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Umpolung is any process by which donor and acceeptor reactivity of an atom are interchanged.
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umpolung reactivity  C,,= acceptor, Cy, ,.,= donor

Reactivity umpolung enables us to construct new bonds which is difficult to construct or
cannot be achieved by “usual” reactivity.

well known acylanion equivalent
0 B |

OH
o R/ak H

S-S
o R><Li R — R._s A ,
. — s \[T*zg O — :
d 3!
U . R

¢ S

use of cyclopropanes to make Cy, acceptor

RzCllLi

/\<I\n/ — R}rr/\/\)(j)\ E— NP

') [}

a—carbon as electrophiles by using epoxide

O OTMS

(RCUCN)Li Q . f O
— s a
’ OV
HO HO

These examples need pre-functionalization to achieve reactivity umpolung. Of course they can
be alternative synthetic approaches of 'usual’ reactivity, but if we can omit pre-functionalization
reactivity umpolung should be more usefil tool in organic chemistry.

Today I will focus on the direct reactivity umpolung methods.
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1. Benzoin Condensation and Stetter Reaction 5
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unusual reactivity

These reactions' feature is gencration of acylanion equivalent by catalitic methods.

Conventional benzoin condensation was catalyzed by "CN.
in 1943 Ukai et. al. found that thiazolium salts can be used as catalysts for benzoin condensation.

The mechanism was proposed by R.Breslow et. al. and accepted so far.
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Great progress of this ficld w

Nucleophilic carbenes derived from triazolum salls are

thiazotium salts.
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Triazolium salts are applicable to asymmetric Stelte
of the benzoin condensation.

rreaction which is | 4-addition variant
Rovis et. al. studied this chemistry intensiveh

v. and excellent results have been reported.

Kerr. M. S.: Rovis. T. ./ Am. Chem. Soc. 2004. 126, 8876.
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Appropriate bases are required to give satisfactory yields and cc.

The reversal in stereoinduction between the aromatic and the aliphatic is unclear.

is shown below.
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Intermolecular cross benzoin condensation and Stetter reaction have been very difficult. but recentiy

Johnson et. al. succeeded (o provide intermolecular cross benzoin condensation products.

Their strategy is the use of acvlsilan as an acylanion equivalent.
X. Linghu; J. R. Potnick: J. S. Johnson ./ Am. Chem. Soc. 2004, 126. 307,
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Bascd on their concept. intermolecular cross benzoin reaction procceded well.

While BINOL. derived catalyst showed no catalytic activity. TADDOL derived phosphite(4f)
worked and gave satisfactory results especially for aromatic substrates.

Synthetically useful level direct catalvtic intermolecular benzoin condensation and Stetter

reaction have not been developed.

To afford this challenging reaction, we should overcome some scrious problems. such as
>>>selective generation ol acylanion equivalent from the aldchyde

>>>suppress the self coupling

>>>for asymmetric reaction, epimcrization at u—positon should be suppressed




2. Allylation by Umpolung of n—Allylpalladium

I'-allylpalladium chemistry has shown great utility. and became reliable synthetic tool.
>>>casy preparation of n—all\ Ipalldd!um
>>>relatively mild condition

"usual” reactivity of n—allylpalladium
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nucleophile based on the concept of UM E' ~_F
umpolung. nucleophilic allylic reagents d/ d ~
are casily prepared under mild conditions. umpolung reactivity

The strategy of transmetallation between palladium and more electropositive metal than palladium
has becn studied and revealed that Sn. In and Zn are effective metal for umpolung.
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Among three metals Sn. In, Zn. only Zn-mediated reaction has been studied toward asymmetric variant.
The reason is preliminal observation and the proposed mechanism by Tamaru ct. al..

Y. Tamaru J. Organomet. Chem. 1999, 576, 215.
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According to this mechanism. chiral ligands on palladium have potential of asymmetric induction.
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At the transmetallation step. only one chiral ligand coordinate
to paladium. So monodentate ligand might give promissing results.




First example of catalytic asymmetric version was reported by Zanoni et. al.
G. Zanoni; S. Gladiali: A. Marchetti: P. Piccinini: 1. Iredici; G. Vidari Adngew. Chem. Int. Ed. 2004. 43. 846
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Cinnamyl acetate also produced the chiral compound using this system.
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But considering the active allylating species mentioned above,
this result was surprising!!
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Generating allyl-zinc reagent has no chiralitv in this case.

no chirality

Recentry Feringa ct. al. suggested alternative mechanism based on their results.

G. P. Howell; A. J. Minnaard: B. L.. Feringa Org. Biomol. Chem. 2006. 4. 1278.
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main points of Feringa's proposed mechanism
>>>Chiral ligands should exist on the palladium.
(known stability of palladium/ phosphoramidite system)
>>>n!-allylpalladium is the active species to allylate the aldehyde.
>>>EtyZn promotes the formation of n'-allylpalladium by alkylating Pd.



3. Oxidative Coupling of Enolates
I 4-dicarbony! compounds which cannot be obtained through 'usual’ reactivity are provided
by this transformation.

9 0 0 R}

R /U\ . K“\R" base: [O] o "u\F‘L,J\n/ R
3 - 2

O O O 0 IS N
B .1 (0] P 4 R ( R
R Z R R (7R : R= R’

Rz R3 R) R3 “““““““““““““ i

Oxidative coupling of ketone-cnolates was studied intensively by Sacgusa ct. al. in the 1970s.
Y. lto: T. Konoike; I'. Saegusa ./ Am. Chem._Soc. 1975. 97, 291 .
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RI= alkyl, aryl. vinyl, cte...

DMF was essential for this reaction. (solvation of ketone enolates. solubility of CuCl,)
leq of CuCl, gave the best result among other metals such as Ag, Fe. Zn etc...
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Large excess of acetone over the other ketone was required.
Only methy! ketones were applicable.

Recent progress by Baran et. al. P.S. Baran; M. P. DeMartino Augew. Chem. Ini. kd._ 2006, 435, 7083
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Baran ct. al. has studied other coupling partners (indole and pyrrole).

P.S. Baran; J. M. Richter .J. Am. Chem. Soc. 2004, 126. 7450.
P.S. Baran: 1. M. Richter: D. W. Lin Angew. Chem. Int. Ed. 2008, 44. 609.
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Although the yiclds were low, this system
can be applied for construction of quaternary
carbon centers.

Reaction proceeded under substoichiometric
quantities of oxidant.
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This finding was surprising considering
the mechaism mentioned above.
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