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Modification of carbohydrates: Challenges

4V. Dimakos, M. S. Taylor, Chem. Rev. 2018, 118, 11457–11517.

The key issue: Site-selectivity 
(several OH groups in one 
molecule)

Protecting-group strategies 

✓Well developed

✗ Requires multi-step synthetic 
sequences

✗ May cause deactivation of the 
unprotected hydroxyl groups

✓ Site-selective modification with 
minimally protected substrates



Modification of carbohydrates: Precedents 

5

Formation of cyclic 
adducts from diol 
moieties

Acylation 
(Esterification)

Alkylation

Glycosylation

Silylation

Phosphorylation

Sulfation

V. Dimakos, M. S. Taylor, Chem. Rev. 2018, 118, 11457–11517.

…and so on
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Examples of selective acylation of OH groups

7

• Carbodiimide / Uronium Salt-Mediated Coupling
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• Complexation of OH groups
S. Jana, S. Mondal, S. S. Kulkarni, Org. Lett. 2017, 19, 1784–1787.

D. Lee, M. S. Taylor, J. Am. Chem. Soc. 2011, 133, 3724–3727.

• Organocatalyzed acylations (using DMAP catalyst)
…and so on
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Site-selective acylation using DMAP

Chemoselective acylation of a secondary hydroxyl group in the 
presence of a primary hydroxyl group

= Difficult because of the steric effects

9E. Kattnig, M. Albert, Org. Lett. 2004, 6, 945–948.
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85% site-selectivity
73% yield



Site-selective acylation of C(4)-OH
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• octyl α-D-glucopyranoside

• octyl β-D-glucopyranoside
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K. S. Griswold, S. J. Miller, Tetrahedron 2003, 59, 8869–8875.

T. Kurahashi, T. Mizutani, J. Yoshida, J. Chem. Soc. Perkin 1 1999, 465–474.

✗ Low selectivities

O

OC8H17
OH

HO
HO

OH

123

4 5

6 0.7 eq. Ac2O
0.05 eq. DMAP

K2CO3, CHCl3
23 oC, 1 h

Octyl α-D-glucopyranoside
2 mmol/L

61% site-selectivity
98% conversion

O

OC8H17
OH

HO
AcO

OH



Table of contents

1. Introduction

2. Site-selective acylation of monosaccharides

3. Site-selective acylation of complex molecules

4. Application to total syntheses

5. Summary

11



Catalytic site-selective single-step acylation

12

✓ A newly developed catalyst    ✓ High selectivity and high yield
✓ An extremely short method

T. Kawabata, et al. J. Am. Chem. Soc. 2007, 129, 12890–12895.



・ 4-pyrrolidinopyridine (PPy): Powerful catalysts for acylation 
of alcohols

Catalyst design: PPy as an active site

13

Relative effects of the cataysts

E. F. V. Scriven, Chem. Soc. Rev. 1983, 12, 129–161.

• Reactive intermediate generated from PPy: acylpyridinium
ions (such as in the reaction using DMAP).

G. Höfle, W. Steglich, H. Vorbrüggen, Angew. Chem. Int. Ed. Engl. 1978, 17, 569–583.
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Proposed transition state

14T. Kawabata, et al. J. Am. Chem. Soc. 2007, 129, 12890–12895.

• C(6)-OH: Preferentially form an H-bond with an acceptor (e.g. an 
amide carbonyl group) of the catalyst

• C(2)-OH, C(3)-OH: Additional interactions to fix the conformation 
of carbohydrate

→ Selective acylation at C(4)-OH



Catalyst design: Functional side chains 

15

Indole substructure of 
tryptophan:
Suitable for H-bonding and CH-π 
interaction with carbohydrates

T. Kawabata, et al. J. Am. Chem. Soc. 2007, 129, 12890–12895.

Octyl esters:
Enhance the solubility of the 
catalysts in nonpolar solvents

Catalysts 3 and 4:
Tyrosine instead of 
tryptophan



Comparison of catalysts’ activity

16

The highest selectivity for 4-O-acylation was observed by 
using catalyst 1.

T. Kawabata, et al. J. Am. Chem. Soc. 2007, 129, 12890–12895.



Solvent effects

17

H-bonding > CH-π interaction

T. Kawabata, et al. J. Am. Chem. Soc. 2007, 129, 12890–12895.



Temperature effects and catalyst loading

18

✓ Low temperature and high catalyst loading

T. Kawabata, et al. J. Am. Chem. Soc. 2007, 129, 12890–12895.



Mechanistic studies: Use of 6-OMe derivative

19

Confirmation of the effects of H-bonding between C(6)-OH 
and the catalyst to the regioselectivity

→ Use 6-OMe derivative

Ø H-bonding between C(6)-OH and the catalyst is critical for 
the regioselective reaction.

T. Kawabata, et al. J. Am. Chem. Soc. 2007, 129, 12890–12895.



Mechanistic studies: Competitive acylation

20

Ø Site-selective acylation proceeds in an accelerative
manner.

T. Kawabata, et al. J. Am. Chem. Soc. 2007, 129, 12890–12895.



Effects of catalyst structures

21

Indole substructure of 
catalyst 1:
→ N-methylindole (entry 2) 
→ 2-naphthyl (entry 3)

Two amide carbonyl groups at 
C(2’) and C(5’) are essential 
for the selective acylation at 
C(4)-OH.

T. Kawabata, et al. J. Am. Chem. Soc. 2007, 129, 12890–12895.



C2-symmetric structure of the catalyst

22

With C2-symmetric structure, 
approach of the carbohydrate 
substrate from…
the face of the C(2’) side chain
= the face of the C(5’) side chain

T. Kawabata, et al. J. Am. Chem. Soc. 2007, 129, 12890–12895.

The low selectivity in entry 4  is 
caused by the nonselective 
acylation of carbohydrates 
which approaches from the C(5’) 
side chain.



Proposed transition state model

23

1) The primary hydroxyl group at 
C(6) (most reactive) forms H-bond 
with an amide carbonyl (strongest 
H-bond acceptor).

2) Indole NH located 
near C(3)-OH of the 
carbohydrate forms H-
bond.

3) Substrate is fixed at this 
conformation via multiple H-bonding, 
and the acylation proceeds in an 
accelerative manner at C(4)-OH.

T. Kawabata, et al. J. Am. Chem. Soc. 2007, 129, 12890–12895.



Substrate scope

24T. Kawabata, et al. J. Am. Chem. Soc. 2007, 129, 12890–12895.
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Explanation of the substrate scope results
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Unfavorable interaction 
between an α-octyloxy
substituent and the 
acylpyridinium ion

Axial hydroxy group at 
C(4)
Ø C(6)-OH selective 

reaction

T. Kawabata, et al. J. Am. Chem. Soc. 2007, 129, 12890–12895.
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Short summary

üOrganocatalytic site-selective acylation of monosaccharides

üUp to >99% selectivity, 98% yield

üReduction of synthetic steps toward carbohydrates

26T. Kawabata, et al. J. Am. Chem. Soc. 2007, 129, 12890–12895.

ØApplication to various molecules
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Expansion of substrate scope

28

üVarious acid anhydrides (derived from α-amino acids, 
cinnamic acid, and gallic acid)

üDisaccharides with seven free hydroxy groups

ØHigh functional group tolerance was confirmed. 

T. Kawabata, et al. J. Org. Chem. 2009, 74, 8802–8805.



Site-selective acylation of digitoxin

29

üVarious acid anhydrides (R = Me, i-Pr, Ph and so on) 

üHigh C(4’’’) selectivity

K. Yoshida, T. Furuta, T. Kawabata, Tetrahedron Lett. 2010, 51, 4830–4832.

digitoxin



Site-selective acylation of Lanatoside C

30

üHigh C(4’’’’) selectivity with catalyst 5 

üConfirmed significance of the chirality at the pyrrolidine ring

Y. Ueda, K. Mishiro, K. Yoshida, T. Furuta, T. Kawabata, J. Org. Chem. 2012, 77, 7850–7857.
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Site-selective acylation of 10-Deacetylbaccatin III

31T. Kawabata, Chem. Pharm. Bull. 2016, 64, 907–912.
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Short summary
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üSite-selective acylation of complex molecules was achieved 
by using a similar PPy catalyst.

ØApplication to total synthesis
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Total synthesis of Ellagitannins

34

• Ellagitannins: A large class of plant polyphenols with a wide 
variety of biological activities

• Strictinin (1) and tellimagrandin II (2): anti HSV, antitumor, 
anti-influenza virus, antiallergic activities

T. Kawabata, et al. Angew. Chem. Int. Ed. Engl. 2015, 54, 6177–6180.



Retrosynthetic analysis

35T. Kawabata, et al. Angew. Chem. Int. Ed. Engl. 2015, 54, 6177–6180.

• Sequential and site-selective introduction of galloyl groups 
(G1~G3) 



Stereoselective glycosidation

36

• Highly stereoselective glycosidation under Mitsunobu
conditions

T. Kawabata, et al. Angew. Chem. Int. Ed. Engl. 2015, 54, 6177–6180.



C(4)-OH selective acylation

37

• The chirality at the pyrrolidine ring is important.

T. Kawabata, et al. Angew. Chem. Int. Ed. Engl. 2015, 54, 6177–6180.



Site-selective acylation of C(6)-OH

38

• Site-selective introduction of a galloyl 
group to C(6)-OH of 9 (C(4)-OH 
acylated product)

• 14 is generated from anhydride 7 and 
catalyst 11

ØOne-pot reaction

T. Kawabata, et al. Angew. Chem. Int. Ed. Engl. 2015, 54, 6177–6180.



One-pot site-selective diacylation

39

1) Regioselective C(4)-O-
galloylation

2) Substrate-controlled C(6)-O-
galloylation

T. Kawabata, et al. Angew. Chem. Int. Ed. Engl. 2015, 54, 6177–6180.

51% yield



Final steps of the total synthesis

40

Ø Total syntheses achieved without using protecting groups 
for the glucose substrate

T. Kawabata, et al. Angew. Chem. Int. Ed. Engl. 2015, 54, 6177–6180.



Total Syntheses of Punicafolin and Macaranganin

41

ü Sequential site-selective introduction of the galloyl groups into 
unprotected D-glucose

ü Stereodivergent construction of the 3,6-HHDP bridge by 
oxidative phenol coupling

H. Shibayama, Y. Ueda, T. Tanaka, T. Kawabata, J. Am. Chem. Soc. 2021, 143, 1428–1434.



Site-selective acylation by PPy catalyst

42

ü Key step: (2)-OH selective acylation

H. Shibayama, Y. Ueda, T. Tanaka, T. Kawabata, J. Am. Chem. Soc. 2021, 143, 1428–1434.



Catalyst screening for the C(2)-OH acylation

43

ü A newly developed catalyst 
(C5) with a 3-benzothiophenyl 
group instead of the 3-indolyl 
group of C2

H. Shibayama, Y. Ueda, T. Tanaka, T. Kawabata, J. Am. Chem. Soc. 2021, 143, 1428–1434.



Sequential introduction of galloyl groups

44

• 12 was synthesized through sequential, site-selective reactions.
• Condensation of 12 with 8’ gave an intermediate 15.

H. Shibayama, Y. Ueda, T. Tanaka, T. Kawabata, J. Am. Chem. Soc. 2021, 143, 1428–1434.



Construction of the 3,6-HHDP bridge

• 3,6-HHDP bridge: A less stable axial-rich conformer of the 
pyranose ring (3 with 1C4 conformation) is required for the 
formation. = difficult to synthesize

45H. Shibayama, Y. Ueda, T. Tanaka, T. Kawabata, J. Am. Chem. Soc. 2021, 143, 1428–1434.



Feasibility of using less stable intermediate

46

• Conformational analysis of glucose (β-Glc) and the 
perbenzoylated derivative (β-PBG, a model for 3 (intermediate))

• Stronger anomeric effect was suggested for β-PBG.

ØAxial-rich conformations of 3 can exist to some extent via the 
ring-flip process of the stable 4C1 conformer.

H. Shibayama, Y. Ueda, T. Tanaka, T. Kawabata, J. Am. Chem. Soc. 2021, 143, 1428–1434.



Final steps of the syntheses

47

ü Construction of HHDP 
group: Oxidative phenol 
coupling using chiral amine 
catalyst

H. Shibayama, Y. Ueda, T. Tanaka, T. Kawabata, J. Am. Chem. Soc. 2021, 143, 1428–1434.



Short summary
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Site-selective acylation of complex molecules

50

✓ A newly developed PPy catalyst  ✓ High site-selectivity
✓ Minimally protected monosaccharides and complex molecules
✓ Key steps of total syntheses
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Site-selective acylation

R1 OH R1 O R2

O

・monosaccharides
・disaccharides
・other complex molecules

Ø This catalyst can also be used for challenging kinetic resolution 
(an example for rotaxanes was reported recently: Nat. Commun.
2021, 12, 404.).


