 | -0.95 | | trans-W(N ₂) ₂ (depe) ₂ | 1904 | -0.96 | | trans-Mo(N ₂) ₂ (depf) ₂ ($trans$ - 2) | 1907 | -0.97 | | trans-Mo(N ₂) ₂ (depe) ₂ | 1928 | -0.97 | the electron donation from each depf ligand proved to be as strong as trialkylphosphine ligands No cis isomer was observed at all due to fast cis-trans isomerization of molybdenum analogues. the depf ligand has the ability of strong π -back-donation from the metal center to the N₂ ligands. #### Reactivity of new catalyst Y. Nishibayashi et al, organometalics, 2008, 27, 3947. cis/trans-1 or + $$H_2SO_4$$ \longrightarrow NH_4^+ trans-2 $MeOH$ rt, 24 h 137% (cis-1) N_2 (1 atm) 129% (trans-1) 48% (trans-2) W,Mo-dinitrogen complexes bearing conventional diphosphines such as 1,2-bis(diphenylphosohino) ethane does not produce ammonia. trans-isomer is only obtained in below cases and ammonia also was generated. Y. Nishibayashi *et a*l, *organometalics*, **2009**, *28*, 4741. Ruthenocenyldiphosphine Y. Nishibayashi *et a*l, *organometalics*, **2009**, *28*, 5821. Bis(dialkylphosphinobenzene)chromiums $$\begin{array}{c|c} Me_2 & N & Me_2 \\ \hline \\ P_{N_{1,N_{1,N_{2}}}} & N & Me_2 \\ \hline \\ Cr & W & Cr \\ \hline \\ Me_2 & N & Me_2 \\ \hline \\ N & Me_2 & N \end{array}$$ #### Catalytic formation of silylamine from molecular dinitrogen Y. Nishibayashi et al, JACS, **2011**, 133, 3498. | | a atalyat T | TONb | recovery of | amount (mmol) ^c | | | | |-----------------|-------------|------|-----------------------------|------------------------------------|-------------------------------------|------|--------------| | run catalys | catalyst | TON | Me₃SiCl (mmol) ^C | N(SiMe ₃) ₃ | Me ₃ SiSiMe ₃ | 9 | 10 | | 1 | 1a | 90 | 43.4 | 1.35 | 0.73 | 5.97 | 1.19 | | 10 ^d | 1a | 2 | 47.6 | 0.03 | 4.01 | 2.71 | 0.13 | | 11 | none | 0 | 56.1 | not detected | 0.62 | 0.18 | not detected | d: the rection was carried out under Ar Byproducts **9**, **10** weren't seen,in using CrCl₃, Mo(PMe₂Ph)₃ in Shiina and Hidai's reports or in run **11**Ferrocene is key part to produce byproducts **9**, **10** derived from THF N(SiMe₃)₃ was formed under Ar in run **10**, but N(SiMe₃)₃ wasn't observed under dry air O2 in the air inhibited the generation of radical species such as SiMe₃ radical #### The activities of various Mo or W catalyst $$N_2$$ + 6 Me₃SiCl + 6 Na $\frac{\text{cat. M}}{\text{rt, 20 h}}$ 2 N(SiMe₃)₃ $$P = PEt_2$$ 12 equiv / cat. #### **Reaction mechanism** #### The mechanism was elucidated by DFT calculation in Fe(II) and Mo(0) Almost all of the reaction steps proceed in an exergonic way with reasonably low activation barriers only ferrocenyl diphosphine as assistant ligand afforded a little amount of silylamine!! Y. Nishibayashi et al, Nat. commun, **2012**, *3*, 1254. $$\begin{array}{c} N_2 \\ N_2 \\ N_2 \\ N_3 \\ N_4 \\ N_2 \\ N_2 \\ N_3 \\ N_4 N_5 \\ N_4 \\ N_4 \\ N_5 \\ N_4 \\ N_4 \\ N_5 N_5 \\ N_6 \\$$ Reaction time (h) ### Catalytic formation of silylamine from molecular dinitrogen - 1. $[Fe(CO)_5]$ and ferrocenes have almost the same catalytic activity. - 2. $[Fe(SiMe_3)_2(CO)_4]$ worked as one of the most effective catalysts. - 3. The reaction of $[Na_2Fe(CO)_4]$, prepared from $[Fe(CO)_5]$ and Na, with Me_3SiCI has been known to give $[Fe(SiMe_3)_2(CO)_4]$, - 4. ferrocene with reducing agents afforded the corresponding low-valent Fe(0 or -II) complexes which may be easily converted into the Fe(II)(SiMe₃)₂ species by treatment with Me₃SiCl and/or Me₃Si radical. These results indicate that two Me₃Si groups can readily be introduced to the Fe atom of the Fe complexes under the catalytic conditions #### Reaction mechanism #### End on N was attacked by Si radical It remains unclear as to why the mechanism is changed... Possibly Mo-ferrocene complex also was changed to another active species? #### Catalytic Reduction of Dinitrogen to Ammonia at a Single Molybdenum Center R. R. Schrock et al, Science 2003, 301, 76. R. R. Schrock et al, Science 2003, 301, 76. Cr H Proton source R. R. Schrock et al, Science 2003, 301, 76. Ar= CF₃ Ar= CF₃ 7.6 equiv / cat. (63%) Until now, development of TON or yield haven't seen..... reducing agent #### Character of ligand: to prevent any bimetallic reactions (aside from electron transfer). to maximize steric protection of a metal coordination site in a monometallic species. to provide increased solubility of intermediates in nonpolar solvents. Problem: CrCp*2 was oxidized rapidly by {LutH}{BAr4} in C6D6 Solution : The choice of heptane as the solvent ensured that the concentration of sparingly soluble [LutH][BAr₄] in solution would be low. The suspension was with cat. then stirred vigorously as a solution of CrCp*₂ was added with a syringe pump over a period of 6 hours. Eight of the proposed intermediates (1, 2, 3, 4, 7, 8, 12, 13) have been isolated, with the exception of 7, all are extremely sensitive to oxygen. counter anion of 4, 8, 12 were BAr_4' (Ar = 3,5-(CF₃)₂C₆H₃) PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia Y. Nishibayashi, Nat. Chem., 2011, 3, 120 Compared to Schrock's system, TON was better buty yield was worse. ### In the case of using another reductant and H⁺ source #### Reductant | N ₂
(1 atm | 6 reductant
(0.72 mmol) | T | | - 0 k II I | |--------------------------|----------------------------|-----------------------|---|-------------------------------------| | Run | Reductant | E _{1/2} (V)* | NH ₃ (mol. equiv./2a) [†] | H_2 (mol. equiv./2a) † | | 1 | CoCp ₂ | −1.15 | 11.8 | 13.4 | | 2 | _‡ | | 1.0 | 0.2 | | 3 | CrCp* ₂ | -1.35 | 12.2 | 4.2 | | 4 | CrCp ₂ | -0.88 | 0 | 0 | ⇒ In schrock system, CoCp is less effective reductant. #### H⁺ source | | $\frac{N_2}{(1 \text{ atm})} + \frac{6 \text{ CoCp}_2}{(0.72 \text{ mmol})} +$ | | mmol) 2a (0.010 mmol | $\stackrel{\triangleright}{\sim} 2 \text{NH}_3$ | |-----|--|---------------------------|--------------------------------------|---| | Run | HX (proton source) | р К _а * | NH_3 (mol. equiv./2a) † | H ₂ (mol. equiv./2a) [†] | | 1 | [LutH]OTf | 14.4 | 11.8 | 13.4 | | 2 | _‡ | | 0 | 0 | | 3 | [LutH]BAr′ ₄ | 14.4 | 2.7 | 19.0 | | 4 | [LutH]Cl | 14.4 | 0.7 | 0.1 | | 5 | [2-PicH]OTf | 13.9 | 9.1 | 16.6 | | 6 | [PyH]OTf | 12.6 | 3.9 | 20.4 | | 7 | HOTf | 2.6 | 1.7 | 1.1 | OTf anion in the proton source promotes the reaction, proton source with high acidity worked as less effective proton sources. #### Synthesis of complex CI $$N_2$$ (1 atm) N_2 (1 atm) N_3 N_4 N_4 N_5 N_5 N_6 In the case of $P = P^i Pr_2$, P = 1-adamantyl₂P, the complex wasn't formed Complexes bearing unsymmetric PNP-type pincer ligands Y. Nishibayashi et al, Organometallics, 2012, 31, 8437. - **♦**Unsymmetric Ad ligand contributed to increasing of TON. - **▲**4-substituent in pyridine play critical role to increase TON. #### Stoichiometric reaction to obtain information on the reaction pathway Hydrazido complex 7a was obtained in proton only. NH₃ was generated from 2a via formation of 7a In the catalytic cycle, hydrazide complex was also formed as intermediate ### **Short Summary 2.2.** Compared to N_2 fixation using H_2 , catalytic reaction has been depelopped. Shown below scheme is highest performance of TON in synthesis of NH_3 equivalent on the other hand.... Schrock, Nishibayashi's groups has been reported catalyic N_2 fixation using metallocene as reductant, organic acid as proton source recently. The ideal system is to use H₂O as proton source, electron from electricity as reductant! #### Dinitrogen Cleavage and Hydrogenation by a Trinuclear Titanium Polyhydride Complex Z. Hou et al, Science 2013, 340, 1549. Metal hyrides cleave N₂ triple bond !! #### Precedents of reactivity of metal hydride complexes toward N₂ D. Fryzuk et al, Chem. Commun. 2010, 46, 1013. Reversible equilibrium between MoH₂ complex and dinuclear N₂ derivative - W. E. Silverthorn (1971) Formation of diazene complex via Ti hydride complex - P. J. Chirik (2007) The hydride of M-H complex hasn't been incorporated to N_2 . #### Tetranuclear Zirconium and Hafnium polyhydride complexes Z. Hou et al, Organometallics, **2013**, 32, 2145. Motivation: [Cp₂MHn] (n=1, 2) complex in group 4 transition metal have been extensively reported. On the other hand, half-sandwich type [CpMHn] have hardly been studied. In an attempt to synthesize a titanium analog, Ti complex with N2 (in glove box) was formed. tetranuclear Ti, Zr, Hf complex didn't react with N₂. ### Observed intermediates with ¹⁵N₂ by ¹H and ¹⁵N NMR spectroscopy the difference of valence in Ti(IV) and Ti(III) play acritical role to reduce N₂ - 1. LUMO orbital of Ti(IV) activate HOMO orbital of N₂ - 2. H⁻ between Ti(IV) and Ti(III) have high reductive potential for polarization #### DFT calculated energy profile for the reaction of 3m with N₂ the cleavage of N-N bond and formation of N-H bond have higher energy barriers than other steps. #### **Reactivity of Ti complex** - ♠ No apparent reaction between 5 or 6 and H₂ (up to 8 atm) was observed at room or higher temperatures (up to 150 °C). - ♠ when the hydrogenolysis of 1 with H₂ was carried out in the presence of 1 equiv of 5, 2 was formed quantitatively through generating Ti hydride species such as Cp'TiH₃ formed in situ by hydrogenolysis of 1 ### **Short Summary 2.3.** Hou's report is maybe breakthrough to conduct catalytic N_2 fixation using H_2 under mild condition. Until now, H-H bond has been cleavaged by metal complex which activated N_2 to generate NH_3 . On the other hand, this report is the reversed strategy. Desirable cycle will work If Ti-N bond of 5 is cleavaged by H₂....... ### 3. Application of NH₃ in the future If these reserchs are developed, low temperture and pressure process would replace industrial Harbor-Bosh process immediately ?? ### **Industrial process** New problem: Under low pressure, freezing system is needed for liquefaction of NH₃ in the plant N₂ fixation under mild condition don't need large-scale plant Low temperture and pressure process would be suitable in nitrogen fixation in small-scale and distributed type ### 3. Application of NH₃ in the future ### **Toward Realization of Clean Energy Industry** R.G.Compton et al, *Energ. Environ. Sci.* **2011**, *4*, 1255. S. Tao et al, Int. *J. Hydrogen Energ.* **2012**, *37*, 1482. **Desirable energy** Primary Energy Renewable sources Secondary Energy (Energy Carrier) Carbon free energy Hydrogen, NH₃ (L. Green Jr. in 1982) J Hydrog Energy, 1982, 7, 355 While the introduction of a hydrogen economy has its merits (**stockale**, **clean**), the associated problems with on-board hydrogen storage are still a barrier to implementation..... \longrightarrow NH₃ is good storage of H₂ because of easy storage, containing 17.6 wt% H₂, prepared inflastructure !!! indophenol blue method to measure the yield of NH₃ By measuring absorbance of indophenol, the yield is determined