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Optimization of chemical reaction
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>105 configurations!!

In typical laboratory, time and materials are limited…

Ø Scour chemical literature for similar reactions
Ø Experience

Ø Mechanistic understanding
…



Reaction optimization in machine learning 
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Blackbox function

Ø Automated approaches to algorithm optimization

! y# = %(!)

Ø Bayesian optimization

ü High-quality configurations 
in fewer evaluations



Gaussian process

4E. Brochu, V. M. Cora, N. de Freitas, https://doi.org/10.48550/arXiv.1012.2599

Model variance

Model mean

https://doi.org/10.48550/arXiv.1012.2599


Acquisition function

5E. Brochu, V. M. Cora, N. de Freitas, https://doi.org/10.48550/arXiv.1012.2599

Exploitation
vs.

Exploration

https://doi.org/10.48550/arXiv.1012.2599


Bayesian optimization

6E. Brochu, V. M. Cora, N. de Freitas, https://doi.org/10.48550/arXiv.1012.2599

ü Find the objective 
function

ü Uncertainty is gradually 
minimized

ü Where to observe next is 
determined 
automatically

https://doi.org/10.48550/arXiv.1012.2599


Bayesian optimization
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l Application to diverse search spaces
l Selection of multiple experiments in parallel

Ø Optimization of chemical processes

Surrogate model

Acquisition function

New experiments

Initial data

update
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Application to chemical reactions

10

Bayesian optimization (BO)

Conventional
reaction optimization

Experiment

AnalysisDesigning the
next experiment

Experiment

AnalysisDesigning the
next experiment

Ø Acceleration of the 
optimization of synthetic 

reactions 

B. J. Shields, J. Stevens, J. Li, M. Parasram, F. Damani, J. I. M. Alvarado, J. M. 
Janey, R. P. Adams, A. G. Doyle, Nature 2021, 590, 89–96.



Application to chemical reactions
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Bayesian optimization (BO)

Conventional
reaction optimization

Experiment

AnalysisDesigning the
next experiment

Experiment

AnalysisDesigning the
next experiment

Ø Acceleration of the 
optimization of synthetic 

reactions 

B. J. Shields, J. Stevens, J. Li, M. Parasram, F. Damani, J. I. M. Alvarado, J. M. 
Janey, R. P. Adams, A. G. Doyle, Nature 2021, 590, 89–96.

1. Application to typical 
batch chemistry

2. General-purpose 
software platforms

3. Systematic comparisons 
to the performance of 
chemists
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Tuning of the algorithm components

13

optimal 
conditionsinitial data optimizer

ü Good average 
performance

ü Outcomes with low 
variance with respect 
to the initial data

Reaction optimizations with 
different random initial 
starting data

R. P. Adams, A. G. Doyle, et al. Nature 2021, 590, 89–96.



Training data used to select BO parameters

14
P. Richardson, N. W. Sach, et al. Science 2018, 359, 429–434.

R. P. Adams, A. G. Doyle, et al. Nature 2021, 590, 89–96.

Ø Published results of HTE (High 
Throughput Experiments) of 6 
reactions in total were used for 

model optimization.



Training data used to select BO parameters
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S. D. Dreher, A. G. Doyle, et al. Science 2018, 360, 186–190.

R. P. Adams, A. G. Doyle, et al. Nature 2021, 590, 89–96.



Selection of descriptors
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optimal 
conditionsinitial data optimizer

Me
N

N
Me x

computer cannot
understand

molecular
descriptor ○

In this report, Density Functional Theory Descriptors was the best.

Contains: global (e.g. LUMO energy and dipole moment)/
local (e.g. atomic NMR shift and charge for labeled atoms) 
electronic and global steric (e.g. molar volume) descriptors etc.

R. P. Adams, A. G. Doyle, et al. Nature 2021, 590, 89–96.



Optimization of an acquisition function
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ü utilization of both 
information and 

uncertainty to drive 
optimization

Ø Pure exploitation Ø Pure exploration

• Could become trapped  
in local maxima

• May achieve the best 
global understanding

Reaction parameter

Y
ie

ld

Reaction parameter

Y
ie

ld

R. P. Adams, A. G. Doyle, et al. Nature 2021, 590, 89–96.



Balancing exploration and exploitation
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Explorer: Better fit, low yield
Exploiter: High yield Balancing Expected

improvement

Two-dimensional representation of 
reaction 1 Model fit score

R. P. Adams, A. G. Doyle, et al. Nature 2021, 590, 89–96.
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Test in a new reaction space

Palladium-catalyzed C–H functionalization
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Data collection

Experiment

AnalysisDesigning the
next experiment

Bayesian 
optimization (BO)

Experiment

AnalysisDesigning the
next experiment

vs.

R. P. Adams, A. G. Doyle, et al. Nature 2021, 590, 89–96.



BO vs. human experts (Data collection)

• Experiments that were 
expected to give a 
satisfactory distribution 
across the larger search 
space was selected.

• Collected experimental 
results for the entire 
search space via HTE.

21

R. P. Adams, A. G. Doyle, et al. Nature
2021, 590, 89–96.



BO vs. human experts (Game results)
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Optimizer Humans

Initial choices random significantly 
better selection

Final results

○ (the average 
performance 
within three 

batches of five 
experiments)

△

ML performance human performance

R. P. Adams, A. G. Doyle, et al. Nature 2021, 590, 89–96.



BO vs. human experts (Game results)
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• Best- and worst-case bounds for average human performance  
Ø Bayesian reaction optimization on average outperformed 

human experts.

R. P. Adams, A. G. Doyle, et al. Nature 2021, 590, 89–96.



Optimization of a Mitsunobu reaction
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ü The optimizer quickly surpassed the benchmark result.
ü Three distinct sets of reaction conditions (99% yield) 

were identified in only four rounds of ten experiments.

Ø From 180,000 possible configurations in total…

R. P. Adams, A. G. Doyle, et al. Nature 2021, 590, 89–96.



Optimization of a deoxyfluorination reaction
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ü The optimizer surpassed the benchmark result within 
three rounds of five experiments.

ü Reaction conditions that produced TM in 69% yield were 
identified in ten rounds of experiments.

Ø From 312,500 possible configurations in total…

R. P. Adams, A. G. Doyle, et al. Nature 2021, 590, 89–96.



Short summary
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ML performance human performance

Bayesian 
optimization (BO)

Experiment

AnalysisDesigning the
next experiment

ü An efficient and solid method to 
optimize reaction conditions

R. P. Adams, A. G. Doyle, et al. Nature 2021, 590, 89–96.
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Optimization of general reaction conditions

28

N. H. Angello, V. Rathore, W. Beker, A. Wołos, E. R. Jira, R. Roszak, T. C. Wu, C. M. 
Schroeder, A. Aspuru-Guzik, B. A. Grzybowski, M. D. Burke, Science 2022, 378, 399–405.



Importance of general reaction conditions
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Highly general 
reaction conditions Automated oligosaccharide synthesis

Automated 
synthesis

methods for 
peptides, nucleic 

acids, and 
polysaccharides

P. H. Seeberger, et al. Science 2001, 291, 1523–1527.



Reaction conditions for small organic synthesis
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conditions

10%

conditions’

90%

Optimization

conditions’

conditions’
…

Substrate scope

To identify general conditions:
all possible combinations of substrates

× all possible combinations of reaction conditions

Ø Difficult to navigate via standard approaches
B. A. Grzybowski, M. D. Burke, et al. Science 2022, 378, 399–405.



(Hetero)aryl Suzuki-Miyaura cross-coupling
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A promising method to synthesize heteroaryl molecular fragments:
SMC (Suzuki-Miyaura cross-coupling)

Ø Finding general conditions

• This had been attempted, 
but failed, to discover them 

by mining the extensive 
chemical literature

M. D. Burke, B. A. Grzybowski, et al. J. Am. Chem. Soc. 2022, 144, 4819–4827.



Overview of the method
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1. Data-guided matrix 
down-selection to 
render the vast search 
space tractable 

2. Modified BO to 
efficiently drive 
prediction optimization

3. Robotic 
experimentation to 
increase throughput, 
precision, and 
reproducibility

Ø Succeeds in identifying general reaction conditions!

B. A. Grzybowski, M. D. Burke, et al. Science 2022, 378, 399–405.
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Data-guided down-selection of substrates
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Substrate pairs that 
maximize mutual 

dissimilarity of the 
resulting products

Potential product space 
compared to all previously 

reported heteroaryl 
products

B. A. Grzybowski, M. D. Burke, et al. Science 2022, 378, 399–405.



Data-guided down-selection of conditions
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• extent of prior use
• structural diversity
• functional diversity

solvents dioxane, toluene, and dimethylformamide, 
all used in 5:1 mixture with water

temperatures 60° C and 100°C

bases sodium carbonate and potassium phosphate

catalysts Pd SPhos G4, Pd(PPh3)4,PdXPhosG4, Pd P(tBu)3 G4, 
Pd PCy3 G4, Pd2(dba)3, and Pd(dppf)Cl2

selected conditions

B. A. Grzybowski, M. D. Burke, et al. Science 2022, 378, 399–405.



Robotic system for reaction performance

36

When each reaction was repeated
twice, the yields exhibited only ±2% deviation.

Ø One of the key advantages of automated experimentation

B. A. Grzybowski, M. D. Burke, et al. Science 2022, 378, 399–405.



Seeding experiments 
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Catalysts with
• similar functions
• poor performance

were eliminated.

528 reactions in total

B. A. Grzybowski, M. D. Burke, et al. Science 2022, 378, 399–405.



Uncertainty-minimizing ML for generality

• Aim: to maximize the objective function f(c)

38

C={c}: the set of possible reaction 
conditions
S = {s}: a set of substrate pairs
y(s,c): reaction yield

• BO: each experiment performed immediately provides 
information about the objective function

• In this case: determination of f(c) for given conditions 
requires experiments with every pair of substrates in the S 
set

B. A. Grzybowski, M. D. Burke, et al. Science 2022, 378, 399–405.
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Advantages found for model-guided research
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ü Apparent efficiency compared to random sampling
ü Uniformly distributed yields over the range of possible 

values

B. A. Grzybowski, M. D. Burke, et al. Science 2022, 378, 399–405.



Yields of reactions the model requested
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Exploration of good reactions in the second iteration
Ø Attention shifted toward the “negative examples”

Findings through the overall analysis:
(i) Relatively good candidate solutions were identified early
(ii) The model initially tried to look for better-yielding reactions 
(iii) More and more attention was dedicated to decreasing the 
uncertainty of its estimates as the “loop” progressed

B. A. Grzybowski, M. D. Burke, et al. Science 2022, 378, 399–405.



Quantifying generality
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95% successful

B. A. Grzybowski, M. D. Burke, et al. Science 2022, 378, 399–405.



Comparison with the reported conditions
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ML-discovered general reaction conditions performed 
substantially better.

B. A. Grzybowski, M. D. Burke, et al. Science 2022, 378, 399–405.



Short summary
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A nearly impossible challenge of finding general conditions 
was overcome by ML-assisted approach.

B. A. Grzybowski, M. D. Burke, et al. Science 2022, 378, 399–405.
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Summary
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Bayesian optimization (BO)

Experiment

AnalysisDesigning the
next experiment

ü Optimization of the reaction 
conditions using certain 
substrates utilizing BO

ü Further modified ML-assisted 
method to find general 

conditions applicable to 
various substrates


